Systolic inequalities, discrete or not

Arnaud de Mesmay Gipsa-lab, CNRS, Université Grenoble Alpes

Based on joint work with Éric Colin de Verdière and Alfredo Hubard.

We deal with *connected*, *compact* and *orientable* surfaces of *genus* g without boundary.

Discrete metric

Triangulation G. Length of a curve $|\gamma|_G$: Number of edges.

Riemannian metric

Scalar product m on the tangent space. Riemannian length $|\gamma|_m$.

We study the length of topologically interesting curves for discrete and continuous metrics.

Why should we care ?

- **Topological graph theory:** If the shortest non-contractible cycle is **long**, the surface is **planar-like**.
 - \Rightarrow Uniqueness of embeddings, colourability, spanning trees.
- Riemannian geometry:

René Thom: *"Mais c'est fondamental !"*. Links with isoperimetry, topological dimension theory, number theory.

- Algorithms for surface-embedded graphs: Cookie-cutter algorithm for surface-embedded graphs: Decompose the surface, solve the planar case, recover the solution.
- More practical sides: *texture mapping*, *parameterization*, *meshing* ...

Part 1: Length of shortest curves

On shortest noncontractible curves

What is the length of the red curve?

On shortest noncontractible curves

What is the length of the red curve?

It should have length $O(\sqrt{A})$ or $O(\sqrt{n})$, but what is the dependency on g ?

Discrete Setting: Topological graph theory

The *edgewidth* of a triangulated surface is the length of the shortest *noncontractible* cycle.

Theorem (Hutchinson '88)

The edgewidth of a triangulated surface with n triangles of genus g is $O(\sqrt{n/g} \log g)$.

- Hutchinson conjectured that the right bound is $\Theta(\sqrt{n/g})$.
- Disproved by Przytycka and Przytycki '90-97 who achieved $\Omega(\sqrt{n/g}\sqrt{\log g})$, and conjectured $\Theta(\sqrt{n/g}\log g)$.
- How about non-separating, or null-homologous non-contractible cycles ?

The *systole* of a Riemannian surface is the length of the shortest *noncontractible* cycle.

Theorem (Gromov '83, Katz and Sabourau '04)

The systole of a Riemannian surface of genus g and area A is $O(\sqrt{A/g} \log g)$.

The *systole* of a Riemannian surface is the length of the shortest *noncontractible* cycle.

Theorem (Gromov '83, Katz and Sabourau '04)

The systole of a Riemannian surface of genus g and area A is $O(\sqrt{A/g}\log g)$.

• Known variants for non-separating cycles and null-homologous non-contractible cycles [Sabourau '08].

The *systole* of a Riemannian surface is the length of the shortest *noncontractible* cycle.

Theorem (Gromov '83, Katz and Sabourau '04)

The systole of a Riemannian surface of genus g and area A is $O(\sqrt{A/g}\log g)$.

- Known variants for non-separating cycles and null-homologous non-contractible cycles [Sabourau '08].
- Buser and Sarnak '94 used *arithmetic surfaces* achieving the lower bound $\Omega(\sqrt{A/g} \log g)$.

The *systole* of a Riemannian surface is the length of the shortest *noncontractible* cycle.

Theorem (Gromov '83, Katz and Sabourau '04)

The systole of a Riemannian surface of genus g and area A is $O(\sqrt{A/g} \log g)$.

- Known variants for non-separating cycles and null-homologous non-contractible cycles [Sabourau '08].
- Buser and Sarnak '94 used *arithmetic surfaces* achieving the lower bound $\Omega(\sqrt{A/g} \log g)$.
- Larry Guth: "Arithmetic hyperbolic surfaces are remarkably hard to picture."

A two way street: From discrete to continuous

How to switch from a discrete to a continuous metric ?

Proof.

- Glue equilateral triangles of area 1 on the triangles .
- Smooth the metric.

• In the worst case the lengths double.

Theorem (Colin de Verdière, Hubard, de Mesmay '14)

Let (S, G) be a triangulated surface of genus g, with n triangles. There exists a Riemannian metric m on S with area n such that for every closed curve γ in (S, m) there exists a homotopic closed curve γ' on (S, G) with

 $|\gamma'|_{{\sf G}} \leq (1+\delta)\sqrt[4]{3} \; |\gamma|_m$ for some arbitrarily small $\delta.$

Corollary

Let (S, G) be a triangulated surface with genus g and n triangles.

