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i el Overview
Brief history of crystals and their geometry
Crystalline material structure types

The space groups — crystalline symmetries

Orbifolds — geometry and topology of the space groups
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Pattern enumeration within orbifolds

— Delaney Dress combinatorial tiling theory :
— RCSR and EPINET databases E

. — ... and the current frontier e

b o — ANU-based collaborations: Stephen Hyde, Stuart Ramsden, Olaf Delgado-
2.0 Friedrichs, Gerd Schroeder-Turk, Myfanwy Evans, Toen Castle, Lilliana DiCampo,

oy Yoty Jacob Kirkensgaard, Martin Cramer-Pederson
oo o — Other input from: Michael O’Keeffe, Shicheng Wang
— Mathematical background: Coxeter, Thurston, Conway, Dress, Sunada
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Images sourced using Google

...crystals are naturally occurring geometric forms

Note the
dodecahedral and
icosahedral forms are
not truly regular

Many chemically pure solids are crystals or made up of small crystals: e.g. salts, metals, minerals.
X-ray diffraction allows us to deduce the locations of atoms in the crystal. (Laue, Braggs (1912)).
Knowing the atomic arrangements in solids and molecules enables us to understand how

structure influences properties and then use this to engineer new materials.
e.g. to predict thermal, electrical, magnetic properties of crystals.
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how did scientists deduce the internal structure?

Haly’s theory of crystal habit (1784)
. |
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Halily showed how regular stacking of “integral molecules” could explain
the observed law of the constancy of interfacial angles [Stensen (1660s), de I'lsle (1770s)]
and led him to derive the law of rational indices.
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International Union of Crystallography definition

A material is a crystal if it has an essentially sharp diffraction pattern.

“essentially sharp” means isolated local maxima of intensity

Note: this definition is made to include quasicrystal diffraction patterns.
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Bragg’s law: Rk s Rl e
diffraction peaks occur at angles Each spot above is due to a different
related to the wavelength and incident wavelength and lattice plane.
lattice plane spacing The locations and intensities of the spots give the
9 of the Fourier series coefficients of the
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electron density in the crystal, o(r).
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... but the Fourier coefficients are complex numbers,

diffraction by Silicon from the Diamond light source, UK.

so this is not quite enough information to invert the FT
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Solving a crystal structure, i.e. finding the electron density po(r), therefore
requires more than just the intensities of the peaks.

Typically, simulated diffraction patterns from hypothesized models are
tested against the observed pattern.

Mathematical challenge:

What crystalline structures are possible?
(within some physically meaningful class)

We assume structures that have genuine translational symmetry.
i.e. they have infinite extent, no defects, no quasicrystals.

What are some physically/ chemically meaningful classes?
1. Lattices (point patterns generated by translations)
2. Symmetric packings of spherical or ellipsoidal grains
3. Symmetric arrangements of coordination polyhedra, other extended figures
4. Periodic geometric graphs with high symmetry
5. Periodic minimal surfaces
6. Decorations of periodic minimal surfaces



sphere packing to > simple covalent bonding structure

Close-packed hexagonal Face-centred cubic Body-centred cubic
structure CPH structure FCC structure BCC

Table Salt
NaCl

diamond

Zinc, magnesium, Aluminium, copper, Chromium, tungsten
cadmium silver iron e sp™QM hybrid covalent bond
increasingly complex framework materials
>

Inclined heb, DOC 3/3/3/3
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zeolite LTA metal organic frameworks multicomponent entangled MOFs



P surface Gyroid D surface

——rmopraipiasie—  Highly symmetric, triply-periodic

) ” ..
A h waertte minimal surfaces form e.g. as
i\ -;)j self-assembled bilayers of lipids
§ called see e.g.

Hydrophobic

ST Hyde et al “The Language of Shape” (1996)

On the colour of wing scales in butterflies: iridescence
and preferred orientation of single gyroid photonic
crystals RW Corkery, EC Tyrode Interface Focus (2017)

The multiple faces of self-assembled lipidic systems. 'L
G Tresset PMC Biophys (2009)




Mathematical challenge: What crystalline structures are possible
assuming structures that have translational symmetry?

