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What's a surface? Equivalent de�nitions:
1 A (compact, connected) 2-manifold.
2 A space obtained by gluing edges of disjoint polygons in pairs.
3 (In the orientable case): A topological space obtained from the

sphere by attaching g ≥ 0 handles; g is the genus.

This talk: Graphs embedded (drawn without crossings) on surfaces,
in the �eld of computational topology.



Graphs on surfaces

a1

a9

a10a8

a1

a11

a12

a7 a5

a6

a10

a12

a9

a11

a7

a3 a4a2

a8

What's a surface? Equivalent de�nitions:
1 A (compact, connected) 2-manifold.
2 A space obtained by gluing edges of disjoint polygons in pairs.
3 (In the orientable case): A topological space obtained from the

sphere by attaching g ≥ 0 handles; g is the genus.

This talk: Graphs embedded (drawn without crossings) on surfaces,
in the �eld of computational topology.



Graphs on surfaces

a1

a9

a10a8

a1

a11

a12

a7 a5

a6

a10

a12

a9

a11

a7

a3 a4a2

a8

What's a surface? Equivalent de�nitions:
1 A (compact, connected) 2-manifold.
2 A space obtained by gluing edges of disjoint polygons in pairs.
3 (In the orientable case): A topological space obtained from the

sphere by attaching g ≥ 0 handles; g is the genus.

This talk: Graphs embedded (drawn without crossings) on surfaces,
in the �eld of computational topology.



Roadmap of the talk

1 quick survey on topological graphs on surfaces in di�erent
�elds of mathematics and computer science

2 decision problems: deformations of curves and graphs
(homotopy/isotopy)

3 shortest non-contractible closed curves
4 topological decompositions of surfaces
5 other problems solved
6 open problems



1. Topological graphs on surfaces in

general



Applications

Topological simpli�cation, remeshing, approximation;

parameterization: texture mapping, compression, numerical
analysis;

geographic information systems.

[Wood et al., 2004]
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Topology

Gigantic recent progress in 3-dimensional topology (Poincaré
conjecture [Perelman, 2003], . . . );

�computational� motivations: classify 3-manifolds, decide if a
knot is trivial [Haken 1961, Kuperberg 2011, Lackenby 2016, . . . ], braids,
. . . ;
algorithms on surface-based structures:

algebraic structures (surface groups, mapping class groups,
. . . );
representation of curves (train tracks, curve complex, pants
complex, . . . );
deformability of curves to make them disjoint.

In computational topology. . .

algorithmically more precise;

topologically more elementary;

more �concrete� problems (?).
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Enumerative combinatorics

Combinatorial maps (=rotation system)

A graph is cellularly embedded if its faces are disks.

Combinatorial maps represent cellular embeddings
combinatorially.

Enumeration

Given g , n, count (exactly or asymptotically) combinatorial maps
with genus g and n vertices: rooted / triangulations or
quadrangulations / cut graphs / . . .

Typical and limit properties

Properties of a random map, diameter, etc.

Scaling limits: limits of random maps.
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Topological graph theory

Natural generalization of planar graphs: Every graph can be
embedded on some surface.

Testing whether a graph with n vertices and edges embeds on a
surface of genus g :

running time 2poly(g) · n [Mohar, 1996. . . ];

NP-hard (no polynomial-time algorithm unless P=NP) if g is
part of the input;

space complexity, approximation of the genus, . . .
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Graph algorithms

General recipe

Take any graph algorithm problem;

study it in the speci�c case where the input graph is embedded
in the plane;

or more generally on a �xed surface.

Examples: Minimum cut,
maximum �ow, induced cycles,
graph isomorphism, minimum
multicut, Steiner tree, TSP, . . .

s t



Graph algorithms

General recipe

Take any graph algorithm problem;

study it in the speci�c case where the input graph is embedded
in the plane;

or more generally on a �xed surface.

Examples: Minimum cut,
maximum �ow, induced cycles,
graph isomorphism, minimum
multicut, Steiner tree, TSP, . . .

s t

Planar graphs are rather limited
(add one edge and you cannot
do anything).



2. Decision problems: homotopy and

isotopy



Testing homotopy

Let G be a graph cellularly embedded on S .

