
Design of the CGAL Spherical Kernel

Pedro M. M. de Castro, Frédéric Cazals, Sébastien Loriot ,
Monique Teillaud

WRSO 2007/09/26 @ INRIA Sophia

Work partially supported by the EU STREP Project

IST-006413

The Computational Geometry Algorithms Library
Open Source project

www.cgal.org

> 400.000 lines of C++ code
> 3.000 pages manual
∼ 12.000 downloads per year
∼ 850 users on public mailing
list
∼ 50 developers
licenses LGPL or QPL
start-up GeometryFactory
interfaces: Python, Scilab

Robustness and efficiency
Quality:

Editorial board
(3 members in Geometrica
/ 12 members)

Test-suites each night

...

kernels

A kernel consists of constant-size non-modifiable geometric primitive
objects and operations on these objects.

[CGAL manual]
Predicates are basic units of geometric algorithms⇐⇒ decisions;

Value returned belong to an enum
Constructions generate objects that are neither of type bool nor enum
types

CGAL Kernels

Primitives : elementary geometric objects
(points, segments, lines, . . .)

Predicates and constructions : Elementary operations on them
(intersection tests, intersection computations,. . .)

For example CGAL::Polyhedron is not in a kernel

Design of a kernel

A kernel concept defines requirements for a kernel in order to be able
to construct generic geometric algorithms based only on
requirements (usable with any kernel model of the concept).
−→ Each kernel in CGAL is a model of a kernel Concept

Kernel concept design guidelines

– Code reuse: ability to reuse the CGAL kernel for points, circles,
number types,. . .
– Flexibility: possibility to use other implementations for points,
circles, number types,. . .
possibility to use several algebraic implementations

Up to release 3.1 (Dec’04):
essentially linear objects

Release 3.2 (May ’06):
2D circular kernel [Pion-Teillaud]

2D circular kernel concept
[Emiris-Kakargias-Pion-Teillaud-Tsigaridas socg’04]

template < LinearKernel , AlgebraicKernel >
class CircularKernel

Types :

Must be defined by LinearKernel
basic number types, points, lines,. . .

Must be defined by AlgebraicKernel
algebraic numbers, polynomials

Defined by CircularKernel
Circular_arc_2, Line_arc_2,

Circular_arc_point_2

Predicates : intersection tests, comparisons of intersection points,. . .
Constructions : computation of intersection points

2D circular kernel concept
[Emiris-Kakargias-Pion-Teillaud-Tsigaridas socg’04]

template < LinearKernel , AlgebraicKernel >
class CircularKernel

Types :

Must be defined by LinearKernel
basic number types, points, lines,. . .

Must be defined by AlgebraicKernel
algebraic numbers, polynomials

Defined by CircularKernel
Circular_arc_2, Line_arc_2,

Circular_arc_point_2

Predicates : intersection tests, comparisons of intersection points,. . .
Constructions : computation of intersection points

3D Spherical Kernel : Concept

Following the same design, we define a new geometric kernel :
the 3D spherical kernel.

template < LinearKernel , AlgebraicKernel >
class SphericalKernel

which must define the following types :
Circle_3

Circular_arc_3
Line_arc_3

Circular_arc_point_3

3D Spherical Kernel : Concept

Access functions: Define the interface with kernel objects

– Circle_3
–center()
–squared_radius()
–supporting_plane()
–diametrial_sphere()

– CircularArcPoint_3
– x() , y() , z()

– LineArc_3
–source(),target()
–supporting_line()

– CircularArc_3
–source(),target()
–supporting_circle()

3D Spherical Kernel Objects : Default implementation

Coordinate system chosen: Cartesian Coordinates .

Circle_3
represented by a plane and a sphere.

Circular_arc_3
represented by a circle and two endpoints
(Circular_arc_point_3)

Line_arc_3
represented by a kernel line with two endpoints
(Circular_arc_point_3)

Circular_arc_point_3
represented by an algebraic number per each cartesian
coordinates

User frontend to 3D Spherical Kernel : Geometric
functions

Predicates :

Has_on_3 , Do_overlap_3

Compare_x_3 , Compare_y_3 , Compare_z_3
Compare cartesian coordinates of Circular_arc_point_3

Side_of_3
position of a Circular_arc_point_3 wrt a plane or a sphere

Constructions :

Intersect_3
(from 2 or 3 objects among planes, circle arcs, line and spheres)

Requirements to Algebraic Kernel

Type :

FT

Polynomial_1_3

Polynomial_for_spheres_2_3

Polynomial_for_lines_3

Polynomial_for_circles_3

Root_of_2

Root_for_spheres_2_3

Constructions and predicates :

Constructors for algebraic types from geometric objects

Solve

Sign_at

Example : Using algebra for geometric constructions

AK::Polynomial 1 3

SK::Sphere 3 SK::Plane 3

SK::Circular arc point 3

AK::Polynomial for spheres 2 3

SK::Root for spheres 2 3

SK::Intersect 3

AK::Polynomial 1 3

AK::Solve

SK::Circle 3 SK::Plane 3

diametral sphere() supporting plane()

SK::Get equation SK::Get equation SK::Get equation

Application : specialization

Spherical Bentley-Ottmann [Cazals,Loriot06] .

