
An introduction to

computational geometry

Xavier Goaoc

Cours électif - École des mines - Nancy - 2011

Question 1: What is it all about?

It’s about designing algorithmic solutions to geometric problems.

Ex: path planning, geometric model manipulation, visibility computation...

It’s about designing algorithmic solutions to geometric problems.

Ideally we want solutions that are:

? Proven correct.

? Proven efficient.

? Work in practice.

Ex: path planning, geometric model manipulation, visibility computation...

It’s about designing algorithmic solutions to geometric problems.

Ideally we want solutions that are:

? Proven correct.

? Proven efficient.

? Work in practice.

Ex: path planning, geometric model manipulation, visibility computation...

In a mathematical sense.

Often based on geometric arguments.

In the sense of complexity theory.

Complexity of algorithms are analyzed in an adequate model of computation.

Often requires new geometric insight.

Understanding the complexity of the problems themselves is important.

Algorithms that are simple enough to be implemented.

Implementations that handle degeneracies and finite precision arithmetic.

It’s about designing algorithmic solutions to geometric problems.

Ideally we want solutions that are:

? Proven correct.

? Proven efficient.

? Work in practice.

Ex: path planning, geometric model manipulation, visibility computation...

In a mathematical sense.

Often based on geometric arguments.

In the sense of complexity theory.

Complexity of algorithms are analyzed in an adequate model of computation.

Often requires new geometric insight.

Understanding the complexity of the problems themselves is important.

Algorithms that are simple enough to be implemented.

Implementations that handle degeneracies and finite precision arithmetic.

Model of computation

Definition of the operations allowed in an algorithm and their cost.

Goal: estimate the ressources required by an algorithm

Ex: execution time, memory space, number of I/O transfers, number of processors...

as a function of the input size.

Principle: we do not want a precise cost estimation

We want to speak of algorithms independently of the technology.

We want to compare algorithms, not implementations.

Model of computation

Definition of the operations allowed in an algorithm and their cost.

Goal: estimate the ressources required by an algorithm

Ex: execution time, memory space, number of I/O transfers, number of processors...

as a function of the input size.

Principle: we do not want a precise cost estimation

We want to speak of algorithms independently of the technology.

We want to compare algorithms, not implementations.

Classical model in CG: Real RAM model

Allows manipulation of real (as in R) numbers.

Input size n → complexity f (n) = maxinput |X|=n f (X)

Care about asymptotic order of magnitude of f (O(),Ω(),Θ()).

Brute force does not scale well (or: why should we think?)

The ”Travelling salesman problem”.

Input: n cities and all inter-city distances.

Output: order on the cities that minimizes the distance travelled.

Brute force does not scale well (or: why should we think?)

The ”Travelling salesman problem”.

Input: n cities and all inter-city distances.

Output: order on the cities that minimizes the distance travelled.

Brute-force approach: test all n! orders and pick the best.

Brute force does not scale well (or: why should we think?)

The ”Travelling salesman problem”.

Input: n cities and all inter-city distances.

Output: order on the cities that minimizes the distance travelled.

Brute-force approach: test all n! orders and pick the best.

Assume your computer can process 1015 orders per second.

Generate the order, add-up the distances, compare to the current best...

A very generous over-estimation.

Brute force does not scale well (or: why should we think?)

The ”Travelling salesman problem”.

Input: n cities and all inter-city distances.

Output: order on the cities that minimizes the distance travelled.

Brute-force approach: test all n! orders and pick the best.

Assume your computer can process 1015 orders per second.

Generate the order, add-up the distances, compare to the current best...

A very generous over-estimation.

Start the computation now. It will end...

in 30-60 min. for n = 20. in two weeks for n = 22.

in twenty years for n = 24. in four centuries for n = 25.

in the dark for n = 30.

Orders of magnitude

Sort by increasing asymptotic orders of magnitude:

n, 2n, n2, n!,
√
n, log n, log∗ n, 2n

2

Orders of magnitude

Sort by increasing asymptotic orders of magnitude:

n, 2n, n2, n!,
√
n, log n, log∗ n, 2n

2

log∗ n� log n�
√
n� n� n2 � 2n � n!� 2n

2

Orders of magnitude

Sort by increasing asymptotic orders of magnitude:

n, 2n, n2, n!,
√
n, log n, log∗ n, 2n

2

log∗ n� log n�
√
n� n� n2 � 2n � n!� 2n

2

log∗ n� loga n� nb � 2cn � (n!)d � 2en
2

∀a, b, c, d, e ∈ R+

Three classes of problems

Orders of magnitude

Sort by increasing asymptotic orders of magnitude:

n, 2n, n2, n!,
√
n, log n, log∗ n, 2n

2

log∗ n� log n�
√
n� n� n2 � 2n � n!� 2n

2

Undecidable: no algorithm will solve the problem. Ever.

NP-hard: conjectured unlikely that a polynomial-time algorithm exists.

Polynomial-time: solvable by an algorithm with complexity O(nc)

for some constant c.

log∗ n� loga n� nb � 2cn � (n!)d � 2en
2

∀a, b, c, d, e ∈ R+

Hilbert’s tenth problem

Input: a polynomial P in n variables with integer coefficients.

Output: yes if P has a integer solution, no otherwise.

Ex: P (x1, x2, x3) = x21 + 3x1x2 − 2x22 + 4x3 + 3

Tenth question in Hilbert’s list of Problèmes futurs des mathématiques.

Raised in 1900. Algorithmic question before the age of computers.

”Solved” in 1970 by Y. Matiyasevitch.

Hilbert’s tenth problem

Input: a polynomial P in n variables with integer coefficients.

Output: yes if P has a integer solution, no otherwise.

Ex: P (x1, x2, x3) = x21 + 3x1x2 − 2x22 + 4x3 + 3

Tenth question in Hilbert’s list of Problèmes futurs des mathématiques.

Raised in 1900. Algorithmic question before the age of computers.

”Solved” in 1970 by Y. Matiyasevitch.

UNDECIDABLE

Minimum-weigth triangulation

Given a set of points in the plane

find a triangulation of the convex hull

that minimizes the sum of edge lengths.

Minimum-weigth triangulation

Given a set of points in the plane

find a triangulation of the convex hull

that minimizes the sum of edge lengths.

Minimum-weigth triangulation

Given a set of points in the plane

find a triangulation of the convex hull

that minimizes the sum of edge lengths.

Minimum-weigth triangulation

Given a set of points in the plane

find a triangulation of the convex hull

that minimizes the sum of edge lengths.

Raised in the early 1970’s.

”Solved” in 2008 by Mulzer and Rote.

Minimum-weigth triangulation

Given a set of points in the plane

find a triangulation of the convex hull

that minimizes the sum of edge lengths.

Raised in the early 1970’s.

”Solved” in 2008 by Mulzer and Rote.

NP-hard

Problems solvable in polynomial time

Algorithms for the same problem may have different complexities.

Ex: Merge sort has Θ(n log n) complexity.

Bubble sort has Θ(n2) complexity.

Quick sort has Θ(n2) complexity but O(n log n) average-case complexity.

Problems solvable in polynomial time

Algorithms for the same problem may have different complexities.

Ex: Merge sort has Θ(n log n) complexity.

Bubble sort has Θ(n2) complexity.

Quick sort has Θ(n2) complexity but O(n log n) average-case complexity.

This can have a drastic impact.

http://cg.scs.carleton.ca/∼morin/misc/sortalg/

Wrap-up: what is it about?

Algorithmic solutions to geometric problems.

Proofs of correctness and complexity bounds.

(Attention to degeneracy and numerical issues.)

Beware of undecidable or NP-hard problems.

Asymptotic complexity matters in practice.

Question 2 (getting started)

How to compute the intersections among n segments in 2D?

Question 2 (getting started)

How to compute the intersections among n segments in 2D?

Input:

Question 2 (getting started)

How to compute the intersections among n segments in 2D?

Input:

Output:

Question 2 (getting started)

How to compute the intersections among n segments in 2D?

Input:

Output:

Any idea?

Use geometry to avoid testing unnecessary pairs.

Idea: sweep the plane using a line.
S

w
ep

t

U
nk

ow
n

Use geometry to avoid testing unnecessary pairs.

Idea: sweep the plane using a line.
S

w
ep

t

U
nk

ow
n

Two segments that intersect

must meet the sweep line consecutively

before it reaches the intersection point.

Principle:

Use geometry to avoid testing unnecessary pairs.

Idea: sweep the plane using a line.
S

w
ep

t

U
nk

ow
n

maintain the ordered list of

segments intersecting the sweep line.

Idea of algorithm:

Two segments that intersect

must meet the sweep line consecutively

before it reaches the intersection point.

Principle:

Use geometry to avoid testing unnecessary pairs.

Idea: sweep the plane using a line.
S

w
ep

t

U
nk

ow
n

Details:

How to detect the changes in the ordered list?

Data structure? Predicates?

maintain the ordered list of

segments intersecting the sweep line.

Idea of algorithm:

Two segments that intersect

must meet the sweep line consecutively

before it reaches the intersection point.

Principle:

Use geometry to avoid testing unnecessary pairs.

Idea: sweep the plane using a line.
S

w
ep

t

U
nk

ow
n

Details:

How to detect the changes in the ordered list?

Data structure? Predicates?

maintain the ordered list of

segments intersecting the sweep line.

Idea of algorithm:

Two segments that intersect

must meet the sweep line consecutively

before it reaches the intersection point.

Principle:

Details:

How to detect the changes in the ordered list?

Data structure? Predicates?

Three types of events

S
w

ep
t

U
nk

ow
n

each event happens

at a particular x-coordinate

Details:

How to detect the changes in the ordered list?

