Triangulating the Real Projective Plane

MRIDUL AANJANEYA
Advisor: Monique Teillaud

July 3rd, 2007

INRIA
SOPHIA ANTIPOLIS

Projét Géométrica
Definition

The real projective plane \mathbb{P}^2 is a set of points in $\textit{one-to-one correspondence}$ with the lines of a vector space \mathbb{V}^3 in \mathbb{R}^3, with the points in \mathbb{P}^2 linearly dependent iff the corresponding lines of \mathbb{V}^3 are linearly dependent.
What is the Real Projective Plane?

Definition
The real projective plane \mathbb{P}^2 is a set of points in one-to-one correspondence with the lines of a vector space \mathbb{V}^3 in \mathbb{R}^3, with the points in \mathbb{P}^2 linearly dependent iff the corresponding lines of \mathbb{V}^3 are linearly dependent.

Figure: The sphere model of \mathbb{P}^2
What is the Real Projective Plane?

- $p = (x, y, z) = \lambda(x, y, z)$.

Triangulating the Real Projective Plane
What is the Real Projective Plane?

- $p = (x, y, z) = \lambda(x, y, z)$.
- There is no notion of "distance" on \mathbb{P}^2!
What is the Real Projective Plane?

- \(p = (x, y, z) = \lambda(x, y, z) \).
- There is no notion of “distance” on \(\mathbb{P}^2 \)!

![Triangulating the Real Projective Plane](image)
The real projective plane is a *non-orientable* surface.
The real projective plane is a *non-orientable* surface.
What is the Real Projective Plane?

- The real projective plane is a *non-orientable* surface.
The real projective plane is a *non-orientable* surface.
What is the Real Projective Plane?

- The real projective plane is a non-orientable surface.
Definition

A *triangulation* of \mathbb{P}^2 is a simplicial complex such that each face is bounded by a 3-cycle.
Definition

A *triangulation* of \(\mathbb{P}^2 \) is a simplicial complex such that each face is bounded by a 3-cycle.

Suppose \(\mathcal{M} \) is a map on \(\mathbb{P}^2 \) and \(e \) is an edge of \(\mathcal{M} \).
Definition

A triangulation of \mathbb{P}^2 is a simplicial complex such that each face is bounded by a 3-cycle.

Suppose \mathcal{M} is a map on \mathbb{P}^2 and e is an edge of \mathcal{M}.

- **Contraction of e in \mathcal{M}** is to remove e and identify its two endpoints.
Definition

A *triangulation* of \mathbb{P}^2 is a simplicial complex such that each face is bounded by a 3-cycle.

Suppose \mathcal{M} is a map on \mathbb{P}^2 and e is an edge of \mathcal{M}.

- *Contraction of e* in \mathcal{M} is to remove e and identify its two endpoints.
- Contraction is allowed only if the resulting graph \mathcal{H} is a simplicial complex.
A \textit{triangulation} of \mathbb{P}^2 is a simplicial complex such that each face is bounded by a 3-cycle.

Suppose \mathcal{M} is a map on \mathbb{P}^2 and e is an edge of \mathcal{M}.

- \textit{Contraction} of e in \mathcal{M} is to remove e and identify its two endpoints.
- Contraction is allowed only if the resulting graph \mathcal{H} is a simplicial complex.
- If \mathcal{M} has no contractible edge, then \mathcal{M} is called \textit{irreducible}.

\textbf{Triangulating the Real Projective Plane}
The real projective plane \mathbb{P}^2 admits exactly two irreducible triangulations.
Theorem (Barnette, 1982)

The real projective plane \mathbb{P}^2 admits exactly two irreducible triangulations.

![The two irreducible triangulations of \mathbb{P}^2](image)

Figure: The two irreducible triangulations of \mathbb{P}^2
Our Goal

Design an algorithm:

Input: A point set $P = \{p_1, p_2, \ldots, p_n\}$.

Output: A triangulation of P if one exists.

Basic predicates needed:
- When does a triangulation of P exist?
- An orientation test to distinguish "interior" from "exterior" of a triangle.
- Point location.