- Some non-contractible cycle has length $O(\sqrt{n/g}\log g)$.
- Some non-separating cycle has length $O(\sqrt{n/g} \log g)$.
- Some null-homologous non-contractible cycle has length $O(\sqrt{n/g} \log g)$.
 - (1) shows that Gromov ⇒ Hutchinson and improves the best known constant.
 - (2) and (3) are new.

How do we switch from a continuous to a discrete metric ?

Proof.

How do we switch from a continuous to a discrete metric ?

Proof.

Take a maximal set of balls of radius ε and perturb them a little.

How do we switch from a continuous to a discrete metric ?

Proof.

Take a maximal set of balls of radius ε and perturb them a little.

By [Dyer, Zhang and Möller '08], the Delaunay graph of the centers is a triangulation for ε small enough.

How do we switch from a continuous to a discrete metric ?

Proof.

Take a maximal set of balls of radius ε and perturb them a little.

 \Rightarrow Triangulation T

By [Dyer, Zhang and Möller '08], the Delaunay graph of the centers is a triangulation for ε small enough.

How do we switch from a continuous to a discrete metric ?

Proof.

Take a maximal set of balls of radius ε and perturb them a little.

 \Rightarrow Triangulation T

By [Dyer, Zhang and Möller '08], the Delaunay graph of the centers is a triangulation for ε small enough.

 $|\gamma|_m \leq 4\varepsilon |\gamma|_G.$

How do we switch from a continuous to a discrete metric ?

Proof.

Take a maximal set of balls of radius ε and perturb them a little.

 \Rightarrow Triangulation T

By [Dyer, Zhang and Möller '08], the Delaunay graph of the centers is a triangulation for ε small enough.

 $|\gamma|_m \leq 4\varepsilon |\gamma|_G.$

Each ball has radius $\pi \varepsilon^2 + o(\varepsilon^2)$, thus $\varepsilon = O(\sqrt{A/n})$.

Theorem (Colin de Verdière, Hubard, de Mesmay '14)

Let (S, m) be a Riemannian surface of genus g and area A. There exists a triangulated graph G embedded on S with n triangles, such that every closed curve γ in (S, G) satisfies

 $|\gamma|_m \leq (1+\delta) \sqrt{rac{32}{\pi}} \sqrt{A/n} \; |\gamma|_{G}$ for some arbitrarily small $\delta.$

- This shows that Hutchinson \Rightarrow Gromov.
- Proof of the conjecture of Przytycka and Przytycki:

Corollary

There exist arbitrarily large g and n such that the following holds: There exists a triangulated combinatorial surface of genus g, with n triangles, of edgewidth at least $\frac{1-\delta}{6}\sqrt{n/g}\log g$ for arbitrarily small δ . Part 2: Pants decompositions

Pants decompositions

 A pants decomposition of a triangulated or Riemannian surface S is a family of cycles Γ such that cutting S along Γ gives pairs of pants, e.g., spheres with three holes.

- A pants decomposition has 3g 3 curves.
- Complexity of computing a shortest pants decomposition on a triangulated surface: in NP, not known to be NP-hard.

An algorithm to compute pants decompositions:

- Pick a shortest non-contractible cycle.
- 2 Cut along it.
- 3 Glue a disk on the new boundaries.
- Repeat 3g 3 times.

An algorithm to compute pants decompositions:

- Pick a shortest non-contractible cycle.
- 2 Cut along it.
- 3 Glue a disk on the new boundaries.
- Repeat 3g 3 times.

An algorithm to compute pants decompositions:

- Pick a shortest non-contractible cycle.
- 2 Cut along it.
- 3 Glue a disk on the new boundaries.
- Repeat 3g 3 times.

An algorithm to compute pants decompositions:

- Pick a shortest non-contractible cycle.
- 2 Cut along it.
- I Glue a disk on the new boundaries.
- Repeat 3g 3 times.

We obtain a pants decomposition of length

$$(3g-3)O(\sqrt{n/g}\log g) = O(\sqrt{ng}\log g).$$

An algorithm to compute pants decompositions:

- Pick a shortest non-contractible cycle.
- 2 Cut along it.
- Solue a disk on the new boundaries. This increases the area!
- Repeat 3g 3 times.