Data structure? Predicates?

Three types of events

S
w

ep
t

U
nk

ow
n

S
w

ep
t

U
nk

ow
n

each event happens

at a particular x-coordinate

Details:

How to detect the changes in the ordered list?

Data structure? Predicates?

Three types of events

S
w

ep
t

U
nk

ow
n

S
w

ep
t

U
nk

ow
n

S
w

ep
t

U
nk

ow
n

each event happens

at a particular x-coordinate

Details:

How to detect the changes in the ordered list?

Data structure? Predicates?

Three types of events

Data structures

S
w

ep
t

U
nk

ow
n

S
w

ep
t

U
nk

ow
n

S
w

ep
t

U
nk

ow
n

Ordered list of segments intersected by the line.
Supports efficient insertion, deletion & exchange.

List of events sorted by x-coordinates.

each event happens

at a particular x-coordinate

{
Supports efficient insertion & deletion.

Algorithm

Events: sorted list of events.

Sweep: sorted list of segments intersecting the sweep line.

Insert the endpoints of all segments in Events.

Sweep ← ∅.

While Events 6= ∅

Read the next event and remove it from the list.

Insert, delete or swap segments in Sweep.

Check intersections between new neighbors in Sweep.

Add those intersections to the output and to Events.

1

2

4

5

6

7

3

Algorithm

Events: sorted list of events.

Sweep: sorted list of segments intersecting the sweep line.

Insert the endpoints of all segments in Events.

Sweep ← ∅.

While Events 6= ∅

Read the next event and remove it from the list.

Insert, delete or swap segments in Sweep.

Check intersections between new neighbors in Sweep.

Add those intersections to the output and to Events.

Events= {L3, L6, L4, L7, R7, L2, R6, R4, L1, L5, R1, R5, R3, R2}

Sweep= {}

Output= {}

1

2

4

5

6

7

3

Algorithm

Events: sorted list of events.

Sweep: sorted list of segments intersecting the sweep line.

Insert the endpoints of all segments in Events.

Sweep ← ∅.

While Events 6= ∅

Read the next event and remove it from the list.

Insert, delete or swap segments in Sweep.

Check intersections between new neighbors in Sweep.

Add those intersections to the output and to Events.

1

2

4

5

6

7

3

Events= {L3, L6, L4, L7, R7, L2, R6, R4, L1, L5, R1, R5, R3, R2}

Sweep= {3}

Output= {}

Algorithm

Events: sorted list of events.

Sweep: sorted list of segments intersecting the sweep line.

Insert the endpoints of all segments in Events.

Sweep ← ∅.

While Events 6= ∅

Read the next event and remove it from the list.

Insert, delete or swap segments in Sweep.

Check intersections between new neighbors in Sweep.

Add those intersections to the output and to Events.

1

2

4

5

6

7

3

Events= {L6, L4, L7, R7, L2, R6, R4, L1, L5, R1, R5, R3, R2}

Sweep= {6, 3}

Output= {}

Algorithm

Events: sorted list of events.

Sweep: sorted list of segments intersecting the sweep line.

Insert the endpoints of all segments in Events.

Sweep ← ∅.

While Events 6= ∅

Read the next event and remove it from the list.

Insert, delete or swap segments in Sweep.

Check intersections between new neighbors in Sweep.

Add those intersections to the output and to Events.

1

2

4

5

6

7

3

Events= {L4, L7, R7, L2, I4,3, R6, R4, L1, L5, R1, R5, R3, R2}

Sweep= {6, 3, 4}

Output= {(3, 4)}

Algorithm

Events: sorted list of events.

Sweep: sorted list of segments intersecting the sweep line.

Insert the endpoints of all segments in Events.

Sweep ← ∅.

While Events 6= ∅

Read the next event and remove it from the list.

Insert, delete or swap segments in Sweep.

Check intersections between new neighbors in Sweep.

Add those intersections to the output and to Events.

1

2

4

5

6

7

3

Events= {L7, R7, L2, I4,3, R6, R4, L1, L5, R1, R5, R3, R2}

Sweep= {6, 3, 7, 4}

Output= {(3, 4)}

Algorithm

Events: sorted list of events.

Sweep: sorted list of segments intersecting the sweep line.

Insert the endpoints of all segments in Events.

Sweep ← ∅.

While Events 6= ∅

Read the next event and remove it from the list.

Insert, delete or swap segments in Sweep.

Check intersections between new neighbors in Sweep.

Add those intersections to the output and to Events.

1

2

4

5

6

7

3

Events= {L7, L2, I4,3, R6, R4, L1, L5, R1, R5, R3, R2}

Sweep= {6, 3, 7, 4}

Output= {(3, 4)}

Algorithm

Events: sorted list of events.

Sweep: sorted list of segments intersecting the sweep line.

Insert the endpoints of all segments in Events.

Sweep ← ∅.

While Events 6= ∅

Read the next event and remove it from the list.

Insert, delete or swap segments in Sweep.

Check intersections between new neighbors in Sweep.

Add those intersections to the output and to Events.

1

2

4

5

6

7

3

Events= {L2, I4,3, R6, R4, L1, L5, R1, R5, R3, R2}

Sweep= {2, 6, 3, 4}

Output= {(3, 4)}

Algorithm

Events: sorted list of events.

Sweep: sorted list of segments intersecting the sweep line.

Insert the endpoints of all segments in Events.

Sweep ← ∅.

While Events 6= ∅

Read the next event and remove it from the list.

Insert, delete or swap segments in Sweep.

Check intersections between new neighbors in Sweep.

Add those intersections to the output and to Events.

1

2

4

5

6

7

3

Events= {I4,3, R6, R4, L1, L5, R1, R5, R3, R2}

Sweep= {2, 6, 4, 3}

Output= {(3, 4)}

Algorithm

Events: sorted list of events.

Sweep: sorted list of segments intersecting the sweep line.

Insert the endpoints of all segments in Events.

Sweep ← ∅.

While Events 6= ∅

Read the next event and remove it from the list.

Insert, delete or swap segments in Sweep.

Check intersections between new neighbors in Sweep.

Add those intersections to the output and to Events.

1

2

4

5

6

7

3

Events= {R6, I2,4, R4, L1, L5, R1, R5, R3, R2}

Sweep= {2, 6, 4, 3}

Output= {(3, 4), (2, 4)}

Algorithm

Events: sorted list of events.

Sweep: sorted list of segments intersecting the sweep line.

Insert the endpoints of all segments in Events.

Sweep ← ∅.

While Events 6= ∅

Read the next event and remove it from the list.

Insert, delete or swap segments in Sweep.

Check intersections between new neighbors in Sweep.

Add those intersections to the output and to Events.

1

2

4

5

6

7

3

Events= {I2,4, R4, L1, I2,3, L5, R1, R5, R3, R2}

Sweep= {4, 2, 3}

Output= {(3, 4), (2, 4), (2, 3)}

Algorithm

Events: sorted list of events.

Sweep: sorted list of segments intersecting the sweep line.

Insert the endpoints of all segments in Events.

Sweep ← ∅.

While Events 6= ∅

Read the next event and remove it from the list.

Insert, delete or swap segments in Sweep.

Check intersections between new neighbors in Sweep.

Add those intersections to the output and to Events.

1

2

4

5

6

7

3

Events= {I2,4, R4, L1, I2,3, L5, R1, R5, R3, R2}

Sweep= {4, 2, 3}

Output= {(3, 4), (2, 4), (2, 3)}

etc...

Correctness? Complexity?

Other objects (polygons, circles, algebraic curves, etc...), other spaces (S2, R3, S1 × S1...).

Generic principle, three predicates: x-extreme points, intersection, x-coordinate comparison.

Wrap-up: sweep algorithms

Computing arrangements of geometric objects.

Other objects (polygons, circles, algebraic curves, etc...), other spaces (S2, R3, S1 × S1...).

Generic principle, three predicates: x-extreme points, intersection, x-coordinate comparison.

Wrap-up: sweep algorithms

Computing arrangements of geometric objects.

Computing trapezoidal decompositions of arrangements of geometric objects.

Other objects (polygons, circles, algebraic curves, etc...), other spaces (S2, R3, S1 × S1...).

Generic principle, three predicates: x-extreme points, intersection, x-coordinate comparison.

Wrap-up: sweep algorithms

Computing arrangements of geometric objects.

Computing trapezoidal decompositions of arrangements of geometric objects.

Computing substructures of arrangements of geometric objects.

Other objects (polygons, circles, algebraic curves, etc...), other spaces (S2, R3, S1 × S1...).

Generic principle, three predicates: x-extreme points, intersection, x-coordinate comparison.

Wrap-up: sweep algorithms

Computing arrangements of geometric objects.

Computing trapezoidal decompositions of arrangements of geometric objects.

Computing substructures of arrangements of geometric objects.

Other objects (polygons, circles, algebraic curves, etc...), other spaces (S2, R3, S1 × S1...).

Generic principle, three predicates: x-extreme points, intersection, x-coordinate comparison.

Wrap-up: sweep algorithms

All that in O((n + k) log n).

Question 3

How to triangulate a set of points?

Question 3

How to triangulate a set of points?

Input:

Question 3

How to triangulate a set of points?

Input:

Output:

Question 3

How to triangulate a set of points?

Input:

Output:

Question 3

How to triangulate a set of points?

Input:

Output:

What is a good triangulation?

Number of triangulations

How many triangulations on 4 points? 5 points?

Number of triangulations

How many triangulations on 4 points? 5 points?

The number of triangulations of n points in convex position is 1
n−1

(
2n−4
n−2

)
= Cn−2.