Given a closed curve γ in G ,
decide whether γ is
contractible in S (can be
continuously deformed to a
point).

Given two closed curves γ
and δ in G , decide whether
they are freely homotopic in S
(can be deformed one into the
other on S ).

Remarks

These problems date back to Poincaré (word problem,

conjugacy problem for surface groups).

In 1912, Dehn gives a solution, which translates to a
polynomial-time algorithm.

There is more to be said: These problems are solvable in linear
time [Dey, Guha 1999][Lazarus, Rivaud, 2012][Erickson, Whittlesey 2013].
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Data structures

Data structures

of size linear in the number n of edges
allowing to do reasonable operations e�ciently:

visit the vertices/edges/faces in O(n) time,
degree of a face/vertex in O(degree), . . .
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Reduction

[Lazarus, Rivaud, 2012]: WLOG, G has

two vertices, of degree 4g ,

4g edges, and

2g faces, which are quadrilaterals.

Proof

WLOG, there is a single vertex (edge contractions).

WLOG, there is a single face (edge deletions).

By Euler's formula v − e+ f = 2−2g , the graph has 2g edges.

The curves γ (and δ) use edges that were removed, but we
can transform them by creating a new vertex.
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Algorithm (some pictures taken from Erickson and Whittlesey)

Universal cover S̃

A regular tiling of squares meeting 4g at a vertex:

Every path in S lifts to a path in S̃ ;

a closed curve is contractible in S i� it lifts to a closed curve.
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Algorithm (some pictures taken from Erickson and Whittlesey)

Universal cover S̃

A regular tiling of squares meeting 4g at a vertex:

Every path in S lifts to a path in S̃ ;

a closed curve is contractible in S i� it lifts to a closed curve.

1

2

2
1

Result from geometric group
theory [Gersten, Short, 1990]

In this tiling, every non-trivial
closed curve has either a spur
or a bracket.

Algorithm [Erickson, Whittlesey

2013]

Remove iteratively spurs and
brackets whenever possible!



Extension: Geometric intersection numbers

The game

Given a curve γ, move it continuously (by a homotopy) to
minimize its number of crossings.

Given two curves γ and δ, move them continuously (by a
homotopy) to minimize the number of crossings between them.

Result [Despré, Lazarus, 2017]

Computing these numbers is doable in near-linear time.

Proof

Similar spirit (ask Vincent at the co�ee break).



Testing isotopy

An isotopy of an embedded curve or graph is a homotopy
(deformation) that remains crossing-free at all times.

Problem

Given an abstract graph G embedded in two di�erent ways,
G1 and G2, on S , does there exist a continuous family of
embeddings between G1 and G2?

This is possible in linear in the input size [CdV, de Mesmay, 2014].



Data structures for storing graphs on surfaces

Storing graphs on surfaces

Let M be a �xed graph (cellularly) embedded on S .

The graphs G1 and G2 are in general position with respect
to M.

We store the combinatorial map of the overlay of M and G1,
and similarly the overlay of M and G2.
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Proof sketch

Some clearly necessary conditions that turn out to be su�cient
[Ladegaillerie, 1984]

1 Oriented homeomorphism of S mapping G1 to G2;
2 each cycle in G1 is homotopic to its counterpart in G2.

algorithmically: 1 easy, 2 as before;

di�culty: small family of cycles for 2 ;

tools: universal cover, hyperbolic geometry, Reidemeister
moves, [Ringel, 1955], [de Graaf and Schrijver, 1997], . . .
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3. Shortest non-contractible closed

curves



Goal

Problem

Compute a shortest non-contractible closed curve (a.k.a. systole,
a.k.a. edge-width).

Remark

Similar algorithms for shortest non-separating closed curve.