Input

A central sphere
Set of spheres intersecting the central one (or set of planes)

Output

HDS containing faces of the arrangement of intersection
circles
For each face, a list of sphere which ball covering it

Specialization on a given sphere

Natural extension to handle objects on a commun sphere using
cylindrical coordinates
Primitives :
– Circle_on_reference_sphere_3
– Circular_arc_point_on_reference_sphere_3
– Circular_arc_on_reference_sphere_3
– Theta_rep
Predicates:
– Compare_theta_3
– Compare_z_at_theta_3
– Compare_z_to_left_3
Constructions :
– Intersect_3
– Make_theta_monotonic_3
– Theta_extremal_point_3

S0Mθ

Example : Compare_theta_3

Bentley-Ottmann on a sphere =⇒ sort event points (critical and
intersection points) according to (θ, z) value.

Our implementation :

– Need Theta_extremal_point_3 for critical points
– Need new Intersect_3 for intersection points

| x |>| y |

| x |>| y |

| x |<| y |

| x |<| y |

1

2

3

45

6

7

8

x

y

– Each event point is in a hquadrant
– We obtain tan θ and cot θ as AN of degree 2
=⇒ comparison of θ coordinates :

– compare hquadrant indices
– compare AN of degree 2

Needs of the Spherical BO

Predicates
Initialize vertical ordering
(Compare_z_to_left_3 ,Compare_z_at_theta_3)
Sort event points using cylindrical coordinates
(Compare_theta_z_3)
Detect/create intersection points
(Do_intersect_3 ,Intersect_3)
Insert circle starting (Compare_z_at_theta_3)

DS : Face, Vertex and halfedge types for HDS encoding
arrangement of circles

Gauss-Bonnet formula to compute approximate area of a
spherical face.

Illustration

Video

Improvements

Several level of filtering

Arithmetic Filtering
Computation on intervals : failure implies exact computation

Filtered constructions
CGAL::Lazy_kernel : a construction create one node in
the dag (vs set of operations) [Fabri,Pion06]

Geometric Filtering
Using predicates on Bbox

Static Filters [Melquiond,Pion05]
Design bounds for arithmetic operations in order to
guarantee double computations (specific to each
predicates).

We take advantage of these strategies to design filtered version
of kernels.

Conclusion and Future work

The SphericalKernel provides

a generic framework for algorithms involving spheres

Robust and efficient primitives and predicates

extension for manipulating circle arcs on a common sphere

Future work

Traits class for Arrangement_2 for arrangement of circle
on a sphere using the Spherical Kernel.

Efficient DS to encode arrangement of spheres.

An example

typedef CGAL::Quotient< CGAL::MP_Float> NT;
typedef CGAL::Cartesian<NT> Linear_k;
typedef CGAL::Algebraic_kernel_for_spheres_2_3<NT> Algebraic_k;
typedef CGAL::Spherical_kernel_3<Linear_k,Algebraic_k> SK;

int main(){
//construction of 3 spheres from their centers and squared radii
SK::Sphere_3 s1(SK::Point_3(0,0,0),2);
SK::Sphere_3 s2(SK::Point_3(0,1,0),1);
SK::Sphere_3 s3(SK::Point_3(1,0,0),3);

SK::Intersect_3 inter;
SK::Compare_xyz_3 cmp;
std::vector< CGAL::Object > intersections;
inter(s1,s2,s3,std::back_inserter(intersections));

std::pair<SK::Circular_arc_point_3,unsigned> p1,p2;
//unsigned integer indicates multiplicity of intersection point
if (intersections.size() >1){

//as intersection can return several types (points with multiplicity, circle,...),
//CGAL::Object and CGAL::assign are used to recover the expected type
if (CGAL::assign(p1,intersections[0]) && CGAL::assign(p2,intersections[1]))

std::cout << "Two different intersection points" << std::endl;
else

std::cout << "Error" << std::endl;
}
//intersection points are sorted lexicographically
CGAL_assertion(cmp(p1.first,p2.first)==CGAL::SMALLER);
return 0;

}