Number of triangulations

How many triangulations on 4 points? 5 points?

The number of triangulations of n points in convex position is 1
n−1

(
2n−4
n−2

)
= Cn−2.

Direct proof: ”bijective” proof:

Number of triangulations

How many triangulations on 4 points? 5 points?

The number of triangulations of n points in convex position is 1
n−1

(
2n−4
n−2

)
= Cn−2.

Direct proof: ”bijective” proof:

Grows fast: Cn ∼ 4n

n
√
πn First numbers: 3(1), 4(2), 5(5), 6(14), . . . , 10(16796), . . . , 20(6564120420) . . .

Number of triangulations

How many triangulations on 4 points? 5 points?

The number of triangulations of n points in convex position is 1
n−1

(
2n−4
n−2

)
= Cn−2.

Direct proof: ”bijective” proof:

Grows fast: Cn ∼ 4n

n
√
πn First numbers: 3(1), 4(2), 5(5), 6(14), . . . , 10(16796), . . . , 20(6564120420) . . .

For points in arbitrary position: Ω(8.48n) [2007] and O(30n) [2009].

Number of edges and triangles

Theorem. Let P be a set of n points in the plane, not all collinear. Let k be the number

of points in P that lie on the boundary of the convex hull of P . Any triangulation of P has

2n− 2− k triangles and 3n− 3− k edges.

Number of edges and triangles

Theorem. Let P be a set of n points in the plane, not all collinear. Let k be the number

of points in P that lie on the boundary of the convex hull of P . Any triangulation of P has

2n− 2− k triangles and 3n− 3− k edges.

Idea?

Number of edges and triangles

Theorem. Let P be a set of n points in the plane, not all collinear. Let k be the number

of points in P that lie on the boundary of the convex hull of P . Any triangulation of P has

2n− 2− k triangles and 3n− 3− k edges.

Proof: e = # of edges, t = # of triangles.

Counting edge/face incidences (including unbounded face) ⇒ 2e = 3t + k

Euler’s relation: n− e + t = 2

Substitute.

Number of edges and triangles

Theorem. Let P be a set of n points in the plane, not all collinear. Let k be the number

of points in P that lie on the boundary of the convex hull of P . Any triangulation of P has

2n− 2− k triangles and 3n− 3− k edges.

Proof: e = # of edges, t = # of triangles.

Counting edge/face incidences (including unbounded face) ⇒ 2e = 3t + k

Euler’s relation: n− e + t = 2

Substitute.

The average degree of a point is ≤ 6.

Which triangulation shall we compute?

”Quality” of a triangulation (mesh) as defined in application areas.

Acute triangles are often considered bad.

Ex: In finite element methods acute triangle make approximation harder.

Which triangulation shall we compute?

”Quality” of a triangulation (mesh) as defined in application areas.

Acute triangles are often considered bad.

Ex: In finite element methods acute triangle make approximation harder.

Not always the case, e.g. in anisotropic meshing (fluid dynamics...)

Which triangulation shall we compute?

”Quality” of a triangulation (mesh) as defined in application areas.

Acute triangles are often considered bad.

Ex: In finite element methods acute triangle make approximation harder.

better than

Not always the case, e.g. in anisotropic meshing (fluid dynamics...)

Which triangulation shall we compute?

”Quality” of a triangulation (mesh) as defined in application areas.

Acute triangles are often considered bad.

Ex: In finite element methods acute triangle make approximation harder.

better than

Not always the case, e.g. in anisotropic meshing (fluid dynamics...)

Associate to every triangulation the vector of angles sorted from smallest to largest.

Let’s compute the triangulation with lexicographically smallest vector of angles.

Legal edges

Consider an edge of a triangulation incident to two triangles forming a convex quadrangle.

Legal edges

Consider an edge of a triangulation incident to two triangles forming a convex quadrangle.

Legal edges

Consider an edge of a triangulation incident to two triangles forming a convex quadrangle.

Exchanging the edge for the other diagonal of the quadrangle yields a new triangulation.

This is called ”flipping” the edge.

flip

Legal edges

Consider an edge of a triangulation incident to two triangles forming a convex quadrangle.

Exchanging the edge for the other diagonal of the quadrangle yields a new triangulation.

This is called ”flipping” the edge.

flip

Call an edge illegal if it can be flipped and flipping it decreases the vector of angles.

Call a triangulation legal if it contains no illegal edge.

Computing a legal triangulation

Start from any triangulation.

While there exists an illegal edge,

flip that edge.

Termination? Correctness? Complexity?

Computing a legal triangulation

Start from any triangulation.

While there exists an illegal edge,

flip that edge.

Termination? Correctness? Complexity?

An elegant test for edge ”illegality”

p1 p2

p3

p4

p1p2 is illegal

p4 lies inside the circle circumscribed to p1p2p3

p3 lies inside the circle circumscribed to p1p2p4

⇔

⇔

Computing a legal triangulation

Start from any triangulation.

While there exists an illegal edge,

flip that edge.

Termination? Correctness? Complexity?

An elegant test for edge ”illegality”

p1 p2

p3

p4

p1p2 is illegal

p4 lies inside the circle circumscribed to p1p2p3

p3 lies inside the circle circumscribed to p1p2p4

⇔

⇔

Main ingredient of the proof: ≤ ≤

Delaunay triangulations

Let P be a set of n points in the plane.

A triangulation is a Delaunay triangulation

⇔ the interior of every triangle circumcircle is empty of points of P .

Delaunay triangulations

Let P be a set of n points in the plane.

A triangulation is a Delaunay triangulation

⇔ the interior of every triangle circumcircle is empty of points of P .

Delaunay triangulations

Let P be a set of n points in the plane.

A triangulation is a Delaunay triangulation

⇔ the interior of every triangle circumcircle is empty of points of P .

Theorem. A triangulation is legal if and only if it is a Delaunay triangulation.

Delaunay triangulations

Let P be a set of n points in the plane.

A triangulation is a Delaunay triangulation

⇔ the interior of every triangle circumcircle is empty of points of P .

Theorem. A triangulation is legal if and only if it is a Delaunay triangulation.

Proof: Argue that is impossible in a legal triangulation.

Delaunay triangulations

Let P be a set of n points in the plane.

A triangulation is a Delaunay triangulation

⇔ the interior of every triangle circumcircle is empty of points of P .

Theorem. A triangulation is legal if and only if it is a Delaunay triangulation.

Theorem. If no 4 points of P are cocircular then P has a unique Delaunay triangulation.

Theorem. All Delaunay triangulations of a point set P have the same minimal angle.

Proof: Argue that is impossible in a legal triangulation.

Incremental construction

Let P = {p1, . . . , pn} be a set of n points in the plane.

For simplicity we assume that P is contained in the triangle p1p2p3.

Add the points one by one.

Maintain a Delaunay triangulation.

Incremental algorithm:

Incremental construction

Let P = {p1, . . . , pn} be a set of n points in the plane.

For simplicity we assume that P is contained in the triangle p1p2p3.

Add the points one by one.

Maintain a Delaunay triangulation.

Incremental algorithm:

Three sub-problems.

Incremental construction

Let P = {p1, . . . , pn} be a set of n points in the plane.

For simplicity we assume that P is contained in the triangle p1p2p3.

Add the points one by one.

Maintain a Delaunay triangulation.

Incremental algorithm:

Three sub-problems.

Point location

pi

Incremental construction

Let P = {p1, . . . , pn} be a set of n points in the plane.

For simplicity we assume that P is contained in the triangle p1p2p3.

Add the points one by one.

Maintain a Delaunay triangulation.

Incremental algorithm:

Three sub-problems.

Point location Triangle subdivision

pi

Incremental construction

Let P = {p1, . . . , pn} be a set of n points in the plane.

For simplicity we assume that P is contained in the triangle p1p2p3.

Add the points one by one.

Maintain a Delaunay triangulation.

Incremental algorithm:

Three sub-problems.

Point location Triangle subdivision Correction

pi

Incremental construction

Let P = {p1, . . . , pn} be a set of n points in the plane.

For simplicity we assume that P is contained in the triangle p1p2p3.

Add the points one by one.

Maintain a Delaunay triangulation.

Incremental algorithm:

Three sub-problems.

Point location Triangle subdivision Correction

pi

T ← {p1p2p3}
For i = 4 . . . n

Insert pi in T .

Find a triangle pqr of T containing pi.

T ← T \ {pqr} ∪ {pipq, piqr, pirp}
Make each edge pip, piq, pir legal by successive flips.

Subdivision - Correction

Subdivision - Correction

Subdivision - Correction

Subdivision - Correction

Subdivision - Correction

Subdivision - Correction

Subdivision - Correction

Subdivision - Correction

Subdivision - Correction

Subdivision - Correction

Subdivision - Correction

Each flip adds one edge to the new point.

Total cost is O(di) where di is the degree of pi in the Delaunay triangulation of p1, . . . , pi.

Point location

We use the history of all triangles built to speed up point location.

We maintain a directed acyclic graph during triangle subdivision and edge flips.

Point location

We use the history of all triangles built to speed up point location.

We maintain a directed acyclic graph during triangle subdivision and edge flips.

Initialisation: single node labelled p1p2p3.

Subdivision:

Flip:

A
D C

B

A

B DC

A B

DC

A
D

C

B

Point location

We use the history of all triangles built to speed up point location.

We maintain a directed acyclic graph during triangle subdivision and edge flips.

Initialisation: single node labelled p1p2p3.

Subdivision:

Flip:

If a point belongs to the triangle of a node

then it belongs to the triangle to exactly one child of that node.