In a graph cellularly embedded on S : many results!

n: complexity of G g : genus k: output size

directed directed

w
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d

O(n2 log n) [Erickson�Har-Peled'04]
O(g3/2n3/2 log n) [Cabello�Mohar'07]
gO(g)n log n [Kutz'06]
O(g3n log n) [Cabello�Chambers'07]
O(g2n log n) [Cabello�Chambers�Erickson'13]
2
O(g)n log log n [Fox'13]
O(gn log n) for 2-approx [Erickson�Har-Peled'04]

O(n2 log n) [Cab�CdV�Laz'10]
O(g1/2n3/2 log n) [Cab�CdV�Laz'10]
gO(g)n log n [Erickson'11]
O(g3n log n) [Fox'13]

un
w
ei
gh

te
d O(n3) [Thomassen'90]

O(n2) [Cab�CdV�Laz'10]
O(gnk) [Cab�CdV�Laz'10]
O(gn/ε) for (1+ ε)-approx [Cab�CdV�Laz'16]

O(n2) [Cab�CdV�Laz'10]
O(gnk) [Cab�CdV�Laz'16]
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Cut locus

Intermediate step

Let us compute a shortest closed curve passing through a �xed
basepoint b.

Construction

Grow a disk around b; the cut locus C is the set of points
where the disk self-collides.

Formally, it is the (closure of the) set of points with several
shortest paths to b.

S \ C is (homeomorphic to) an open disk.
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locus C exactly once;

and is a shortest loop among those crossing an edge e of C
such that no connected component of C − e is a tree.
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Polyhedral surfaces

Everything relies on the computation of the cut locus!

[Chen and Han, 1996]: O(n2), where n is the number of triangles
(or the total complexity of the polygons);

Thus, algorithm with running-time O(n2) when b is �xed. But
the loop is not necessarily simple, it may �run along itself�.

Observation: A shortest non-contractible closed curve passes
through a vertex. Thus, a shortest non-contractible loop
(without �xing b) can be computed in O(n3).
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Thus, algorithm with running-time O(n2) when b is �xed. But
the loop is not necessarily simple, it may �run along itself�.

Observation: A shortest non-contractible closed curve passes
through a vertex. Thus, a shortest non-contractible loop
(without �xing b) can be computed in O(n3).



Cross-metric surfaces

Cross-metric surfaces [CdV,

Erickson, 2006]

A discretization of metric
surfaces, suitable for many
purposes.

Storing curves on surfaces

Let M be an edge-weighted graph (cellularly) embedded on S .

Curves are in general position with respect to M.

The length of a curve is, by de�nition, the sum of the weights
of the edges of M crossed by that curve.

We store the combinatorial map of the overlay of M and the
curves.

Re�nement of walks stored in the dual graph M∗. Easy to
compute, e.g., shortest paths (Dijkstra in M∗).
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4. Topological decompositions of

surfaces



Cut graphs

cut graph: a graph that cuts S into a disk.

system of loops: a one-vertex cut graph.

canonical system of loops: a one-vertex cut graph in which the
loops appear in canonical order.
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Cut graphs

Computing a cut graph: easy!
Shortest cut graph:

NP-hard in general [Erickson, Har-Peled, 2004];
ε-approximation in f (g , ε) · n3 [Cohen-Addad and de Mesmay, 2015];
easy if one wishes to compute the shortest cut graph with
speci�ed vertex set P: doable in O(n log n + gn + |P|) time
[CdV, 2010];
in particular, allows to compute the shortest system of loops
[Erickson and Whittlesey, 2006].
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The cut locus w.r.t. P

The cut locus, a.k.a. �Voronoi� diagram

Grow disks around each point of P simultaneously;

when disks (self-)collide, stop growing and draw the boundary;

the cut locus C is the set of all boundaries.

Given an edge e of C , let e⊥ be a �Delaunay� shortest path
with endpoints in P that crosses e and no other edge of C .



The cut locus w.r.t. P

The cut locus, a.k.a. �Voronoi� diagram

Grow disks around each point of P simultaneously;

when disks (self-)collide, stop growing and draw the boundary;

the cut locus C is the set of all boundaries.

Given an edge e of C , let e⊥ be a �Delaunay� shortest path
with endpoints in P that crosses e and no other edge of C .



The cut locus w.r.t. P

The cut locus, a.k.a. �Voronoi� diagram

Grow disks around each point of P simultaneously;

when disks (self-)collide, stop growing and draw the boundary;

the cut locus C is the set of all boundaries.

Given an edge e of C , let e⊥ be a �Delaunay� shortest path
with endpoints in P that crosses e and no other edge of C .



