3 Probabilistic analyses: randomized algorithms, evenly distributed points.

3.1 Area of incident triangles

Let X be Poisson point process of intensity n in the plane. What is the expected area of the union of triangles incident to a point of X?

3.2 Voronoi Path

Let X be a set of n points inside the square $[0, 1]^2$ and add to X the four corners of the square. Let s = (0, 0) et t = (1, 1). Imagine a point moving on the line segment from s to t, its nearest neighbor in X is $s = v_0$ at the beginning, then it changes to another point $v_1 \in X$. We denote $s = v_0, v_1, v_2 \dots v_{k-1}, v_k = t$ the sequence of nearest neighbors of the moving point. The polygonal line $v_0, v_1, v_2 \dots v_{k-1}, v_k$ is called the Voronoi path.

3.2.1 Delaunay

Is $v_i v_{i+1}$ a Delaunay edge? (Prove or give a counter-example).

3.2.2 Length

Give if possible upper and lower bound on the length (the sum of the lengths of all relevant edges) of the Voronoi path. Draw examples for these bounds.

3.2.3 Strip

In this question, assume that X is a set of n random points in the square (plus the four corners). The lines $y = x + \epsilon$ and $y = x - \epsilon$ describe a strip around the diagonal of the square and we want to study the probability that the Voronoi path leave this strip.

We cover the diagonal with disks of radius $\frac{\epsilon}{2}$ centered at points $\left(\frac{j\epsilon}{4}, \frac{j\epsilon}{4}\right)$ with j integer in $\left[1, \frac{4}{\epsilon} - 1\right]$.

• Prove that at a point (x, x) on the diagonal the circle centered at (x, x) of radius ϵ contains at least one of the circle of the diagonal covering.

• Deduce an upper bound of the required probability. (The classical inequality $1 - t \le e^{-t}$ could be useful).

• Find some (smallest possible) value of ϵ , depending on n, such that this probability is exponentially small (as a function of n).

Exam

Do not forget: your choice of project/ article presentation is due November 22nd.