
Introduction to the
Computational Geometry Algorithms Library

Monique Teillaud

www.cgal.org

october 2008

Overview

The CGAL Open Source Project
Structure of CGAL
The Kernel

Part I

The CGAL Open Source Project

Goals

• Promote the research in Computational Geometry (CG)
• “make the large body of geometric algorithms developed in
the field of CG available for industrial applications”

⇒ robust programs

CG Impact Task Force Report, 1996
Among the key recommendations:
• Production and distribution of usable (and useful) geometric
codes
• Reward structure for implementations in academia

Goals

• Promote the research in Computational Geometry (CG)
• “make the large body of geometric algorithms developed in
the field of CG available for industrial applications”

⇒ robust programs

CG Impact Task Force Report, 1996
Among the key recommendations:
• Production and distribution of usable (and useful) geometric
codes
• Reward structure for implementations in academia

History

Development started in 1995
Consortium of 8 European sites
Two ESPRIT LTR European Projects (1996-1999)

History

Development started in 1995
Consortium of 8 European sites
Two ESPRIT LTR European Projects (1996-1999)

Utrecht University (Plageo)
INRIA Sophia Antipolis (C++GAL)
ETH Zürich (XYZ Geobench)
MPI Saarbrücken (LEDA)
Tel Aviv University
Freie Universität Berlin

RISC Linz
Martin-Luther-Universität Halle

History

• Work continued after the end of Galia (1999) in several sites.
partial support of ECG, ACS, Aim@Shape

• January, 2003: creation of GEOMETRY FACTORY
INRIA startup
sells commercial licenses, support, customized developments

• November, 2003: Release 3.0 - Open Source Project

• June, 2007: Release 3.3
• soon: Release 3.4

License

a few basic packages under LGPL
most packages under QPL
◦ free use for Open Source code
◦ commercial license needed otherwise

• A guarantee for CGAL users
• Allows CGAL to become a “standard”
• Opens CGAL for new contributions

CGAL in numbers

• 500,000 lines of C++ code
• 3,500 pages manual
• 120 packages

• release cycle of ∼12 months
• ∼ 1,000 download per month
• several platforms

g++ (Linux MacOS Windows)
VC++

• 4,000 subscribers to announcement list (7,000 for gcc)
• 1,000 subscribers to discussion list (600 in gcc-help)
• 50 developers registered on developer list (20 active)

CGAL in numbers

• 500,000 lines of C++ code
• 3,500 pages manual
• 120 packages

• release cycle of ∼12 months
• ∼ 1,000 download per month
• several platforms

g++ (Linux MacOS Windows)
VC++

• 4,000 subscribers to announcement list (7,000 for gcc)
• 1,000 subscribers to discussion list (600 in gcc-help)
• 50 developers registered on developer list (20 active)

CGAL in numbers

• 500,000 lines of C++ code
• 3,500 pages manual
• 120 packages

• release cycle of ∼12 months
• ∼ 1,000 download per month
• several platforms

g++ (Linux MacOS Windows)
VC++

• 4,000 subscribers to announcement list (7,000 for gcc)
• 1,000 subscribers to discussion list (600 in gcc-help)
• 50 developers registered on developer list (20 active)

Development process

Editorial Board created in 2001.

• responsible for the quality of CGAL

New packages are reviewed.

→ helps authors to get credit for their work.

CG Impact Task Force Report, 1996
Reward structure for implementations in academia

• decides about technical matters
• coordinates communication and promotion
• ...

Development process

Editorial Board created in 2001.

Development process

Editorial Board created in 2001.

Pierre Alliez (INRIA Sophia Antipolis - Méditerranée)
Eric Berberich (Max-Planck-Institut für Informatik)
Andreas Fabri (GEOMETRY FACTORY)
Efi Fogel (Tel Aviv University)
Bernd Gärtner (ETH Zürich)
Michael Hemmer (Max-Planck-Institut für Informatik)
Michael Hoffmann (ETH Zürich)
Menelaos Karavelas (Univ Crete)
Sylvain Pion (INRIA Sophia Antipolis - Méditerranée)
Marc Pouget (INRIA Nancy - Grand Est)
Laurent Rineau (GEOMETRY FACTORY)
Monique Teillaud (INRIA Sophia Antipolis - Méditerranée)
Ron Wein (Tel Aviv University)
Mariette Yvinec (INRIA Sophia Antipolis - Méditerranée)

Development tools

• Own manual tools: LATEX −→ ps, pdf, html
• svn server (INRIA gforge) for version management