The cut locus w.r.t. P

The cut locus, a.k.a. �Voronoi� diagram

Grow disks around each point of P simultaneously;

when disks (self-)collide, stop growing and draw the boundary;

the cut locus C is the set of all boundaries.

Given an edge e of C , let e⊥ be a �Delaunay� shortest path
with endpoints in P that crosses e and no other edge of C .



The cut locus w.r.t. P

The cut locus, a.k.a. �Voronoi� diagram

Grow disks around each point of P simultaneously;

when disks (self-)collide, stop growing and draw the boundary;

the cut locus C is the set of all boundaries.

Given an edge e of C , let e⊥ be a �Delaunay� shortest path
with endpoints in P that crosses e and no other edge of C .
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The cut locus, a.k.a. �Voronoi� diagram

Grow disks around each point of P simultaneously;

when disks (self-)collide, stop growing and draw the boundary;

the cut locus C is the set of all boundaries.
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Algorithm sketch

compute a spanning tree T of C ;

return K := (E (C )− T )⊥ (�Delaunay� edges of complement).

If w(e) := length of e⊥, and T is a maximum spanning tree
w.r.t. w , then K is a shortest cut graph with vertex set P .

It su�ces to prove that each edge of the shortest cut graph is of the form
e⊥. Proof idea: shortest cut graph = shortest basis of 1-dimensional
homology of S relatively to P.
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Canonical system of loops

Shortest: open!

Some canonical system of loops with O(gn) complexity:
doable in O(gn) time [Lazarus, Pocchiola, Vegter, Verroust, 2001].
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Octagonal decomposition

Shortest: open!
Some octagonal decomposition

with O(gn) complexity
such that each closed curve is as short as possible in its
homotopy class

doable in O(gn log n) time [CdV, Erickson, 2010].



Octagonal decomposition

Shortest: open!
Some octagonal decomposition

with O(gn) complexity
such that each closed curve is as short as possible in its
homotopy class

doable in O(gn log n) time [CdV, Erickson, 2010].

Contains a pants decomposition.



5. Other problems solved



Other curves

shortest splitting closed curve (separating but non-contractible)

→ crosses each shortest path O(g) times; each loop of the

shortest system of loops is the concatenation of two shortest

paths.



Other curves

shortest splitting closed curve (separating but non-contractible)

→ crosses each shortest path O(g) times; each loop of the

shortest system of loops is the concatenation of two shortest

paths.

shortest path homotopic to a given path;
shortest closed curve freely homotopic to a given closed curve

→ octagonal decomposition lifts, in the universal cover, to a

regular tiling; de�nes a region of the universal cover to be

explored.



More generally. . .

These building blocks apply to seemingly unrelated problems:

topological graph theory: crossing number of
graphs [Kawarabayashi, Reed, 2007];

algorithms for planar graphs: maximum �ow [Erickson, 2010],
shortest non-crossing paths [Erickson, Nayyeri, 2009], multicut [CdV,

2015], [Cohen-Addad, CdV, de Mesmay, 2018?].

algorithms for surface-embedded graphs: minimum
cut [Chambers, Erickson, Nayyeri, 2009], maximum �ow [Chambers,

Erickson, Nayyeri, 2009].

various models:

the plane with polygonal obstacles;

polyhedral surfaces;

disjoint curves in graphs;

normal curves.



Example: multicut problem

Input: G = (V ,E ): a graph; pairs of vertices, called terminals.

Output: E ′ ⊆ E of minimum weight such that:
after removing E ′, there is no path in G connecting the two
vertices of a pair.
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Reformulation: compute a
�shortest� (in the cross-metric
sense) graph in general
position w.r.t. G and
separating each pair of
terminals.
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6. Open problems



Open problems

Shortest decompositions (pants decomposition / octagonal
decomposition / canonical system of loops);

shortest graph embedding (possibly �xing vertices / homotopy
/ isotopy / combinatorial map);

a conjecture by Negami: Given two graphs G and H
embeddable on a �xed surface, can we embed them so that
they cross at most c · |E (G )| · |E (H)| times (for some absolute
constant c)?



Thanks for your attention!

Questions?
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