A
D C

B

A

B DC

A B

DC

A
D

C

B

Point location

We use the history of all triangles built to speed up point location.

We maintain a directed acyclic graph during triangle subdivision and edge flips.

Initialisation: single node labelled p1p2p3.

Subdivision:

Flip:

If a point belongs to the triangle of a node

then it belongs to the triangle to exactly one child of that node.

A
D C

B

A

B DC

A B

DC

We start from the root (any pi belongs to p1p2p3) and trickle down

until we find a triangle from the current triangulation (ie a sink of the DAG).

A
D

C

B

Complexity analysis

T ← {p1p2p3}
For i = 4 . . . n

Insert pi in T .

Find a triangle pqr of T containing pi.

T ← T \ {pqr} ∪ {pipq, piqr, pirp}
Make each edge pip, piq, pir legal by successive flips.

Let di be the degree of pi in the Delaunay triangulation of p1, . . . , pi.

Let ti be the number of triangles to traverse to localize pi.

Cost = O (Σidi + ti).

Complexity analysis

T ← {p1p2p3}
For i = 4 . . . n

Insert pi in T .

Find a triangle pqr of T containing pi.

T ← T \ {pqr} ∪ {pipq, piqr, pirp}
Make each edge pip, piq, pir legal by successive flips.

Let di be the degree of pi in the Delaunay triangulation of p1, . . . , pi.

Let ti be the number of triangles to traverse to localize pi.

Cost = O (Σidi + ti).

It can happen that ti = i− 1 for all i ⇒ Ω(n2) complexity.

The order in which the points are inserted is important.

Complexity analysis

T ← {p1p2p3}
For i = 4 . . . n

Insert pi in T .

Find a triangle pqr of T containing pi.

T ← T \ {pqr} ∪ {pipq, piqr, pirp}
Make each edge pip, piq, pir legal by successive flips.

Let di be the degree of pi in the Delaunay triangulation of p1, . . . , pi.

Let ti be the number of triangles to traverse to localize pi.

Cost = O (Σidi + ti).

It can happen that ti = i− 1 for all i ⇒ Ω(n2) complexity.

The order in which the points are inserted is important.

Computing a good order is hard. What about a random order?

Complexity analysis

T ← {p1p2p3}
For i = 4 . . . n

Insert pi in T .

Find a triangle pqr of T containing pi.

T ← T \ {pqr} ∪ {pipq, piqr, pirp}
Make each edge pip, piq, pir legal by successive flips.

Let di be the degree of pi in the Delaunay triangulation of p1, . . . , pi.

Let ti be the number of triangles to traverse to localize pi.

Cost = O (Σidi + ti).

It can happen that ti = i− 1 for all i ⇒ Ω(n2) complexity.

The order in which the points are inserted is important.

Computing a good order is hard. What about a random order?

T ← {p1p2p3}

For i = 4 . . . n

Insert pi in T .

Find a triangle pqr of T containing pi.

T ← T \ {pqr} ∪ {pipq, piqr, pirp}
Make each edge pip, piq, pir legal by successive flips.

Renumber the points p4, . . . , pn randomly.

Randomized incremental construction - complexity analysis

We bound the expected complexity of the algorithm.

Expectation is taken with respect to random internal choices. The input is arbitrary.

Cost = E [O (Σidi + ti)] = O (ΣiE[di] + E[ti]).

Randomized incremental construction - complexity analysis

We bound the expected complexity of the algorithm.

Expectation is taken with respect to random internal choices. The input is arbitrary.

Cost = E [O (Σidi + ti)] = O (ΣiE[di] + E[ti]).

Condition over the choice of the first i points

Use the bound on the average degree.

⇒ E[di] ≤ 6.

Randomized incremental construction - complexity analysis

We bound the expected complexity of the algorithm.

Expectation is taken with respect to random internal choices. The input is arbitrary.

Cost = E [O (Σidi + ti)] = O (ΣiE[di] + E[ti]).

Condition over the choice of the first i points

Use the bound on the average degree.

⇒ E[di] ≤ 6.

Charge deleted triangles to point/triangle incidences.

Amortization theorem (not trivial).

⇒ E[Σiti] = O(n log n).

Randomized incremental construction - complexity analysis

We bound the expected complexity of the algorithm.

Expectation is taken with respect to random internal choices. The input is arbitrary.

Cost = E [O (Σidi + ti)] = O (ΣiE[di] + E[ti]).

Condition over the choice of the first i points

Use the bound on the average degree.

⇒ E[di] ≤ 6.

Charge deleted triangles to point/triangle incidences.

Amortization theorem (not trivial).

⇒ E[Σiti] = O(n log n).

Generating a random permutation on {3, . . . , n} can be done in O(n log n) time.

Randomized incremental construction - complexity analysis

We bound the expected complexity of the algorithm.

Expectation is taken with respect to random internal choices. The input is arbitrary.

Cost = E [O (Σidi + ti)] = O (ΣiE[di] + E[ti]).

Condition over the choice of the first i points

Use the bound on the average degree.

⇒ E[di] ≤ 6.

Charge deleted triangles to point/triangle incidences.

Amortization theorem (not trivial).

⇒ E[Σiti] = O(n log n).

Generating a random permutation on {3, . . . , n} can be done in O(n log n) time.

Theorem. We can compute a Delaunay triangulation of n points in R2 in O(n log n) time.

Expected running time of a randomized algorithm.

Higher dimension

Delaunay triangulations generalize to arbitrary dimension (empty circumscribed hypersphere).

Higher dimension

Delaunay triangulations generalize to arbitrary dimension (empty circumscribed hypersphere).

What is the complexity of a Delaunay triangulation of...

Higher dimension

Delaunay triangulations generalize to arbitrary dimension (empty circumscribed hypersphere).

What is the complexity of a Delaunay triangulation of...

?

Higher dimension

Delaunay triangulations generalize to arbitrary dimension (empty circumscribed hypersphere).

What is the complexity of a Delaunay triangulation of...

? ?

Higher dimension

Delaunay triangulations generalize to arbitrary dimension (empty circumscribed hypersphere).

What is the complexity of a Delaunay triangulation of...

? ? ?

Higher dimension

Delaunay triangulations generalize to arbitrary dimension (empty circumscribed hypersphere).

What is the complexity of a Delaunay triangulation of...

? ? ?

Θ
(
nd

d
2e
)

worst-case complexity in dimension d ≥ 3.

Can be constructed in expected O
(
nd

d
2e
)

time (similar approach).

Wrapping up: Delaunay triangulations

Particular triangulation with good geometric properties.

Efficient flip-based algorithm to compute it.

Optimized & flexible implementations available in CGAL.

Randomization is a powerful technique.

Generic setup: randomized incremental construction.

Many variations: higher dimension, constrained DT, etc...

Question 4

How do you find the nearest post-office?

Input:

Question 4

How do you find the nearest post-office?

Repeatedly?

Input:

Question 4

How do you find the nearest post-office?

Repeatedly?

Input:

Output

Voronoi diagram - definition

Given a family of sites p1, . . . pn in a space with a distance.

Partition the space into regions R1, . . . Rn.

Ri = set of points closer to pi than to pj for any j 6= i.

Voronoi diagram - definition

Given a family of sites p1, . . . pn in a space with a distance.

Partition the space into regions R1, . . . Rn.

Ri = set of points closer to pi than to pj for any j 6= i.

The space can be R2, R3, a surface, etc...

The points can be points, disks, polygons, etc...

We focus on the case of sites in the plane.

Voronoi diagram - applications

Voronoi diagrams capture notions of area of influence appearing in many natural sciences.

Voronoi diagram - applications

Voronoi diagrams capture notions of area of influence appearing in many natural sciences.

Voronoi diagram - applications

Used by Descartes to study cosmic fragmentation.

Voronoi diagrams capture notions of area of influence appearing in many natural sciences.

Voronoi diagram - applications

Also known as Dirichlet tesselations.

Used by Descartes to study cosmic fragmentation.

Voronoi diagrams capture notions of area of influence appearing in many natural sciences.

Voronoi diagram - applications

Also known as Dirichlet tesselations.

Used by Descartes to study cosmic fragmentation.

Known to meteorologists as Thiessen polygons.

Voronoi diagrams capture notions of area of influence appearing in many natural sciences.

Voronoi diagram - applications

Also known as Dirichlet tesselations.

Used by Descartes to study cosmic fragmentation.

Known to meteorologists as Thiessen polygons.

Voronoi diagrams capture notions of area of influence appearing in many natural sciences.

Known to chemists as Wigner-Seitz cell.

Voronoi diagram - applications

Also known as Dirichlet tesselations.

Used by Descartes to study cosmic fragmentation.

Known to meteorologists as Thiessen polygons.

Voronoi diagrams capture notions of area of influence appearing in many natural sciences.

Known to chemists as Wigner-Seitz cell.

Called area potentially available to a tree (Brown)

and plant polygons (Mead) by biologists.and plant polygons (Mead) by biologists.

Voronoi diagram - applications

Also known as Dirichlet tesselations.

Used by Descartes to study cosmic fragmentation.

Known to meteorologists as Thiessen polygons.

Voronoi diagrams capture notions of area of influence appearing in many natural sciences.

Known to chemists as Wigner-Seitz cell.

Can be used for natural neighbors interpolation (more later), facility positionning (Voronoi game)...

Called area potentially available to a tree (Brown)

and plant polygons (Mead) by biologists.and plant polygons (Mead) by biologists.

Structure of a Voronoi diagram

Bisector of pi and pj = locus of points at equal distance from pi and pj.

Structure of a Voronoi diagram

Bisector of pi and pj = locus of points at equal distance from pi and pj.