Triangulating the Real Projective Plane
Design an algorithm:

- **Input:** A point set \(P = \{p_1, p_2, \ldots, p_n\} \).
Our Goal

Design an algorithm:

- **Input:** A point set \(\mathcal{P} = \{p_1, p_2, \ldots, p_n\} \).
- **Output:** A triangulation of \(\mathbb{P}^2 \), if one exists.
Our Goal

Design an algorithm:

- **Input:** A point set \(\mathcal{P} = \{p_1, p_2, \ldots, p_n\} \).
- **Output:** A triangulation of \(\mathbb{P}^2 \), if one exists.

No computational results on \(\mathbb{P}^2 \) exist!
Our Goal

Design an algorithm:

- **Input:** A point set \(\mathcal{P} = \{p_1, p_2, \ldots, p_n\} \).
- **Output:** A triangulation of \(\mathbb{P}^2 \), if one exists.

No computational results on \(\mathbb{P}^2 \) exist!

Basic predicates needed:
Our Goal

Design an algorithm:

- **Input**: A point set $\mathcal{P} = \{p_1, p_2, \ldots, p_n\}$.
- **Output**: A triangulation of \mathbb{P}^2, if one exists.

No computational results on \mathbb{P}^2 exist!

Basic predicates needed:

- When does a triangulation of \mathbb{P}^2 exist?
Our Goal

Design an algorithm:

- **Input**: A point set \(\mathcal{P} = \{p_1, p_2, \ldots, p_n\} \).
- **Output**: A triangulation of \(\mathbb{P}^2 \), if one exists.

No computational results on \(\mathbb{P}^2 \) exist!

Basic predicates needed:

- When does a triangulation of \(\mathbb{P}^2 \) exist?
- An *orientation test* to distinguish “interior” from “exterior” of a triangle.
Our Goal

Design an algorithm:

- **Input:** A point set \(P = \{p_1, p_2, \ldots, p_n\} \).
- **Output:** A triangulation of \(\mathbb{P}^2 \), if one exists.

No computational results on \(\mathbb{P}^2 \) exist!

Basic predicates needed:

- When does a triangulation of \(\mathbb{P}^2 \) exist?
- An *orientation test* to distinguish "interior" from "exterior" of a triangle.
- Point location.
Outline of the Talk

- Design an “in-triangle” test.
- Constructing a triangulation of \mathbb{P}^2
- Point location
- Algorithm
- Conclusion and Open Problems
What’s really “inside”?

- The real projective plane with a disk cut out is a Möbius band.
What’s really “inside”?

- The real projective plane with a disk cut out is a Möbius band.
- The interior of a triangle can be unambiguously defined if we associate a distinguishing plane with it.
What’s really “inside"?

- The real projective plane with a disk cut out is a \textit{Möbius band}.
- The interior of a triangle can be unambiguously defined if we associate a \textit{distinguishing plane} with it.
We define a many-one mapping \(s : \mathbb{P}^2 \rightarrow \mathbb{R}^3 \) from points in \(\mathbb{P}^2 \) to points in \(\mathbb{R}^3 \) as follows:

\[
\begin{align*}
s(x, y, z) &= \begin{cases}
(1, xz, yz) & \text{if } z \neq 0, \\
(0, 1, x) & \text{if } z = 0, x \neq 0, \\
(0, 0, 1) & \text{if } z = 0, x = 0.
\end{cases}
\end{align*}
\]

Here, \(s_i = s(x_i, y_i, z_i) \) for \(i = 0, 1, 2 \), and \(s = s(x, y, z) \).
We define a many-one mapping \(s : \mathbb{P}^2 \rightarrow \mathbb{R}^3 \) from points in \(\mathbb{P}^2 \) to points in \(\mathbb{R}^3 \) as follows:

\[
\begin{align*}
 s(\rho) = s(x, y, z) &= \begin{cases}
 (1, \frac{x}{z}, \frac{y}{z}) & z \neq 0; \\
 (0, 1, \frac{y}{x}) & z = 0, x \neq 0; \\
 (0, 0, 1) & z = 0, x = 0.
 \end{cases}
\end{align*}
\]
What’s really “inside" ?