Lattices, Point groups, Space groups (in R3)

lsometries of R® are translation, rotation about a fixed line, screw rotation,
inversion in a point, roto-inversion, reflection in a mirror plane, glide translation.




Mathematical challenge: What crystalline structures are possible
assuming structures that have genuine translational symmetry?
Lattices, Point groups, Space groups (in R3)

lsometries of R® are translation, rotation about a fixed line, screw rotation,
inversion in a point, roto-inversion, reflection in a mirror plane, glide translation.

Lattice: given three linearly independent vectors in R3, a,b,c,
a lattice is the set of all points ha + kb + Ic where h,k,/ are integers.
There are 14 different symmetry classes of lattice. (Bravais, 1848)

N 2 parameters
. 1 parameter
Cubic FCC
ﬁ @ H 2 parameters

Rhombohedral systems

Monoclinic Triclinic

4 parameters 6 parameters

‘L

Orthorhombic systems 3 parameters



Combinatorial topology of lattices (our first foray into topology)

VwCWwé

Cube Hexagonal Truncated rhombo-hexagonal rhombic
prism Icosahedron dodecahedron dodecahedron

There are five combinatorially different ways to cut open the 3-torus = R3/ L.
These are found by constructing Voronoi domains of lattice point patterns
called “Wigner-Seitz cells” by physicists.

(Recall there are two combinatorially different ways to cut open the 2-torus)
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http://www.danielcelton.com/wp-content/uploads/2013/07/special_space_filling_polyhedra.png




What crystalline structures are possible
assuming structures that have genuine translational symmetry? | See also work by

_ . Klee, Eon, in the
Periodic nets (Sunada’s Topological Crystallography) crystallography

/T\ X is a periodic graph literature
| guotient by _
translations, L Q=X/L

Given a finite quotient graph what periodic structures can cover it?

Sunada’s method via standard covering space techniques:
1. Let b = the first Betti number of the graph Q (also called the “genus”)
2. There is a unique maximal abelian covering graph, X, sitting in R®.
3. Any lower-dimensional periodic graph over Q must also be covered by X_,
4. This implies a simple condition relating subgroups of H,(Q) (the first
homology group) to the existence of periodic covers of Q.



Periodic nets (Sunada’s Topological Crystallography)

? Get geometry
via “canonical

placements”

project down 111 ay
N NN N NN
/\/\/\/\/\/\ Project down other non-zero
integer axes to get infinitely many
\/\/\/\/\/\/ possible 2d crystals...
\/\/\/\/\/\/ All these have crossed edges




Periodic nets

Crystals ThatNature Might
MlS S Cre atlng 2008 — Notices of the AMS

Toshikazu Sunada The “K4 crystal”
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In fact known to Laves
since 1933!

Has been rediscovered
and renamed many
times...

See Hyde, O’Keeffe,
Proserpio (2008)
Angew. Chem. Int. Ed.
response to above
headline



Periodic nets (Delgado-Friedrich’s SyStRe key)

Computational challenge: How can we determine when two quotient graph
representations for a periodic net encode the same structure?

simple cubic:

Olaf Delgado-Friedrich’s method: vl, v2 + (tx,ty,tz)

1. Start with a labelled quotient graph. 1 1 100
i.e. a single rep for each vertex and edge 1 1 010
2. Transform to a “good” form 1 1 00 1

vertex reps should be connected,
edge reps should include unit translations

3. Construct the barycentric placement with respect to crystallographic coordinates.
i.e. each vertex is at the centre-of-mass of its edge adjacent neighbours.

4. Use exact rational arithmetic to find all affine automorphisms of the net.

5. Deduce the space group symmetry of the net.

6. Construct a canonical form for the labelled quotient graph.

see ODF and M O’Keeffe (2003) Acta Cryst A.
“Identification of and symmetry computation for periodic nets”

Caveat: procedure only works when nets are “neighbour-unique”,
i.e. all vertices have unique coordinates in their barycentric placement.



Periodic nets - The Regular Nets

What are the
highest-symmetry
periodic nets?