Structure of a Voronoi diagram

Bisector of pi and pj = locus of points at equal distance from pi and pj.

The set of points closer to pi than to pj is a halfplane bounded by their bissector.

Each region Ri is an intersection of closed halfspaces: a convex (not necessarily bounded) polygon.

Structure of a Voronoi diagram

Bisector of pi and pj = locus of points at equal distance from pi and pj.

The set of points closer to pi than to pj is a halfplane bounded by their bissector.

Each region Ri is an intersection of closed halfspaces: a convex (not necessarily bounded) polygon.

Theorem. The Voronoi diagram of n points in the plane has at

most 2n− 5 vertices and 3n− 6 edges/ray/lines.

Structure of a Voronoi diagram

Bisector of pi and pj = locus of points at equal distance from pi and pj.

The set of points closer to pi than to pj is a halfplane bounded by their bissector.

Each region Ri is an intersection of closed halfspaces: a convex (not necessarily bounded) polygon.

Theorem. The Voronoi diagram of n points in the plane has at

most 2n− 5 vertices and 3n− 6 edges/ray/lines.

Proof. Let v and e be the number of vertices and edges of the VD.

Euler’s formula: (v + 1)− e + n = 2.

Add a point at infinity where all rays meet.

Edge/vertex incidences + every vertex has degree ≥ 3.

2e ≥ 3(v + 1)

Structure of a Voronoi diagram

Bisector of pi and pj = locus of points at equal distance from pi and pj.

The set of points closer to pi than to pj is a halfplane bounded by their bissector.

Each region Ri is an intersection of closed halfspaces: a convex (not necessarily bounded) polygon.

Theorem. The Voronoi diagram of n points in the plane has at

most 2n− 5 vertices and 3n− 6 edges/ray/lines.

Proof. Let v and e be the number of vertices and edges of the VD.

Euler’s formula: (v + 1)− e + n = 2.

Add a point at infinity where all rays meet.

Edge/vertex incidences + every vertex has degree ≥ 3.

2e ≥ 3(v + 1)

The Voronoi diagram of n points has O(n) complexity.

Direct algorithm

Naive algorithm to compute the Voronoi Diagram.

Complexity?

For i = 1 . . . n

Compute Ri as intersection of n− 1 half-planes.

Reconnect everything...

Direct algorithm

Naive algorithm to compute the Voronoi Diagram.

Complexity?

For i = 1 . . . n

Compute Ri as intersection of n− 1 half-planes.

Reconnect everything...

What about a sweep-plane algorithm?

Direct algorithm

Naive algorithm to compute the Voronoi Diagram.

Complexity?

For i = 1 . . . n

Compute Ri as intersection of n− 1 half-planes.

Reconnect everything...

What about a sweep-plane algorithm?

Problem: part of the VD above the sweep line is influenced

by the sites below the sweep line.

Direct algorithm

Naive algorithm to compute the Voronoi Diagram.

Complexity?

For i = 1 . . . n

Compute Ri as intersection of n− 1 half-planes.

Reconnect everything...

What about a sweep-plane algorithm?

Part of the VD above the sweep line can no longer be influenced.

Problem: part of the VD above the sweep line is influenced

by the sites below the sweep line.

Direct algorithm

Naive algorithm to compute the Voronoi Diagram.

Complexity?

For i = 1 . . . n

Compute Ri as intersection of n− 1 half-planes.

Reconnect everything...

What about a sweep-plane algorithm?

Part of the VD above the sweep line can no longer be influenced.

Maintain a beach line (lower enveloppe of parabolas).

Problem: part of the VD above the sweep line is influenced

by the sites below the sweep line.

Direct algorithm

Naive algorithm to compute the Voronoi Diagram.

Complexity?

For i = 1 . . . n

Compute Ri as intersection of n− 1 half-planes.

Reconnect everything...

What about a sweep-plane algorithm?

Part of the VD above the sweep line can no longer be influenced.

Maintain a beach line (lower enveloppe of parabolas).

Problem: part of the VD above the sweep line is influenced

by the sites below the sweep line.

Characterize the events (non-trivial).

Direct algorithm

Naive algorithm to compute the Voronoi Diagram.

Complexity?

For i = 1 . . . n

Compute Ri as intersection of n− 1 half-planes.

Reconnect everything...

What about a sweep-plane algorithm?

Part of the VD above the sweep line can no longer be influenced.

Maintain a beach line (lower enveloppe of parabolas).

Problem: part of the VD above the sweep line is influenced

by the sites below the sweep line.

Characterize the events (non-trivial).

This algorithm takes O(n log n) time.

Fortune’s algorithm.

Lifting R2 → R3

Consider the unit paraboloid (P) : z = x2 + y2 in R3.

Lifting R2 → R3

Consider the unit paraboloid (P) : z = x2 + y2 in R3.

”Lift” q = (x, y) 7→ q′ = (x, y, x2 + y2) ∈ (P).

Lifting R2 → R3

Consider the unit paraboloid (P) : z = x2 + y2 in R3.

”Lift” q = (x, y) 7→ q′ = (x, y, x2 + y2) ∈ (P).

Associate to q′ ∈ (P) the plane h(q′) tangent to (P) in q′.

Lifting R2 → R3

Consider the unit paraboloid (P) : z = x2 + y2 in R3.

”Lift” q = (x, y) 7→ q′ = (x, y, x2 + y2) ∈ (P).

Associate to q′ ∈ (P) the plane h(q′) tangent to (P) in q′.

q′ 7→ h(q′) is the duality with respect to (P).

Lifting R2 → R3

Consider the unit paraboloid (P) : z = x2 + y2 in R3.

”Lift” q = (x, y) 7→ q′ = (x, y, x2 + y2) ∈ (P).

Associate to q′ ∈ (P) the plane h(q′) tangent to (P) in q′.

q′ 7→ h(q′) is the duality with respect to (P).

Let a and b be two points in the (yellow) plane.

Let a′ and b′ be their lifts on (P).

Let b′′ be the lift of b on h(a′).

Lifting R2 → R3

Consider the unit paraboloid (P) : z = x2 + y2 in R3.

”Lift” q = (x, y) 7→ q′ = (x, y, x2 + y2) ∈ (P).

Associate to q′ ∈ (P) the plane h(q′) tangent to (P) in q′.

q′ 7→ h(q′) is the duality with respect to (P).

Let a and b be two points in the (yellow) plane.

Let a′ and b′ be their lifts on (P).

Let b′′ be the lift of b on h(a′).

b′′ = (bx, by, 2bxax + 2byay − (a2x + a2y))⇒ b′b′′ = ab2

Equation of h(a) : 2xa(x− xa) + 2ya(y − ya)− z + x2a + y2a = 0

Lifting R2 → R3

Consider the unit paraboloid (P) : z = x2 + y2 in R3.

”Lift” q = (x, y) 7→ q′ = (x, y, x2 + y2) ∈ (P).

Associate to q′ ∈ (P) the plane h(q′) tangent to (P) in q′.

q′ 7→ h(q′) is the duality with respect to (P).

Let a and b be two points in the (yellow) plane.

Let a′ and b′ be their lifts on (P).

Let b′′ be the lift of b on h(a′).

b′′ = (bx, by, 2bxax + 2byay − (a2x + a2y))⇒ b′b′′ = ab2

Equation of h(a) : 2xa(x− xa) + 2ya(y − ya)− z + x2a + y2a = 0

Lifting each point of Ri to h(p′i)

lifts the VD to the upper enveloppe of h(p′1), . . . , h(p′n)

 Compute the convex hull of n halfspaces in R3.

Incidences and combinatorial duality

Consider a set of vertices, edges and polygons.

A polygon P and an edge e are incident if e is on the boundary of P .

Same for edge/vertex and polygon/vertex incidences.

Incidences and combinatorial duality

Consider a set of vertices, edges and polygons.

A polygon P and an edge e are incident if e is on the boundary of P .

Same for edge/vertex and polygon/vertex incidences.

Consider two families F1 and F2 of polygons/edges/vertices.

Incidences and combinatorial duality

Consider a set of vertices, edges and polygons.

A polygon P and an edge e are incident if e is on the boundary of P .

Same for edge/vertex and polygon/vertex incidences.

Consider two families F1 and F2 of polygons/edges/vertices.

F1 and F2 are combinatorially equivalent if there is a map F1 → F2 that preserve incidences and...

maps a vertex to a vertex, an edge to an edge, a polygon to a polygon.

Incidences and combinatorial duality

Consider a set of vertices, edges and polygons.

A polygon P and an edge e are incident if e is on the boundary of P .

Same for edge/vertex and polygon/vertex incidences.

Consider two families F1 and F2 of polygons/edges/vertices.

F1 and F2 are combinatorially equivalent if there is a map F1 → F2 that preserve incidences and...

maps a vertex to a vertex, an edge to an edge, a polygon to a polygon.

F1 and F2 are combinatorially dual if there is a map F1 → F2 that preserve incidences and...

maps a vertex to a polygon, an edge to an edge, a polygon to a vertex.

Voronoi & Delaunay

There is a combinatorial duality between

the Voronoi diagram and the Delaunay triangulation of a point set.

Voronoi & Delaunay

Voronoi regions

sites

There is a combinatorial duality between

the Voronoi diagram and the Delaunay triangulation of a point set.

Voronoi & Delaunay

Voronoi regions

sites

There is a combinatorial duality between

the Voronoi diagram and the Delaunay triangulation of a point set.

A point on a Voronoi edge is at equal distance
from its two closest sites.

Voronoi & Delaunay

Voronoi regions

sites

Voronoi edges

Delaunay edges

There is a combinatorial duality between

the Voronoi diagram and the Delaunay triangulation of a point set.