We define a many-one mapping $s : \mathbb{P}^2 \rightarrow \mathbb{R}^3$ from points in \mathbb{P}^2 to points in \mathbb{R}^3 as follows:

$$s(p) = s(x, y, z) = \begin{cases}
(1, \frac{x}{z}, \frac{y}{z}) & z \neq 0; \\
(0, 1, \frac{y}{x}) & z = 0, x \neq 0; \\
(0, 0, 1) & z = 0, x = 0.
\end{cases}$$

Suppose $a = (x_0, y_0, z_0)$, $b = (x_1, y_1, z_1)$, $c = (x_2, y_2, z_2)$ and $p = (x, y, z)$, p lies inside $\triangle abc$ if:
What’s really “inside”?

We define a many-one mapping $s : \mathbb{P}^2 \rightarrow \mathbb{R}^3$ from points in \mathbb{P}^2 to points in \mathbb{R}^3 as follows:

$$s(p) = s(x, y, z) = \begin{cases} (1, \frac{x}{z}, \frac{y}{z}) & z \neq 0; \\ (0, 1, \frac{y}{x}) & z = 0, x \neq 0; \\ (0, 0, 1) & z = 0, x = 0. \end{cases}$$

Suppose $a = (x_0, y_0, z_0), b = (x_1, y_1, z_1), c = (x_2, y_2, z_2)$ and $p = (x, y, z), p$ lies inside $\triangle abc$ if:

$$\text{sign} s_0 + \text{sign} s_1 + \text{sign} s_2 = \pm 3$$

Triangulating the Real Projective Plane
We define a many-one mapping \(s : \mathbb{P}^2 \rightarrow \mathbb{R}^3 \) from points in \(\mathbb{P}^2 \) to points in \(\mathbb{R}^3 \) as follows:

\[
s(p) = s(x, y, z) = \begin{cases}
(1, \frac{x}{z}, \frac{y}{z}) & z \neq 0; \\
(0, 1, \frac{y}{x}) & z = 0, x \neq 0; \\
(0, 0, 1) & z = 0, x = 0.
\end{cases}
\]

Suppose \(a = (x_0, y_0, z_0) \), \(b = (x_1, y_1, z_1) \), \(c = (x_2, y_2, z_2) \)
and \(p = (x, y, z) \), \(p \) lies inside \(\triangle abc \) if:

\[
\text{sign} \left| \begin{array}{c}
s_0 \\
s_1 \\
s_2
\end{array} \right| + \text{sign} \left| \begin{array}{c}
s_1 \\
s_2 \\
s_0
\end{array} \right| = \pm 3
\]

Here \(s_i = s(x_i, y_i, z_i) \) for \(i = 0, 1, 2 \), and \(s = s(x, y, z) \).
We define a many-one mapping $s : \mathbb{P}^2 \rightarrow \mathbb{R}^3$ from points in \mathbb{P}^2 to points in \mathbb{R}^3 as follows:

$$s(p) = s(x, y, z) = \begin{cases}
(1, \frac{x}{z}, \frac{y}{z}) & z \neq 0; \\
(0, 1, \frac{y}{x}) & z = 0, x \neq 0; \\
(0, 0, 1) & z = 0, x = 0.
\end{cases}$$

p lies on the boundary of $\triangle abc$ if:
What’s really “inside”?

We define a many-one mapping $s : \mathbb{P}^2 \to \mathbb{R}^3$ from points in \mathbb{P}^2 to points in \mathbb{R}^3 as follows:

$$s(p) = s(x, y, z) = \begin{cases} (1, \frac{x}{z}, \frac{y}{z}) & z \neq 0; \\ (0, 1, \frac{y}{x}) & z = 0, x \neq 0; \\ (0, 0, 1) & z = 0, x = 0. \end{cases}$$

p lies on the boundary of $\triangle abc$ if:

$$\text{sign} \left| \begin{array}{c} s_0 \\ s_1 \\ s \end{array} \right| + \text{sign} \left| \begin{array}{c} s_1 \\ s_2 \\ s \end{array} \right| + \text{sign} \left| \begin{array}{c} s_2 \\ s_0 \\ s \end{array} \right| = \pm 2$$

Triangulating the Real Projective Plane
In general, the distinguishing plane is $\alpha x + \beta y + \gamma z = 0$.
In general, the distinguishing plane is $\alpha x + \beta y + \gamma z = 0$.

- We use a linear transformation $\mathcal{M} \cdot p' = p$ in this case.
In general, the distinguishing plane is $\alpha x + \beta y + \gamma z = 0$.

