
Curved Kernel

Monique Teillaud

Arcadia Workshop - June 2005

www.cgal.org

EGC paradigm: Exact (and Efficient) Geometric Computation

www.cgal.org

EGC paradigm: Exact (and Efficient) Geometric Computation

Basic Library

Algorithms and Data Structures

Kernel

Geometric objects
Geometric operations

core library

configurations, assertions, . . .

Visualization

File

I/O

NumberTypes

Generators

. . .

Support

Library

Arcadia Workshop - June 2005 1

The Kernel

2

In the kernel

Elementary geometric objects

Elementary computations on them

Primitives Predicates Constructions
2D, 3D, dD • comparison • intersection
• Point • Orientation • squared distance
• Vector • InSphere . . .
• Triangle . . .
• Iso rectangle
• Circle
. . .

Arcadia Workshop - June 2005 3

Curves in

• “nothing” in the kernel

• Packages of the basic library

• primitives for minimum enclosing ellipsis
• primitives for arrangement of conic arcs
• primitives for Apollonius diagram
• primitives for segment Voronoi diagram
• ...

need for a kernel for curves (and surfaces)

Arcadia Workshop - June 2005 4

kernel for curves and surfaces

An old dream...

[Devillers-Fronville-Mourrain-T. SoCG’00]
[T.] [Pion-T.] (ECG)

[Emiris-Kakargias-Pion-T.-Tsigaridas SoCG’04]
first design ideas,

prototype implementation for arrangements of arcs of ellipses

Design and implementation in progress

collaborations in ACS (and out of ACS)

Several goals:
• more functionality for CGAL
• common platform for comparing/combining (algebraic) methods

Arcadia Workshop - June 2005 5

Design overview

Constraints for a CGAL kernel:

• Interface must not be restricted to any particular implementation

• Interface must not be restricted to any particular application/algorithm

Arrangements of conic arcs: first example.

Arcadia Workshop - June 2005 6

Design overview

Objectives :

• ability to reuse the CGAL kernel for points, lines,. . .

• possibility to use other implementations

• possibility to use several algebraic implementations

Design overview

Objectives :

• ability to reuse the CGAL kernel for points, lines,. . .

• possibility to use other implementations

• possibility to use several algebraic implementations

[Hert-Hoffmann-Kettner-Pion-Seel WAE’01]

=⇒ Curved kernel parameterized by BasicKernel
and Curved kernel derives from BasicKernel

=⇒ Curved kernel parameterized by AlgebraicKernel

template < BasicKernel, AlgebraicKernel >
class Curved kernel

Arcadia Workshop - June 2005 7

Concepts

template < BasicKernel, AlgebraicKernel >
class Curved kernel

concept (C++ / STL) = set of requirements that a type must provide
in order to be usable by some template function or class.

AlgebraicKernel concept to be defined.

Arcadia Workshop - June 2005 8

Types

• Inherited from Basic kernel
number type RT, points. . .

• Inherited from Algebraic kernel
algebraic numbers, polynomials

• Defined by Curved kernel
Circle 2 ? Conic 2

Circular arc 2, Circular arc point 2
Conic arc 2, Conic arc point 2

Sphere 3,..., Quadric 3

Predicates and Constructions

Arcadia Workshop - June 2005 9

Geometric objects

Conic 2

equation = bivariate polynomial of degree 2 Polynomial 2 2 concept

coefficients of type RT

Conic arc point 2

= intersection point or endpoint

coordinates = solution of system 2 equations, degree 2, 2 variables

RootOfSys 2 2 concept

Arcadia Workshop - June 2005 10

Geometric primitives

Geometric predicates and constructions
call primitives of AlgebraicKernel on RootOfSys 2 2 and Polynomial 2 2

Geometric primitives

Geometric predicates and constructions
call primitives of AlgebraicKernel on RootOfSys 2 2 and Polynomial 2 2

Curved Kernel::Construct intersection 2(c1,c2)

template < class OutputIterator >
OutputIterator
operator()(ConicKernel::Conic 2 c1, ConicKernel::Conic 2 c2,

OutputIterator pts);

pts iterates on elements of type
std::pair<ConicKernel::Conic arc point 2, int>,
integer: multiplicity of the intersection point.

Geometric primitives

Geometric predicates and constructions
call primitives of AlgebraicKernel on RootOfSys 2 2 and Polynomial 2 2

Curved Kernel::Construct intersection 2(c1,c2)

template < class OutputIterator >
OutputIterator
operator()(ConicKernel::Conic 2 c1, ConicKernel::Conic 2 c2,

OutputIterator pts);

pts iterates on elements of type
std::pair<ConicKernel::Conic arc point 2, int>,
integer: multiplicity of the intersection point.

calls Curved Kernel::Get equation(c i)

and then Algebraic kernel::Solve on the equations.

Arcadia Workshop - June 2005 11

Algebraic primitives

Algebraic Kernel::Solve(p1,p2)

template < class OutputIterator >
OutputIterator
operator()(AlgebraicKernel::Polynomial 2 2 p1,

AlgebraicKernel::Polynomial 2 2 p2,
OutputIterator sols);

sols iterates on elements of type
std::pair<AlgebraicKernel::RootOfSys 2 2, int>,
integer: multiplicity of the solution of {p1, p2}.

Arcadia Workshop - June 2005 12

Algebraic kernel concepts

AlgebraicKernel must provide

• bivariate polynomials of degree 2 Polynomial 2 2 concept

• type for solutions of systems RootOfSys 2 2 concept

• algebraic numbers RootOf d concept

Algebraic kernel concepts

AlgebraicKernel must provide

• bivariate polynomials of degree 2 Polynomial 2 2 concept

• type for solutions of systems RootOfSys 2 2 concept

• algebraic numbers RootOf d concept

Concepts must be able to accept several models (= implementations)

• Athens

• MPI

• Core-based

• . . .

=⇒ high level operations only

Arcadia Workshop - June 2005 13

Algebraic numbers

RootOf d concepts

The concepts must support:

• approximate handling, e.g. C++ double

• approximate certified handling, e.g. CGAL::Interval nt

• exact number types, e.g.

– for degree 2: LEDA::real and CORE::Expr with sqrt()
– for degrees > 2:

LEDA::real with diamond operator
or CORE::Expr with CORE::rootOf

• polynomial representation
Root of [Emiris-Tsigaridas]
or specialized version Root of 2 CGAL implementation [Pion]
or ROOT [Karavelas]
. . .

Arcadia Workshop - June 2005 14

What is left for the Curved kernel?

Curved Kernel::Construct intersection 2(c1,c2)
CK looks only like a wrapper, translating geometric words into algebraic words

But:

• other predicates/constructions give more work to CK

• choice of representation of geometric objects

• caching / storing history of construction

• geometric filtering (bounding boxes, bounding polygons...)

• . . .

Arcadia Workshop - June 2005 15

Conclusion

collaborative work in progress...

• interfaces, specifications

• implementations

• benchmarking

• ...

Arcadia Workshop - June 2005 16