A point on a Voronoi edge is at equal distance
from its two closest sites.

Voronoi & Delaunay

Voronoi regions

sites

Voronoi edges

Delaunay edges

There is a combinatorial duality between

the Voronoi diagram and the Delaunay triangulation of a point set.

A point on a Voronoi edge is at equal distance
from its two closest sites.

The Voronoi vertices are the points at equal distance

from their three closest sites.

Voronoi & Delaunay

Voronoi regions

sites

Voronoi vertices

(circumcenters of)

Delaunay triangles

Voronoi edges

Delaunay edges

There is a combinatorial duality between

the Voronoi diagram and the Delaunay triangulation of a point set.

A point on a Voronoi edge is at equal distance
from its two closest sites.

The Voronoi vertices are the points at equal distance

from their three closest sites.

Lifting (bis)

The lift to the paraboloid maps every site pi to

a point p′i on (P),

the plane h(pi) tangent to (P) in pi.{

Lifting (bis)

The lift to the paraboloid maps every site pi to

a point p′i on (P),

the plane h(pi) tangent to (P) in pi.{

The Delaunay triangulation of p1, . . . , pn is the projection of the convex hull of p′1, . . . , p
′
n

The Voronoi diagram of p1, . . . , pn is the projection of the convex hull of h(p′1), . . . , h(p′n)

Lifting (bis)

The lift to the paraboloid maps every site pi to

a point p′i on (P),

the plane h(pi) tangent to (P) in pi.{

The Delaunay triangulation of p1, . . . , pn is the projection of the convex hull of p′1, . . . , p
′
n

The Voronoi diagram of p1, . . . , pn is the projection of the convex hull of h(p′1), . . . , h(p′n)

Lifting (bis)

The lift to the paraboloid maps every site pi to

a point p′i on (P),

the plane h(pi) tangent to (P) in pi.{

The Delaunay triangulation of p1, . . . , pn is the projection of the convex hull of p′1, . . . , p
′
n

The Voronoi diagram of p1, . . . , pn is the projection of the convex hull of h(p′1), . . . , h(p′n)

Lifting (bis)

The lift to the paraboloid maps every site pi to

a point p′i on (P),

the plane h(pi) tangent to (P) in pi.{

The Delaunay triangulation of p1, . . . , pn is the projection of the convex hull of p′1, . . . , p
′
n

The Voronoi diagram of p1, . . . , pn is the projection of the convex hull of h(p′1), . . . , h(p′n)

Natural neighbors interpolation

Assume we have a function f whose value is known in p1, . . . , pn.

How can we interpolate f?

Natural neighbors interpolation

Assume we have a function f whose value is known in p1, . . . , pn.

How can we interpolate f?

Solution 1: triangulate and interpolate linearly.

Natural neighbors interpolation

Assume we have a function f whose value is known in p1, . . . , pn.

How can we interpolate f?

Solution 1: triangulate and interpolate linearly.

Natural neighbors interpolation

Assume we have a function f whose value is known in p1, . . . , pn.

How can we interpolate f?

Solution 1: triangulate and interpolate linearly.

Pb: the interpolation f̃ is not smooth along the edges.

Natural neighbors interpolation

Assume we have a function f whose value is known in p1, . . . , pn.

How can we interpolate f?

Solution 1: triangulate and interpolate linearly.

Pb: the interpolation f̃ is not smooth along the edges.

Solution 2: use the Voronoi diagram of the points

Natural neighbors interpolation

Assume we have a function f whose value is known in p1, . . . , pn.

How can we interpolate f?

Solution 1: triangulate and interpolate linearly.

Pb: the interpolation f̃ is not smooth along the edges.

Solution 2: use the Voronoi diagram of the points

f̃ (p) = Σn
i=1wif (pi)

R(p) = Voronoi region of p in {p1, . . . , pn} ∪ {p}.

wi = |R(p)∩Ri|
|Ri|

Natural neighbors interpolation

Assume we have a function f whose value is known in p1, . . . , pn.

How can we interpolate f?

Solution 1: triangulate and interpolate linearly.

Pb: the interpolation f̃ is not smooth along the edges.

Solution 2: use the Voronoi diagram of the points

f̃ (p) = Σn
i=1wif (pi)

R(p) = Voronoi region of p in {p1, . . . , pn} ∪ {p}.

wi = |R(p)∩Ri|
|Ri|

Now f̃ is smooth everywhere but in the points p1, . . . pn.

Going a bit further

bisectors k-sector?

Going a bit further

Existence? Uniqueness? Computation?

bisectors k-sector?

Going a bit further

Existence? Uniqueness? Computation?

bisectors k-sector?

Voronoi diagram with a neutral region.

Wrapping-up: Voronoi diagram

Natural structure: decomposition of space according to the closest site.

”Natural enough” that it was rediscovered over and over.

(combinatorially and geometrically) dual to Delaunay triangulation.

Combinatorial / geometric transforms help.

Question 5

Why are geometric algorithms hard to implement correctly?

First issue: degeneracies

Many algorithms are described assuming general position of the input.

No two points have the same x-coordinate.

No three segments intersect in the same point.

No four points lie on the same circle.
} properties that hold generically.

First issue: degeneracies

Many algorithms are described assuming general position of the input.

No two points have the same x-coordinate.

No three segments intersect in the same point.

No four points lie on the same circle.
} properties that hold generically.

A property that is true only for a subset of measure 0 of the space of inputs is a degeneracy.

First issue: degeneracies

Many algorithms are described assuming general position of the input.

No two points have the same x-coordinate.

No three segments intersect in the same point.

No four points lie on the same circle.
} properties that hold generically.

A property that is true only for a subset of measure 0 of the space of inputs is a degeneracy.

Degeneracy are common. They are often there by design.

Objects in contact are tangent.

Try asking an architect to avoid quadruple of coplanar points when designing a CAD model.

First issue: degeneracies

Many algorithms are described assuming general position of the input.

No two points have the same x-coordinate.

No three segments intersect in the same point.

No four points lie on the same circle.
} properties that hold generically.

A property that is true only for a subset of measure 0 of the space of inputs is a degeneracy.

Degeneracy are common. They are often there by design.

Objects in contact are tangent.

Try asking an architect to avoid quadruple of coplanar points when designing a CAD model.

Some degeneracies come from the problem, others from the algorithm.

First issue: degeneracies

Many algorithms are described assuming general position of the input.

No two points have the same x-coordinate.

No three segments intersect in the same point.

No four points lie on the same circle.
} properties that hold generically.

A property that is true only for a subset of measure 0 of the space of inputs is a degeneracy.

Degeneracy are common. They are often there by design.

Objects in contact are tangent.

Try asking an architect to avoid quadruple of coplanar points when designing a CAD model.

Can we handle degeneracies without treating each one separately?

Can we at least detect them efficiently?

Some degeneracies come from the problem, others from the algorithm.

Hardness of testing degeneracies

The 3-sum problem: Given n numbers, decide if three of them sum to 0.

What is the best algorithm you can come-up with?

Hardness of testing degeneracies

The 3-sum problem: Given n numbers, decide if three of them sum to 0.

What is the best algorithm you can come-up with?

Known bounds: O(n2) and Ω(n log n).

Hardness of testing degeneracies

The 3-sum problem: Given n numbers, decide if three of them sum to 0.

What is the best algorithm you can come-up with?

Known bounds: O(n2) and Ω(n log n).

15 years old conjecture: any algorithm solving 3-sum has Ω(n2) time complexity.

Hardness of testing degeneracies

The 3-sum problem: Given n numbers, decide if three of them sum to 0.

What is the best algorithm you can come-up with?

Known bounds: O(n2) and Ω(n log n).

If we can detect triples of aligned 2D points in o(n2) time then we can solve 3-sum in o(n2) time.

15 years old conjecture: any algorithm solving 3-sum has Ω(n2) time complexity.

Hardness of testing degeneracies

The 3-sum problem: Given n numbers, decide if three of them sum to 0.

What is the best algorithm you can come-up with?

Known bounds: O(n2) and Ω(n log n).

If we can detect triples of aligned 2D points in o(n2) time then we can solve 3-sum in o(n2) time.

15 years old conjecture: any algorithm solving 3-sum has Ω(n2) time complexity.

numbers t1, . . . , tn → points p1, . . . , pn with pi = (ti, t
3
i).

p, q and r are aligned ⇔

∣∣∣∣∣∣
xp xq xr
yp yq yr
1 1 1

∣∣∣∣∣∣ = 0.

∣∣∣∣∣∣
ti tj tk
t3i t3j t3k
1 1 1

∣∣∣∣∣∣ = (tj − ti)(tk − ti)(tk − tj)(ti + tj + tk).

ti + tj + tk = 0⇔ pi, pj, pk are aligned.

y
=
x
3

Hardness of testing degeneracies

The 3-sum problem: Given n numbers, decide if three of them sum to 0.

What is the best algorithm you can come-up with?

Known bounds: O(n2) and Ω(n log n).

If we can detect triples of aligned 2D points in o(n2) time then we can solve 3-sum in o(n2) time.

15 years old conjecture: any algorithm solving 3-sum has Ω(n2) time complexity.

numbers t1, . . . , tn → points p1, . . . , pn with pi = (ti, t
3
i).

p, q and r are aligned ⇔

∣∣∣∣∣∣
xp xq xr
yp yq yr
1 1 1

∣∣∣∣∣∣ = 0.