- We use a linear transformation $\mathcal{M} \cdot p' = p$ in this case.

For the case $\gamma \neq 0$, we have:
In general, the distinguishing plane is $\alpha x + \beta y + \gamma z = 0$.

- We use a linear transformation $M \cdot p' = p$ in this case.

For the case $\gamma \neq 0$, we have:

$$M = \begin{bmatrix}
0 & \frac{-(\beta^2+\gamma^2)}{\sqrt{(\beta^2+\gamma^2)(\alpha^2+\beta^2+\gamma^2)}} & \frac{\alpha}{\sqrt{(\alpha^2+\beta^2+\gamma^2)}} \\
\frac{\gamma}{\sqrt{\beta^2+\gamma^2}} & \frac{\alpha\beta}{\sqrt{(\beta^2+\gamma^2)(\alpha^2+\beta^2+\gamma^2)}} & \frac{\beta}{\sqrt{(\alpha^2+\beta^2+\gamma^2)}} \\
\frac{-\beta}{\sqrt{\beta^2+\gamma^2}} & \frac{\alpha\gamma}{\sqrt{(\beta^2+\gamma^2)(\alpha^2+\beta^2+\gamma^2)}} & \frac{\gamma}{\sqrt{(\alpha^2+\beta^2+\gamma^2)}}
\end{bmatrix}$$
In general, the distinguishing plane is $\alpha x + \beta y + \gamma z = 0$. We use a linear transformation $\mathcal{M} \cdot p' = p$ in this case.

For the case when $\gamma = 0, \beta \neq 0$, we have:
In general, the distinguishing plane is $\alpha x + \beta y + \gamma z = 0$.

- We use a linear transformation $M \cdot p' = p$ in this case.

For the case when $\gamma = 0, \beta \neq 0$, we have:

$$M = \begin{bmatrix}
\frac{\beta}{\sqrt{\alpha^2 + \beta^2}} & 0 & \frac{\alpha}{\sqrt{\alpha^2 + \beta^2}} \\
\frac{-\alpha}{\sqrt{\alpha^2 + \beta^2}} & 0 & \frac{\beta}{\sqrt{\alpha^2 + \beta^2}} \\
0 & -1 & 0
\end{bmatrix}$$
In general, the distinguishing plane is $\alpha x + \beta y + \gamma z = 0$.

- We use a linear transformation $\mathcal{M} \cdot p' = p$ in this case.

For the case when $\gamma = \beta = 0$, we have:
In general, the distinguishing plane is $\alpha x + \beta y + \gamma z = 0$.

- We use a linear transformation $\mathcal{M} \cdot p' = p$ in this case.

For the case when $\gamma = \beta = 0$, we have:

$$
\mathcal{M} = \begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
$$
We intend to design an incremental algorithm that first constructs a triangulation of P_2. Adds a point $p \in P$. Identifies the enclosing triangle $\triangle abc$ of p and "grows" the triangulation by making p adjacent to a, b, and c.

Questions:
How to get the "initial" triangulation of P_2?
Does there exist a subset $S \subset P$ which can be used to construct this initial triangulation?
Some Motivation

We intend to design an incremental algorithm that
- First constructs a triangulation of \mathbb{P}^2.

Questions:
- How to get the "initial" triangulation of \mathbb{P}^2?
- Does there exist a subset $S \subset \mathbb{P}$ which can be used to construct this initial triangulation?
Some Motivation

We intend to design an incremental algorithm that
- First constructs a triangulation of \mathbb{P}^2.
- Adds a point $p \in \mathcal{P}$.
We intend to design an incremental algorithm that
- First constructs a triangulation of \mathbb{P}^2.
- Adds a point $p \in \mathcal{P}$.
- Identifies the enclosing $\triangle abc$ of p and “grows” the triangulation by making p adjacent to a, b and c.
Some Motivation

We intend to design an incremental algorithm that

- First constructs a triangulation of \mathbb{P}^2.
- Adds a point $p \in \mathcal{P}$.
- Identifies the enclosing $\triangle abc$ of p and "grows" the triangulation by making p adjacent to a, b and c.