• Developer manual
• Mailing list for developers
• 1-2 developers meetings per year, 1 week long

• 1 internal release per day
• Automatic test suites running on all supported
compilers/platforms

Development tools

• Own manual tools: LATEX −→ ps, pdf, html
• svn server (INRIA gforge) for version management

• Developer manual
• Mailing list for developers
• 1-2 developers meetings per year, 1 week long

• 1 internal release per day
• Automatic test suites running on all supported
compilers/platforms

Development tools

• Own manual tools: LATEX −→ ps, pdf, html
• svn server (INRIA gforge) for version management

• Developer manual
• Mailing list for developers
• 1-2 developers meetings per year, 1 week long

• 1 internal release per day
• Automatic test suites running on all supported
compilers/platforms

Credit

Contributors keep their identity

• Names of authors appear at the beginning of each chapter.
Section on history of the package at the end of
each chapter, with names of all contributors.

• CGAL developers listed on the “People” web page.

• Authors publish papers (conferences, journals) on their
packages.

• Copyright kept by the institution of the authors.

Credit

Contributors keep their identity

• Names of authors appear at the beginning of each chapter.
Section on history of the package at the end of
each chapter, with names of all contributors.

• CGAL developers listed on the “People” web page.

• Authors publish papers (conferences, journals) on their
packages.

• Copyright kept by the institution of the authors.

Credit

Contributors keep their identity

• Names of authors appear at the beginning of each chapter.
Section on history of the package at the end of
each chapter, with names of all contributors.

• CGAL developers listed on the “People” web page.

• Authors publish papers (conferences, journals) on their
packages.

• Copyright kept by the institution of the authors.

Credit

Contributors keep their identity

• Names of authors appear at the beginning of each chapter.
Section on history of the package at the end of
each chapter, with names of all contributors.

• CGAL developers listed on the “People” web page.

• Authors publish papers (conferences, journals) on their
packages.

• Copyright kept by the institution of the authors.

Contributors

Users

Long list of identified users
(see web site)

More non-identified users. . .

Customers of GEOMETRY FACTORY

Part II

Contents of CGAL

Contents

Structure

Kernels
Various packages
Support Library

STL extensions, I/O, generators, timers. . .

Part III

The CGAL Kernels

The CGAL Kernels

2D, 3D, dD “Rational” kernels
2D circular kernel
3D spherical kernel (to appear)

In the kernels

Elementary geometric objects
Elementary computations on them

Primitives Predicates Constructions
2D, 3D, dD • comparison • intersection
• Point • Orientation • squared distance
• Vector • InSphere . . .
• Triangle . . .
• Circle
. . .

Affine geometry

Point - Origin → Vector
Point - Point → Vector
Point + Vector → Point

Point Vector

Origin

Point + Point illegal

midpoint(a,b) = a + 1/2 x (b-a)

Kernels and number types

Cartesian representation

Point
∣∣∣∣ x = hx

hw
y = hy

hw

Homogeneous representation

Point

∣∣∣∣∣∣
hx
hy
hw

- ex: Intersection of two lines -{
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

(x , y) =
˛̨̨̨
˛̨ b1 c1

b2 c2

˛̨̨̨
˛̨˛̨̨̨

˛̨ a1 b1
a2 b2

˛̨̨̨
˛̨
,−

˛̨̨̨
˛̨ a1 c1

a2 c2

˛̨̨̨
˛̨˛̨̨̨

˛̨ a1 b1
a2 b2

˛̨̨̨
˛̨

{
a1hx + b1hy + c1hw = 0
a2hx + b2hy + c2hw = 0

(hx , hy , hw) =(∣∣∣∣ b1 c1
b2 c2

∣∣∣∣ ,−
∣∣∣∣ a1 c1

a2 c2

∣∣∣∣ ,

∣∣∣∣ a1 b1
a2 b2

∣∣∣∣)

Field operations Ring operations

Kernels and number types

Cartesian representation

Point
∣∣∣∣ x = hx

hw
y = hy

hw

Homogeneous representation

Point

∣∣∣∣∣∣
hx
hy
hw

- ex: Intersection of two lines -{
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