Vertex figures are
regular polygons or
polyhedra

All vertices related by
symmetries of the net

Vertex site symmetry*
is a symmetry of the net

see ODF, O’Keeffe, Yaghi
(2003) Acta Cryst A.

http://rcsr.net/

bcu bcu-a = pcb fcu fcu-a = ubt

Fig. 5 The regular and quasiregular (fcu) nets in their normal and augiiiciited conformations.

* only orientation preserving isometries face-centred cubic is quasi-regular



Mathematical challenge: What crystalline structures are possible
assuming structures that have genuine translational symmetry?

Lattices, Point groups, Space groups (in R3)

lsometries of R® are translation, rotation about a fixed line, screw rotation,
inversion in a point, roto-inversion, reflection in a mirror plane, glide translation.

Lattice: given three linearly independent vectors in R3, a,b,c,
a lattice is the set of all points ha + kb + Ic where h,k,| are integers.
There are 14 different symmetry classes of lattice. (Bravais, 1848)

Point group: A symmetry group that fixes at least one point.
There are 32 point groups compatible with translational symmetry (Hessel, 1830)
Rotations must be of order 2,3,4 or 6.
This result is derived by considering the Wigner-Seitz cells because
they can be shown to have the full symmetry of the lattice.

Space group: A discrete group of isometries of R3 that contains a lattice subgroup.
There are 230 space groups (Federov, Schoenflies, 1890-91)

How can we best understand the space groups?



T International Tables for Crystallography

STET http://it.iucr.org (definitive but paywalled)
— http://www.cryst.ehu.es (Bilbao crystallographic server, free)

Standard classification is by lattice type, centering, point group symmetry
e.g. P432 has a cubic lattice, primitive centering (no extra translations),

point group is 432 (i.e. the octahedral group)

International tables list the
location of the origin, generators for the lattice
order of the group modulo lattice translations
one rep. for each symmetry operation (wrt crystallographic coordinates)
Wyckoff “special positions” (i.e. fixed points, lines, planes)
Asymmetric unit (i.e. a fundamental domain for the group)

The tables are “data heavy”, not at all intuitive or easy to visualize
without long term experience and memorization.

enter a topological perspective on
geometric groups (Thurston, 1970s, after Satake, 1956)



2d topology warm-up

Symmetry group is G, translation lattice subgroup is L = 72
We're going to construct the quotient spaces: R?/L and R?/G

image credit: Martin von Gagern - http://www.morenaments.de/gallery/exampleDiagrams
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RZ/L
the translational cell
glues up into a torus

R?/G
the asymmetric domain

glues up into a sphere
with four cone points.



There are 17 crystallographic plane groups, “wallpaper groups”
identified up to isomorphism by their quotient spaces R?/G

Class (Hyde, Ramsden, R. 2014)
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Orbifold (Conway 1992)
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Crystallographic
symbol (Int. Tables Cryst)

p4m
p3ml



3d periodic space

Start with a simple (primitive) cubic translation lattice group L
Construct the quotient space R3/L

the translational cell is a cube.
glue up opposite faces into a
3-torus.
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image credits: Jeff Weeks http://geometrygames.org/CurvedSpaces/index.html
http://www.geom.uiuc.edu/video/sos/materials/overview/




The space group P432

is the group of orientation-preserving symmetries of the simple cubic lattice.
Let’s construct the quotient space R3/ (P432).

4-fold axes:
Wykoff e, f




The space group P432

is the group of orientation-preserving symmetries of the simple cubic lattice.
Let’s construct the quotient space R3/ (P432).

4-fold axes:
Wykoff e, f

3-fold axes:
Wykoff g




The space group P432

is the group of orientation-preserving symmetries of the simple cubic lattice.
Let’s construct the quotient space R3/ (P432).

4-fold axes:
Wyckoff e,

3-fold axes:
Wyckoff g

2-fold axes:
Wyckoff h,i,




The space group P432

is the group of orientation-preserving symmetries of the simple cubic lattice.
Let’s construct the quotient space R3/ (P432).