Questions:
Some Motivation

We intend to design an incremental algorithm that

- First constructs a triangulation of \mathbb{P}^2.
- Adds a point $p \in \mathcal{P}$.
- Identifies the enclosing $\triangle abc$ of p and "grows" the triangulation by making p adjacent to a, b and c.

Questions:

- How to get the "initial" triangulation of \mathbb{P}^2?
Some Motivation

We intend to design an incremental algorithm that

- First constructs a triangulation of \mathbb{P}^2.
- Adds a point $p \in \mathcal{P}$.
- Identifies the enclosing $\triangle abc$ of p and "grows" the triangulation by making p adjacent to a, b and c.

Questions:

- How to get the "initial" triangulation of \mathbb{P}^2?
- Does there exist a subset $S \subset \mathcal{P}$ which can be used to construct this initial triangulation?
A New Idea!

Definition

An *incidence structure* \(I = \{ \mathcal{P}, \mathcal{L}, \Pi \} \) consists of a set of points \(\mathcal{P} \), a set of lines \(\mathcal{L} \), and a set of incidences \(\Pi \) between points in \(\mathcal{P} \) and lines in \(\mathcal{L} \).
A New Idea!

Triangulating the Real Projective Plane
A New Idea!

\[\mathcal{P} = \{1, 2, 3, 4, 5, 6, 7\} \]
A New Idea!

\[\mathcal{P} = \{1, 2, 3, 4, 5, 6, 7\} \]
\[\mathcal{L} = \{a = 1261, b = 3253, c = 1451, d = 3463, e = 7247, f = 7317\} \]
$\mathcal{P} = \{1, 2, 3, 4, 5, 6, 7\}$
$\mathcal{L} = \{a = 1261, b = 3253, c = 1451, d = 3463, e = 7247, f = 7317\}$
$\Pi = \{1c, 1d, 1f, 2a, 2b, 2e, 3b, 3d, 3f, 4c, 4d, 4e, 5b, 5c, 6a, 6d, 7e, 7f\}$
\(\mathcal{P} = \{1, 2, 3, 4, 5, 6, 7\} \)
\(\mathcal{L} = \{a = 1261, b = 3253, c = 1451, d = 3463, e = 7247, f = 7317\} \)
\(\Pi = \{1c, 1d, 1f, 2a, 2b, 2e, 3b, 3d, 3f, 4c, 4d, 4e, 5b, 5c, 6a, 6d, 7e, 7f\} \)
A New Idea!

$\mathcal{P} = \{1, 2, 3, 4, 5, 6, 7\}$

$\mathcal{L} = \{a = 1261, b = 3253, c = 1451, d = 3463, e = 7247, f = 7317\}$

$\Pi = \{1c, 1d, 1f, 2a, 2b, 2e, 3b, 3d, 3f, 4c, 4d, 4e, 5b, 5c, 6a, 6d, 7e, 7f\}$
A New Idea!

\[\mathcal{P} = \{1, 2, 3, 4, 5, 6, 7\} \]
\[\mathcal{L} = \{a = 1261, b = 3253, c = 1451, \\
d = 3463, e = 7247, f = 7317\} \]
\[\Pi = \{1c, 1d, 1f, 2a, 2b, 2e, 3b, 3d, 3f, 4c, 4d, \\
4e, 5b, 5c, 6a, 6d, 7e, 7f\} \]
A New Idea!

\[\mathcal{P} = \{1, 2, 3, 4, 5, 6, 7\} \]
\[\mathcal{L} = \{a = 1261, b = 3253, c = 1451, \]
\[d = 3463, e = 7247, f = 7317\} \]
\[\Pi = \{1c, 1d, 1f, 2a, 2b, 2e, 3b, 3d, 3f, 4c, 4d, \]
\[4e, 5b, 5c, 6a, 6d, 7e, 7f\} \]
\(\mathcal{P} = \{1, 2, 3, 4, 5, 6, 7\} \)
\(\mathcal{L} = \{a = 1261, b = 3253, c = 1451, d = 3463, e = 7247, f = 7317\} \)
\(\Pi = \{1c, 1d, 1f, 2a, 2b, 2e, 3b, 3d, 3f, 4c, 4d, 4e, 5b, 5c, 6a, 6d, 7e, 7f\} \)
A New Idea!

\[P = \{1, 2, 3, 4, 5, 6, 7\} \]
\[L = \{a = 1261, b = 3253, c = 1451, d = 3463, e = 7247, f = 7317\} \]
\[\Pi = \{1c, 1d, 1f, 2a, 2b, 2e, 3b, 3d, 3f, 4c, 4d, 4e, 5b, 5c, 6a, 6d, 7e, 7f\} \]
A New Idea!