(x , y) =
˛̨̨̨
˛̨ b1 c1

b2 c2

˛̨̨̨
˛̨˛̨̨̨

˛̨ a1 b1
a2 b2

˛̨̨̨
˛̨
,−

˛̨̨̨
˛̨ a1 c1

a2 c2

˛̨̨̨
˛̨˛̨̨̨

˛̨ a1 b1
a2 b2

˛̨̨̨
˛̨

{
a1hx + b1hy + c1hw = 0
a2hx + b2hy + c2hw = 0

(hx , hy , hw) =(∣∣∣∣ b1 c1
b2 c2

∣∣∣∣ ,−
∣∣∣∣ a1 c1

a2 c2

∣∣∣∣ ,

∣∣∣∣ a1 b1
a2 b2

∣∣∣∣)

Field operations Ring operations

Kernels and number types

Cartesian representation

Point
∣∣∣∣ x = hx

hw
y = hy

hw

Homogeneous representation

Point

∣∣∣∣∣∣
hx
hy
hw

- ex: Intersection of two lines -{
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

(x , y) =
˛̨̨̨
˛̨ b1 c1

b2 c2

˛̨̨̨
˛̨˛̨̨̨

˛̨ a1 b1
a2 b2

˛̨̨̨
˛̨
,−

˛̨̨̨
˛̨ a1 c1

a2 c2

˛̨̨̨
˛̨˛̨̨̨

˛̨ a1 b1
a2 b2

˛̨̨̨
˛̨

{
a1hx + b1hy + c1hw = 0
a2hx + b2hy + c2hw = 0

(hx , hy , hw) =(∣∣∣∣ b1 c1
b2 c2

∣∣∣∣ ,−
∣∣∣∣ a1 c1

a2 c2

∣∣∣∣ ,

∣∣∣∣ a1 b1
a2 b2

∣∣∣∣)

Field operations Ring operations

C++ Templates

CGAL::Cartesian< FT > (CGAL::Simple_Cartesian)
CGAL::Homogeneous< RT > (CGAL::Simple_Homogen.)

Cartesian Kernels :
Field type

double

Quotient<Gmpz>

leda_real

Homogeneous Kernels :
Ring type

int

Gmpz

double

−→ Flexibility
typedef double NumberType;
typedef Cartesian< NumberType > Kernel;
typedef Kernel::Point_2 Point;

C++ Templates

CGAL::Cartesian< FT > (CGAL::Simple_Cartesian)
CGAL::Homogeneous< RT > (CGAL::Simple_Homogen.)

Cartesian Kernels :
Field type

double

Quotient<Gmpz>

leda_real

Homogeneous Kernels :
Ring type

int

Gmpz

double

−→ Flexibility
typedef double NumberType;
typedef Cartesian< NumberType > Kernel;
typedef Kernel::Point_2 Point;

C++ Templates

CGAL::Cartesian< FT > (CGAL::Simple_Cartesian)
CGAL::Homogeneous< RT > (CGAL::Simple_Homogen.)

Cartesian Kernels :
Field type

double

Quotient<Gmpz>

leda_real

Homogeneous Kernels :
Ring type

int

Gmpz

double

−→ Flexibility
typedef double NumberType;
typedef Cartesian< NumberType > Kernel;
typedef Kernel::Point_2 Point;

Numerical robustness issues

typedef CGAL::Cartesian<NT> Kernel;
NT sqrt2 = sqrt(NT(2));

Kernel::Point_2 p(0,0), q(sqrt2,sqrt2);
Kernel::Circle_2 C(p,2);

assert(C.has_on_boundary(q));

OK if NT gives exact sqrt
assertion violation otherwise

Numerical robustness issues

Orientation of 2D points

p

q

r

orientation(p, q, r) = sign

det

 px py 1
qx qy 1
rx ry 1

= sign((qx − px)(ry − py)− (qy − py)(rx − px))

Numerical robustness issues

Orientation of 2D points

p = (0.5 + x .u, 0.5 + y .u)
0 ≤ x , y < 256, u = 2−53

q = (12, 12)
r = (24, 24)

orientation(p, q, r)
evaluated with double

256 x 256 pixel image
> 0 , = 0 , < 0

−→ inconsistencies in predicate evaluations

Numerical robustness issues

solved in CGAL using

Exact Geometric Computation
Speed and exactness

6=
exact arithmetics

Numerical robustness issues

solved in CGAL using

Exact Geometric Computation
Speed and exactness

6=
exact arithmetics

More number types

• Detailed hierarchy of
algebraic and arithmetic concepts and classes

The circular/spherical kernels

Circular/spherical kernels
• solve needs for e.g. intersection of circles.
• extend the CGAL (linear) kernels

Guidelines
code reuse:

ability to reuse the CGAL kernel for points, circles,
number types,. . .

