1 Convex hull: definitions, classical algorithms.

1.1 Convex hull by triangulation

Consider the following convex hull algorithm:
Input : S a point set.

sort S by xz-coordinate;

create a circular list with the three leftmost points of S
such that (u,u.next,u.next.nert) is positively oriented and u rightmost;

S = S\ {u, unext, u.next.next};
while S#0 {
v =leftmost point in S;
S =5\{v};
w=u;e
while (v,u,u.nexrt) negative
{u = u.next; }eo
v.next =u; u.pred =v;
while (v,w,w.pred) positive
{w = w.pred; }e
v.pred = w; w.nert = v;
u=uv;

1.1.1 Run the algorithm

w.pred

Run (by hand) the algorithm on the example provided on the attached example and draw on the
example the line segment wv in green each time the code pass through the line of the code marked
with a green dot, draw uv in blue for the code line with a blue dot, and draw wv in red for the

code line with a red dot,

1.1.2 Complexity

What is the complexity of this algorithm on a set of n points (hint: use Euler relation).

1.1 Correction:

1.1.1 Run the algorithm

1.1.2 Complexity

Sorting step is O(nlogn).

The complexity of the rest is bounded (up to a con-
stant) by the number of times that the algorithm goes
through the lines marked by the three dots. Each
time the algorithm goes there, one can trace an edge
of a triangulation of the points, thus the complexity
is the number of edge in a triangulation.

Compared to the situation during the lecture (3D
convex hull), the infinite face is of some unknown
size £k < n. Let e be the number of edges, and ¢
the number of triangles. On the one hand, we have
(t+1) — e+ n = 2 (Euler relation). On the other
hand, each triangle has three edges, each edge is in
two faces: 2e = k + 3t. One can deduce e = 3n.
Thus after the sorting preprocessing, the algorithm is
linear.

