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Computational geometry

7 lectures of 3 hours

9-10 e Intro: what is computational geometry.
Convex hull: definitions, classical algorithms.
10-11 e Delaunay Triangulation: definitions, motivations
-irst properties and classical algorithms.
13-11 e Randomized algorithms.
Poisson Delaunay triangulation.
17-11 o Numerical issues and algorithmic robustness.
Degenerate cases and perturbation techniques.
20-11 o Triangulations in the CGAL library.
24-11 e Reconstruction. Meshing.
27-11 e Periodic triangulations. Hyperbolic triangulations.
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Computational geometry

Evaluation

Your grade will be in two pieces:

e Homework: exercises after each lecture.
e — Presentation of a research paper
— or coding project using CGAL

8-12 Defense: 20 minutes ? (how many students 7)
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Design geometric algorithms

Study complexity

Model of computation
Worst-case or random analysis
Lower bound

Asymptotic analysis
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Convex hull

Delaunay triangulation / Voropdiag
Arrangement of curves /
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Shape to mesh
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Computational geometry usage

Shape to mesh
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