flexibility:
possibility to use other implementations for points,
circles, number types,. . .
possibility to use several algebraic implementations

template < LinearKernel, AlgebraicKernel >
class Circular_kernel : public LinearKernel

The circular/spherical kernels

Circular/spherical kernels
• solve needs for e.g. intersection of circles.
• extend the CGAL (linear) kernels

Guidelines
code reuse:

ability to reuse the CGAL kernel for points, circles,
number types,. . .

flexibility:
possibility to use other implementations for points,
circles, number types,. . .
possibility to use several algebraic implementations

template < LinearKernel, AlgebraicKernel >
class Circular_kernel : public LinearKernel

The circular/spherical kernels

Circular/spherical kernels
• solve needs for e.g. intersection of circles.
• extend the CGAL (linear) kernels

Guidelines
code reuse:

ability to reuse the CGAL kernel for points, circles,
number types,. . .

flexibility:
possibility to use other implementations for points,
circles, number types,. . .
possibility to use several algebraic implementations

template < LinearKernel, AlgebraicKernel >
class Circular_kernel : public LinearKernel

2D circular kernel design

template < LinearKernel, AlgebraicKernel >
class Circular_kernel

Types
Must be defined by Linear_kernel

basic number types, points, lines,. . .
Must be defined by Algebraic_kernel

algebraic numbers, polynomials
Defined by Circular_kernel

Circular_arc_2, Circular_arc_point_2

Predicates
e.g. intersection tests, comparisons of intersection points,. . .

exactness is crucial for geometric algorithms
Constructions
e.g. computation of intersection points

2D circular kernel design

template < LinearKernel, AlgebraicKernel >
class Circular_kernel

Types
Must be defined by Linear_kernel

basic number types, points, lines,. . .
Must be defined by Algebraic_kernel

algebraic numbers, polynomials
Defined by Circular_kernel

Circular_arc_2, Circular_arc_point_2

Predicates
e.g. intersection tests, comparisons of intersection points,. . .

exactness is crucial for geometric algorithms
Constructions
e.g. computation of intersection points

Representation

CGAL Circle_2:
center
squared radius (rational)

Circular_arc_2:
supporting circle Circle_2
2 Circular_arc_point_2 (algebraic)

Circular_arc_point_2
root of system
(system = 2 equations of circles) (algebraic)

Representation

CGAL Circle_2:
center
squared radius (rational)

Circular_arc_2:
supporting circle Circle_2
2 Circular_arc_point_2 (algebraic)

Circular_arc_point_2
root of system
(system = 2 equations of circles) (algebraic)

Number types

For linear objects: RT or FT ring or field type (+,−,×, /)
For circles: Root_of_2< RT > (<,=, >)

Exact computations on algebraic numbers of degree 2 (not a
field!!!)

Polynomial representation of Root_of_2< RT > :
3 coefficients RT + 1 boolean

Sturm sequences, resultants, Descartes’ rule,. . .
reduce comparisons to

computations of signs of polynomial expressions

Application

Computation of arrangements of 2D circular arcs and line
segments

Application of the 3D spherical kernel

Computation of arrangements of 3D spheres

Part IV

Flexibility

“Traits” classes

convex_hull_2<InputIt., OutputIt., Traits>
Polygon_2<Traits, Container>
Polyhedron_3<Traits, HDS>
Triangulation_3<Traits, TDS>

...

Geometric traits classes provide:
Geometric objects + predicates + constructors

The Kernel can be used as a traits class for several
algorithms
Otherwise: Default traits classes provided
The user can plug his own traits class

“Traits” classes

convex_hull_2<InputIt., OutputIt., Traits>
Polygon_2<Traits, Container>
Polyhedron_3<Traits, HDS>
Triangulation_3<Traits, TDS>

...

Geometric traits classes provide:
Geometric objects + predicates + constructors

The Kernel can be used as a traits class for several
algorithms
Otherwise: Default traits classes provided
The user can plug his own traits class

Playing with traits classes

Delaunay Triangulation

Requirements for a traits class:
• Point
• orientation test, in_circle test

typedef

CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Delaunay_triangulation_2< K > Delaunay;

Playing with traits classes

Delaunay Triangulation

• 3D points: coordinates (x, y, z)
• orientation, in_circle: on x and y coordinates

typedef

CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Triangulation_euclidean_traits_xy_3< K >

Traits;

typedef CGAL::Delaunay_triangulation_2< Traits > Terrain;

More flexibility

The user can add information in vertices and cells
. . .

To know more

www.cgal.org