The fundamental
domain for the

group is 1/24t 4-fold axes:

of the cube Wyckoff e,
3-fold axes:
Wyckoff g
2-fold axes:

Wyckoff h,i,




The space group P432

is the group of orientation-preserving symmetries of the simple cubic lattice.
Let’s construct the quotient space R3/ (P432)

glue up 3 pairs of faces to get a
3-sphere with singular lines

b

g (3) f (4)
j(2)

i(2) C

h (2)
e (4) d



What crystalline structures are possible
assuming structures that have genuine translational symmetry?

Pattern Enumeration in 3-orbifolds

Space group 3-orbifolds are compact 3-manifolds with singular points, lines, boundaries.

Mathematicians know that 194 of the 230 space groups have orbifolds that are constructed
as fibred spaces over 2-orbifolds. The remaining 36 are the cubic space groups.

Dunbar began tabulating 3-orbifolds in “Geometric Orbifolds” (1988) Rev. Mat.
Johnson at Oak Ridge NL started developing “Crystallographic Topology”
Online “Orbifold Atlas” from late 1990s has all cubic space group orbifolds.
but only a UK mirror survives at http://www.ccpl14.ac.uk/

Conway and Thurston used the orbifold concept to devise an orbifold notation
for the spaces groups BUT it is not as user-friendly as the 2-orbfiold notation.

see Conway et al “On Three-dimensional Space Groups” Beitrage. Alg. Geom. (2001)
and Conway, Burgiel, Goodman-Strauss, The Symmetries of Things, AK Peters, 2008.

Enumeration of tilings of space via Delaney symbols (special triangulations of orbifolds)
See e.g. ODF, “Data structures and algorithms for tilings” Theo Comp Sci (2003)

... and all the new work coming out of algorithmic 3-manifold topology.



What crystalline structures are possible
assuming structures that have genuine translational symmetry?

My current strategy is to focus on orientation-preserving space groups
(every space group has an index-2 subgroup that is orientation-preserving)

:

cut open again

(3) (4)

(2 otk
(4) g

a 2-sphere in a 3-sphere:
becomes a 2-orbifold (2223)
inside a 3-orbifold (P432)




there are extra (mirror) symmetries, but these don’t preserve an orientation of space



image credit: Myf Evans
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PE————
as a minimal surface there are even further symmetries, but these swap sides of the surface




Periodic surfaces are
covered by the

hyperbolic plane

See http://epinet.anu.edu.au

“The monster paper”
Ramsden, Robins, Hyde
Acta Cryst A (2009)




Wrapping hyperbolic tilings
onto the periodic surfaces
gives us 3-periodic nets.

Tilings enumerated
using 2D Hyperbolic
Delaney symbols

Nets identified using
SyStRe

image credit: Stuart Ramsden sqc12818

EDCA473

sqc9141



Metal-organic framework synthesis

Fang, Chen, Yang, Hu, Liu. (2012)
Inorganic Chemistry Communications 22:101
MOF synthesis of sqc1121

Zhou, Li, Liu, Li. (2012)
J. Am. Chem. Soc. 134:67

“permanent porosity and
CO, capture ability”
sqcl13520



Tilings by ribbons can project to multi-component catenated nets
Evans, Hyde, Robins (2013) Acta Cryst A 69:241




... and generalised 3-periodic weavings

Evans, Hyde, Robins (2013) Acta Cryst A 69:262




... with curious physical properties

Evans, Hyde (2011) “From three-dimensional weavings to swollen corneocytes”
J. R. Soc. Interface 8:1274

Physics of Pruney Fingers Revealed
BY LISA GROSSMAN
http://www.wired.com/wiredscience/2011/03/pruney-finger-physics/
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Brief history of crystals and their geometry
Crystalline material structure types

1

2

3. The space groups — crystalline symmetries

4. Orbifolds — geometry and topology of the space groups
5

Pattern enumeration within orbifolds

— Delaney Dress combinatorial tiling theory ;

— RCSR and EPINET databases 4 3
— ... and the current frontier

— Characterise the periodic nets that are carried by 3D tilings and/
or 2D surface tilings.

— Classify and distinguish different modes of catenation in multi-
component nets and weavings. (Links and knotted graphs in R3/L)

— Spread the joy of orbifolds.
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Thank-you

Entangled labyrinths,
Minimal surfaces
by Julie Brooke, ANU