∣∣∣∣∣∣
ti tj tk
t3i t3j t3k
1 1 1

∣∣∣∣∣∣ = (tj − ti)(tk − ti)(tk − tj)(ti + tj + tk).

ti + tj + tk = 0⇔ pi, pj, pk are aligned.

y
=
x
3

Testing if d + 1 points lie on a common hyperplane in Rd is dd2e-sum hard.

Perturbing? Easier said than done

In principle, perturbing the points eliminate degeneracies.

Perturbing? Easier said than done

In principle, perturbing the points eliminate degeneracies.

First issue: the perturbation should preserves non-degenerate inputs.

can be perturbed in but not in

can be perturbed in but not in

Perturbing? Easier said than done

In principle, perturbing the points eliminate degeneracies.

First issue: the perturbation should preserves non-degenerate inputs.

Second issue: the perturbation should not create new degeneracies.

can be perturbed in but not in

can be perturbed in but not in

should not be perturbed in

should not be perturbed in

Perturbing? Easier said than done

In principle, perturbing the points eliminate degeneracies.

First issue: the perturbation should preserves non-degenerate inputs.

Second issue: the perturbation should not create new degeneracies.

can be perturbed in but not in

can be perturbed in but not in

should not be perturbed in

should not be perturbed in

Bottom line: ”Epsilon=10ˆ-12” is not an option if we want any kind of guarantee.

Systematic approach: simulation of simplicity

Degeneracy correspond to vanishing of some of the polynomials evaluating the geometric predicates.

Systematic approach: simulation of simplicity

Consider a geometric object as a function of one variable t [1990].

The input we are interested in is the value when t = 0.

Ex: the point p = (3, 12) becomes p = (3 + t, 12 + t2).

Degeneracy correspond to vanishing of some of the polynomials evaluating the geometric predicates.

Make all computations for ”t > 0 sufficiently small” then take limt→0.

Systematic approach: simulation of simplicity

Consider a geometric object as a function of one variable t [1990].

The input we are interested in is the value when t = 0.

Ex: the point p = (3, 12) becomes p = (3 + t, 12 + t2).

Degeneracy correspond to vanishing of some of the polynomials evaluating the geometric predicates.

Make all computations for ”t > 0 sufficiently small” then take limt→0.

Choose the functions so that the relevant polynomials do not identically vanish.

Example: convex hull computation, point-in-polygon.

Replacing pi by pi + (t2
2i
, t2

2i+1
) handles all degeneracies for these predicates.

Predicates are x-coordinates comparison and orientation.

Systematic approach: simulation of simplicity

Consider a geometric object as a function of one variable t [1990].

The input we are interested in is the value when t = 0.

Ex: the point p = (3, 12) becomes p = (3 + t, 12 + t2).

Degeneracy correspond to vanishing of some of the polynomials evaluating the geometric predicates.

Make all computations for ”t > 0 sufficiently small” then take limt→0.

Choose the functions so that the relevant polynomials do not identically vanish.

Example: convex hull computation, point-in-polygon.

Replacing pi by pi + (t2
2i
, t2

2i+1
) handles all degeneracies for these predicates.

Predicates are x-coordinates comparison and orientation.

Heavy machinery, important slow-down, ignore voluntary degeneracies.

Systematic approach: simulation of simplicity

Consider a geometric object as a function of one variable t [1990].

The input we are interested in is the value when t = 0.

Ex: the point p = (3, 12) becomes p = (3 + t, 12 + t2).

Degeneracy correspond to vanishing of some of the polynomials evaluating the geometric predicates.

Make all computations for ”t > 0 sufficiently small” then take limt→0.

Choose the functions so that the relevant polynomials do not identically vanish.

Example: convex hull computation, point-in-polygon.

Replacing pi by pi + (t2
2i
, t2

2i+1
) handles all degeneracies for these predicates.

Predicates are x-coordinates comparison and orientation.

Heavy machinery, important slow-down, ignore voluntary degeneracies.

Partial perturbation: shearing (x, y) 7→ (x + ty, y)

The hard way: zillions of cases

The problem is to find a way to tabulate all cases in a way where exhaustivity can be proven.

Example: intersection of two quadric surfaces in R3

Fundamental problem in solid modelling.

The hard way: zillions of cases

The problem is to find a way to tabulate all cases in a way where exhaustivity can be proven.

Example: intersection of two quadric surfaces in R3

Fundamental problem in solid modelling.

Many degenerate cases...

A published algorithm missed several.

Classification is non-trivial

The hard way: zillions of cases

The problem is to find a way to tabulate all cases in a way where exhaustivity can be proven.

Example: intersection of two quadric surfaces in R3

Fundamental problem in solid modelling.

Many degenerate cases...

A published algorithm missed several.

Classification is non-trivial

The hard way: zillions of cases

The problem is to find a way to tabulate all cases in a way where exhaustivity can be proven.

Example: intersection of two quadric surfaces in R3

Fundamental problem in solid modelling.

Many degenerate cases...

A published algorithm missed several.

Classification is non-trivial

The hard way: zillions of cases

The problem is to find a way to tabulate all cases in a way where exhaustivity can be proven.

Example: intersection of two quadric surfaces in R3

Fundamental problem in solid modelling.

Many degenerate cases...

A published algorithm missed several.

Classification is non-trivial

The hard way: zillions of cases

The problem is to find a way to tabulate all cases in a way where exhaustivity can be proven.

Example: intersection of two quadric surfaces in R3

Fundamental problem in solid modelling.

Many degenerate cases...

A published algorithm missed several.

Classification is non-trivial

The hard way: zillions of cases

The problem is to find a way to tabulate all cases in a way where exhaustivity can be proven.

Example: intersection of two quadric surfaces in R3

Fundamental problem in solid modelling.

Many degenerate cases...

A published algorithm missed several.

Classification is non-trivial

The hard way: zillions of cases

The problem is to find a way to tabulate all cases in a way where exhaustivity can be proven.

Example: intersection of two quadric surfaces in R3

Fundamental problem in solid modelling.

Many degenerate cases...

A published algorithm missed several.

Classification is non-trivial

The hard way: zillions of cases

The problem is to find a way to tabulate all cases in a way where exhaustivity can be proven.

Example: intersection of two quadric surfaces in R3

Fundamental problem in solid modelling.

Many degenerate cases...

A published algorithm missed several.

Classification is non-trivial

The hard way: zillions of cases

The problem is to find a way to tabulate all cases in a way where exhaustivity can be proven.

Example: intersection of two quadric surfaces in R3

Fundamental problem in solid modelling.

Many degenerate cases...

A published algorithm missed several.

Classification is non-trivial

The hard way: zillions of cases

The problem is to find a way to tabulate all cases in a way where exhaustivity can be proven.

Example: intersection of two quadric surfaces in R3

Fundamental problem in solid modelling.

Many degenerate cases...

A published algorithm missed several.

Classification is non-trivial

The hard way: zillions of cases

The problem is to find a way to tabulate all cases in a way where exhaustivity can be proven.

Example: intersection of two quadric surfaces in R3

Fundamental problem in solid modelling.

Many degenerate cases...

A published algorithm missed several.

Classification is non-trivial

Case analysis of quadric intersection

What are the possibly intersection curves of two quadric surfaces in RP3, up to projective transforms?

Case analysis of quadric intersection

What are the possibly intersection curves of two quadric surfaces in RP3, up to projective transforms?

Transformations that preserve the intersection type

Replacing a quadric by a linear combinations of the equations of the two quadrics.

Projective transform of the whole space.

Case analysis of quadric intersection

One quadric Q in R3 → symmetric 4× 4 matrix MQ.

Pencil of Q and R → P (λ, µ) = det(λMQ + µMR).

What are the possibly intersection curves of two quadric surfaces in RP3, up to projective transforms?

Transformations that preserve the intersection type

Encoding of the orbits under these transformations

Replacing a quadric by a linear combinations of the equations of the two quadrics.

Projective transform of the whole space.

Work on pencils of quadrics.

First encoding with Segre’s characteristic (discriminates between intersection types in CP3).

Characteristic polynomial of a pencil.

Number of roots of P , their multiplicity, inertia of their associated matrix...

Case analysis of quadric intersection

One quadric Q in R3 → symmetric 4× 4 matrix MQ.

Pencil of Q and R → P (λ, µ) = det(λMQ + µMR).

What are the possibly intersection curves of two quadric surfaces in RP3, up to projective transforms?

Transformations that preserve the intersection type

Encoding of the orbits under these transformations

Replacing a quadric by a linear combinations of the equations of the two quadrics.

Projective transform of the whole space.

Work on pencils of quadrics.

First encoding with Segre’s characteristic (discriminates between intersection types in CP3).

Characteristic polynomial of a pencil.

Number of roots of P , their multiplicity, inertia of their associated matrix...

Result: Tabulation with over 40 cases, 26 intersection types in total, proof of exhaustivity.

Second issue: numerical rounding

The arithmetic on a computer uses bounded precision (32 bits, 64 bits, IEEE float norms, etc...).

Small errors will be made in computations.

Not to mention that processors make errors from time to time...

Second issue: numerical rounding

The arithmetic on a computer uses bounded precision (32 bits, 64 bits, IEEE float norms, etc...).

Small errors will be made in computations.

Not to mention that processors make errors from time to time...

The question is: can these error have a significant impact?

Second issue: numerical rounding

The arithmetic on a computer uses bounded precision (32 bits, 64 bits, IEEE float norms, etc...).

Small errors will be made in computations.

Not to mention that processors make errors from time to time...

The question is: can these error have a significant impact?

”Judge for yourself”: the example of 2D convex hull computation.

Second issue: numerical rounding

The arithmetic on a computer uses bounded precision (32 bits, 64 bits, IEEE float norms, etc...).