Every point that has only one copy should have even degree. 6 has odd degree, so no incidence structure!

Triangulating the Real Projective Plane
Every point that has only one copy should have even degree.
Every point that has only one copy should have even degree.
6 has odd degree, so no incidence structure!
Lemma

If among every set of four points in \mathcal{P} at least three are collinear, then at least $(n - 1)$ points in \mathcal{P} are collinear.
Lemma

If among every set of four points in \mathcal{P} at least three are collinear, then at least $(n - 1)$ points in \mathcal{P} are collinear.

Corollary

If no set of $(n - 1)$ points in \mathcal{P} are collinear, then there exists a set of four points no three of which are collinear.
A New Idea!

Such a set of four points is called a K_4-quadrangulation.
A New Idea!

Such a set of four points is called a K_4-quadrangulation.

Lemma

A K_4-quadrangulation can be used to construct a triangulation of \mathbb{P}^2.

Triangulating the Real Projective Plane
A New Idea!

Such a set of four points is called a K_4-quadrangulation.

Lemma

A K_4-quadrangulation can be used to construct a triangulation of \mathbb{P}^2.

(a) (b)
A New Idea!

Such a set of four points is called a K_4-quadrangulation.

Lemma

A K_4-quadrangulation can be used to construct a triangulation of \mathbb{P}^2.

Triangulating the Real Projective Plane
Such a set of four points is called a K_4-quadrangulation.

Lemma

A K_4-quadrangulation can be used to construct a triangulation of \mathbb{P}^2.

(a) (b)
Such a set of four points is called a K_4-quadrangulation.

Lemma

A K_4-quadrangulation can be used to construct a triangulation of \mathbb{P}^2.

(a)

(b)
Such a set of four points is called a K_4-quadrangulation.

Lemma

A K_4-quadrangulation can be used to construct a triangulation of \mathbb{P}^2.

(a) (b)
A New Idea!

Such a set of four points is called a K_4-quadrangulation.

Lemma

A K_4-quadrangulation can be used to construct a triangulation of \mathbb{P}^2.

![Diagram](image-url)
A New Idea!

Such a set of four points is called a K_4-quadrangulation.

Lemma

A K_4-quadrangulation can be used to construct a triangulation of \mathbb{P}^2.

![Diagram](image.png)
A New Idea!

- It now becomes possible to associate a distinguishing plane with each triangle.

Triangulating the Real Projective Plane
A New Idea!

- It now becomes possible to associate a *distinguishing plane* with each triangle.
- The procedure described is still incomplete because the “pseudo-points" p, q, r may not be in \mathcal{P}.
Definition
The set of triangles incident to exactly one pseudo-point is called a region.
A New Idea!

Definition

The set of triangles incident to exactly one pseudo-point is called a *region*.
Lemma

If there exists a K_4-quadrangulation \mathcal{A} such that at least two points in \mathcal{P} lie in different regions of \mathcal{A}, then it is possible to triangulate \mathbb{P}^2.

Triangulating the Real Projective Plane
Lemma

If there exists a K_4-quadrangulation A such that at least two points in P lie in different regions of A, then it is possible to triangulate \mathbb{P}^2.

Such a K_4-quadrangulation is called a canonical set.
Lemma

If there exists a K_4-quadrangulation A such that at least two points in P lie in different regions of A, then it is possible to triangulate \mathbb{P}^2.

Such a K_4-quadrangulation is called a *canonical set*.

A set of points S is in *general position* if no three points in S are collinear.
A New Idea!

Lemma

If there exists a K_4-quadrangulation A such that at least two points in \mathcal{P} lie in different regions of A, then it is possible to triangulate \mathbb{P}^2.

Such a K_4-quadrangulation is called a canonical set.

A set of points S is in general position if no three points in S are collinear.