Small errors will be made in computations.

Not to mention that processors make errors from time to time...

The question is: can these error have a significant impact?

”Judge for yourself”: the example of 2D convex hull computation.

The problem: three points are nearly aligned, and the orientation predicates make inconsistent errors.

”Sometimes left, sometimes right”.

A close look at that example

Orientation of (p, q, r) given by the sign of

∣∣∣∣∣∣
xp xq xr
yp yq yr
1 1 1

∣∣∣∣∣∣. p

q
r

p

q

r

> 0 < 0

A close look at that example

Orientation of (p, q, r) given by the sign of

∣∣∣∣∣∣
xp xq xr
yp yq yr
1 1 1

∣∣∣∣∣∣. p

q
r

p

q

r

> 0 < 0
Float xp,yp,xq,yq,xr,yr;

Orientation = sign((xq-xp)*(yr-yp)-(xr-xp)*(yq-yp));

A close look at that example

Orientation of (p, q, r) given by the sign of

∣∣∣∣∣∣
xp xq xr
yp yq yr
1 1 1

∣∣∣∣∣∣. p

q
r

p

q

r

> 0 < 0
Float xp,yp,xq,yq,xr,yr;

Orientation = sign((xq-xp)*(yr-yp)-(xr-xp)*(yq-yp));

A close look at that example

Orientation of (p, q, r) given by the sign of

∣∣∣∣∣∣
xp xq xr
yp yq yr
1 1 1

∣∣∣∣∣∣. p

q
r

p

q

r

> 0 < 0
Float xp,yp,xq,yq,xr,yr;

Orientation = sign((xq-xp)*(yr-yp)-(xr-xp)*(yq-yp));

∈

A close look at that example

Orientation of (p, q, r) given by the sign of

∣∣∣∣∣∣
xp xq xr
yp yq yr
1 1 1

∣∣∣∣∣∣. p

q
r

p

q

r

> 0 < 0
Float xp,yp,xq,yq,xr,yr;

Orientation = sign((xq-xp)*(yr-yp)-(xr-xp)*(yq-yp));

∈

6∈

Consequences of numerical rounding

A ”correct” code can make incorrect decisions. These errors are inconsistent.

Crash, infinite loops, smooth execution but wrong answer... which is the worse?

Can be hard to detect...

Interval arithmetic

Keep the precision bounded but keep track of the error.

A number is represented by an interval (reduced to a single element if precision is sufficient).

Define all operations on intervals.

24− 0.5000027 = 23.499998 becomes [24, 24]− [0.5000027, 0.5000027] = [23.49999, 23.50000].

Interval arithmetic

Keep the precision bounded but keep track of the error.

A number is represented by an interval (reduced to a single element if precision is sufficient).

Define all operations on intervals.

24− 0.5000027 = 23.499998 becomes [24, 24]− [0.5000027, 0.5000027] = [23.49999, 23.50000].

If the interval does not contain 0 then we can decide the sign with certainty.

Otherwise, we need more precision... Restart the computation with twice as many digits.

This suffices ”most of the time”.

Interval arithmetic

Keep the precision bounded but keep track of the error.

A number is represented by an interval (reduced to a single element if precision is sufficient).

Define all operations on intervals.

24− 0.5000027 = 23.499998 becomes [24, 24]− [0.5000027, 0.5000027] = [23.49999, 23.50000].

If the interval does not contain 0 then we can decide the sign with certainty.

Otherwise, we need more precision... Restart the computation with twice as many digits.

If the result of the computation is exactly 0 we will never have enough precision...

This suffices ”most of the time”.

For those few cases, we need to be able to do the computations exactly.

Exact number types for integers, rational numbers, algebraic numbers.

Algebraic numbers

5
√

23 and 7
√

25 are not integers, but we can still compare them exactly using integer arithmetic.

Algebraic numbers

A real r is algebraic if there exists a polynomial P (X) with integer coefficients such that P (r) = 0.

5
√

23 and 7
√

25 are not integers, but we can still compare them exactly using integer arithmetic.

Algebraic numbers

A real r is algebraic if there exists a polynomial P (X) with integer coefficients such that P (r) = 0.

What about n ∈ N, f ∈ Q,
√

2, 5
√

17, e, π... ?

5
√

23 and 7
√

25 are not integers, but we can still compare them exactly using integer arithmetic.

Algebraic numbers

A real r is algebraic if there exists a polynomial P (X) with integer coefficients such that P (r) = 0.

What about n ∈ N, f ∈ Q,
√

2, 5
√

17, e, π... ?

The set of algebraic numbers is closed under +,−,×, /, x 7→ xt for t ∈ Q (in particular
√

).

5
√

23 and 7
√

25 are not integers, but we can still compare them exactly using integer arithmetic.

Algebraic numbers

A real r is algebraic if there exists a polynomial P (X) with integer coefficients such that P (r) = 0.

What about n ∈ N, f ∈ Q,
√

2, 5
√

17, e, π... ?

The set of algebraic numbers is closed under +,−,×, /, x 7→ xt for t ∈ Q (in particular
√

).

There are few algebraic numbers (ie countably many).

The result of most classical operations on geometric objects defined by integers

can be described using algebraic numbers.

5
√

23 and 7
√

25 are not integers, but we can still compare them exactly using integer arithmetic.

Representing and manipulating algebraic numbers

An algebraic number can be represented by a polynomial (a family of integers) and an isolation interval.

y=P(x)

r

Interval containing a single root of P .

Ex:
√

2 ' (X2 − 1, [1, 2]).

Representing and manipulating algebraic numbers

An algebraic number can be represented by a polynomial (a family of integers) and an isolation interval.

y=P(x)

r

Interval containing a single root of P .

Ex:
√

2 ' (X2 − 1, [1, 2]).

Given two algebraic numbers a and b represented by polynomials and isolation intervals,

we can compute a polynomial / isolation interval that represents:

a + b, a− b, a× b, ab , a
2,
√
a, etc...

Representing and manipulating algebraic numbers

An algebraic number can be represented by a polynomial (a family of integers) and an isolation interval.

y=P(x)

r

Interval containing a single root of P .

Ex:
√

2 ' (X2 − 1, [1, 2]).

Given two algebraic numbers a and b represented by polynomials and isolation intervals,

we can compute a polynomial / isolation interval that represents:

a + b, a− b, a× b, ab , a
2,
√
a, etc...

Implemented in the C/C++ core library.

Using algebraic numbers

Float xp,yp,xq,yq,xr,yr;

Orientation = sign((xq-xp)*(yr-yp)-(xr-xp)*(yq-yp));
leads to

Core::Expr xp,yp,xq,yq,xr,yr;

Orientation = sign((xq-xp)*(yr-yp)-(xr-xp)*(yq-yp));

These problems can be avoided by using

Decision VS constructions

Distinguish between decision (for branching) and constructions.

Decisions are made by evaluating signs of polynomial in the input and can be filtered.

Constructions produce a geometric object from the input; representing exactly that object is costly.

Decision VS constructions

Distinguish between decision (for branching) and constructions.

Decisions are made by evaluating signs of polynomial in the input and can be filtered.

Constructions produce a geometric object from the input; representing exactly that object is costly.

Using repeated substitutions, we can avoid using constructions when branching.

If the decisions are correct, the ”type” of the result is correct (constructions do not matter much).

Decision VS constructions

Distinguish between decision (for branching) and constructions.

Decisions are made by evaluating signs of polynomial in the input and can be filtered.

Constructions produce a geometric object from the input; representing exactly that object is costly.

Using repeated substitutions, we can avoid using constructions when branching.

Ex: line/triangle intersection test

find intersection with plane, compute barycentric coordinates.

If the decisions are correct, the ”type” of the result is correct (constructions do not matter much).

Decision VS constructions

Distinguish between decision (for branching) and constructions.

Decisions are made by evaluating signs of polynomial in the input and can be filtered.

Constructions produce a geometric object from the input; representing exactly that object is costly.

Using repeated substitutions, we can avoid using constructions when branching.

Ex: line/triangle intersection test

find intersection with plane, compute barycentric coordinates.
→ evaluate the sign of polynomials of degree 6.

If the decisions are correct, the ”type” of the result is correct (constructions do not matter much).

Decision VS constructions

Distinguish between decision (for branching) and constructions.

Decisions are made by evaluating signs of polynomial in the input and can be filtered.

Constructions produce a geometric object from the input; representing exactly that object is costly.

Using repeated substitutions, we can avoid using constructions when branching.

Ex: line/triangle intersection test

find intersection with plane, compute barycentric coordinates.
→ evaluate the sign of polynomials of degree 6.

Evaluate 3D orientations of quadruples of points

If the decisions are correct, the ”type” of the result is correct (constructions do not matter much).

Decision VS constructions

Distinguish between decision (for branching) and constructions.

Decisions are made by evaluating signs of polynomial in the input and can be filtered.

Constructions produce a geometric object from the input; representing exactly that object is costly.

Using repeated substitutions, we can avoid using constructions when branching.

Ex: line/triangle intersection test

find intersection with plane, compute barycentric coordinates.
→ evaluate the sign of polynomials of degree 6.

Evaluate 3D orientations of quadruples of points
→ evaluate the sign of polynomials of degree 3.

If the decisions are correct, the ”type” of the result is correct (constructions do not matter much).

Wrap-up: robustness

Treating degeneracies requires great care.

Numerical problems will arise.

If not treated properly, they produce crashes, infinite loops or wrong results.

Exact number types exist and are implemented. This is good enough for prototyping.

Reliability and efficiency are achieved by using good predicates

and filtering exact number type with interval arithmetic.

The End