Lemma

If at least six points in \mathcal{P} are in general position, then there always exists a canonical set.
Triangulating the Real Projective Plane
Triangulating the Real Projective Plane
A New Idea!
Computing triangulations of \mathbb{P}^2

Theorem

Given a point set $\mathcal{P} = \{p_1, p_2, \ldots, p_n\}$ with at least six points in general position, it is always possible to construct a triangulation of \mathbb{P}^2.

Triangulating the Real Projective Plane
Computing triangulations of \mathbb{P}^2

Triangulating the Real Projective Plane
Computing triangulations of \mathbb{P}^2
Computing triangulations of \mathbb{P}^2

Triangulating the Real Projective Plane
Computing triangulations of \mathbb{P}^2

Triangulating the Real Projective Plane
Computing triangulations of \mathbb{P}^2

Triangulating the Real Projective Plane
Computing triangulations of \mathbb{P}^2

Triangulating the Real Projective Plane
Computing triangulations of \mathbb{P}^2
Computing triangulations of \mathbb{P}^2

Algorithm

1: Find a set $S = \{1, 2, 3, 4, 5, 6\}$ of six points such that no three points in S are collinear.
Algorithm

1. **Find a set** $S = \{1, 2, 3, 4, 5, 6\}$ **of six points such that no three points in** S **are collinear.**
2. **Construct a projective triangulation with the set** S. **Associate distinguishing planes with every triangle of the triangulation.**
Algorithm

1. **Find a set** $S = \{1, 2, 3, 4, 5, 6\}$ **of six points such that no three points in** S **are collinear.**
2. **Construct a projective triangulation with the set** S. **Associate distinguishing planes with every triangle of the triangulation.**
3. **for all points** $p \in \mathcal{P} \setminus S$ **do**
4. **Identify the triangle** $\triangle abc$ **in which** p **lies.**
5. **Make** p **adjacent to the vertices** a, b **and** c. **Make the distinguishing plane of** $\triangle apb$, $\triangle bpc$, **and** $\triangle cpa$ **the same as that for** $\triangle abc$.
6. **end for**
Computing triangulations of \mathbb{P}^2

Algorithm

1: Find a set $S = \{1, 2, 3, 4, 5, 6\}$ of six points such that no three points in S are collinear.
2: Construct a projective triangulation with the set S. Associate distinguishing planes with every triangle of the triangulation.
3: for all points $p \in \mathbb{P}\setminus S$ do
4: Identify the triangle $\triangle abc$ in which p lies.
5: Make p adjacent to the vertices a, b and c. Make the distinguishing plane of $\triangle apb, \triangle bpc, \text{ and } \triangle cpa$ the same as that for $\triangle abc$.
6: end for
7: return (triangulation of \mathbb{P}^2).
Computing triangulations of \mathbb{P}^2

- Step 1 takes $O(n^2)$ steps.
- Step 2 takes $O(1)$ steps.
- "Walking" in a triangulation takes $O(n)$ steps.
- The `for` loop takes a total of $O(n^2)$ steps.
Computing triangulations of \mathbb{P}^2

- Step 1 takes $O(n^2)$ steps.
- Step 2 takes $O(1)$ steps.
- “Walking” in a triangulation takes $O(n)$ steps.
- The \texttt{for} loop takes a total of $O(n^2)$ steps.

- Worst-case time complexity is $O(n^2)$ steps.
A triangulation of \mathbb{P}^2 enables us to define “distance”!
A triangulation of \mathbb{P}^2 enables us to define "distance"!
Problems like the *Minimum Weight Triangulation* (NP-Hard for 2-d, [1]) or the *Minmax Length Triangulation* (solvable in $O(n^2)$ in 2-d, [2]) now have meaning on the real projective plane.

Questions?

Triangulating the Real Projective Plane
Lemma

If among every set of four points in P at least three are collinear, then at least $(n - 1)$ points in P are collinear.
Lemma

If among every set of four points in \mathcal{P} at least three are collinear, then at least $(n - 1)$ points in \mathcal{P} are collinear.
Lemma

If among every set of four points in \mathcal{P} at least three are collinear, then at least $(n - 1)$ points in \mathcal{P} are collinear.
Lemma

If among every set of four points in \mathcal{P} at least three are collinear, then at least $(n - 1)$ points in \mathcal{P} are collinear.