We obtain a pants decomposition of length

 $\frac{(3g-3)O(\sqrt{n/g}\log g) = O(\sqrt{ng}\log g)}{\text{Doing the calculations correctly gives a subexponential bound.}}$

Denote by *PantsDec* the shortest pants decomposition of a triangulated surface.

- Best previous bound: ℓ(PantsDec) = O(gn). [Colin de Verdière and Lazarus '07]
- New result: $\ell(PantsDec) = O(g^{3/2}\sqrt{n})$. [Colin de Verdière, Hubard and de Mesmay '14]
- Moreover, the proof is algorithmic.
- We "combinatorialize" a continuous construction of Buser.
 - Several curves may run along the same edge:

Denote by *PantsDec* the shortest pants decomposition of a triangulated surface.

- Best previous bound: ℓ(PantsDec) = O(gn). [Colin de Verdière and Lazarus '07]
- New result: $\ell(PantsDec) = O(g^{3/2}\sqrt{n})$. [Colin de Verdière, Hubard and de Mesmay '14]
- Moreover, the proof is algorithmic.
- We "combinatorialize" a continuous construction of Buser.
 - Several curves may run along the same edge:

First idea

First idea

First idea

First idea

If the torus is fat, this is too long.

First idea Second idea

First idea Second idea

If the torus is thin, this is too long.

We take a trade-off between both approaches: As soon as the length of the curves with the first idea exceeds some bound, we switch to the second one.

Lower bounds

Arithmetic surfaces (Buser, Sarnak), once discretized, yield systoles of size Ω(√n/g log g).
 → ℓ(PantsDec) = Ω(√ng log g).

Arithmetic surfaces (Buser, Sarnak), once discretized, yield systoles of size Ω(√n/g log g).
 → ℓ(PantsDec) = Ω(√ng log g).

Random surfaces: Sample uniformly at random among the triangulated surfaces with *n* triangles.

Theorem (Guth, Parlier and Young '11)

If (S, G) is a random triangulated surface with n triangles, and thus O(n) edges, the length of the shortest pants decomposition of (S, G) is $\Omega(n^{7/6-\delta})$ w.h.p. for arbitrarily small δ

We extend this lower bound to other decompositions than pants decompositions: cut-graphs with fixed combinatorial structure (skipped).

Part 3: A glimpse into arithmetic surfaces

"Arithmetic hyperbolic surfaces are remarkably hard to picture"

- The embedded graphs built in Part 1 are not very natural.
- Maybe arithmetic surfaces yield better lower bounds for Part 2.
- They provide lower bounds on the systoles of covers of small genus surfaces.

Theorem (Buser-Sarnak '94)

There exists a hyperbolic surface S and an infinite family of covers S_i of S such that

$$sys(S_i) = \Omega(\log g(S_i)).$$

Hyperbolic surfaces have area $4\pi(g-1)$.

The Buser-Sarnak lower bound

 A hyperbolic surface is a quotient of the hyperbolic plane H² by a subgroup Γ of its isometry group *lsom*⁺(H²).

• We view \mathbb{H}^2 in the upper half-plane model, then $lsom^+(\mathbb{H}^2) \equiv PSL_2(\mathbb{R})$, which acts by homographies:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}.$$

• We pick two integers *a*, *b* and look at the subgroup

$$\Gamma = \left\{ \begin{pmatrix} X_0 + X_1 \sqrt{a} & X_2 + X_3 \sqrt{a} \\ b(X_2 - X_3 \sqrt{a}) & X_0 - X_1 \sqrt{a} \end{pmatrix} \mid \begin{array}{c} X_i \in \mathbb{Z} \\ X_0^2 - aX_1^2 - bX_2^2 + abX_3^2 = 1 \end{array} \right\}.$$

• as well as its *congruence subgroups* for a prime *p*.

$$\Gamma(p) = \left\{ \begin{pmatrix} X_0 + X_1 \sqrt{a} & X_2 + X_3 \sqrt{a} \\ b(X_2 - X_3 \sqrt{a}) & X_0 - X_1 \sqrt{a} \end{pmatrix} \mid \begin{array}{c} X_i \in \mathbb{Z} \\ X_0^2 - aX_1^2 - bX_2^2 + abX_3^2 = 1 \\ X_0 \equiv 1[p]; X_1, X_2, X_3 \equiv 0[p] \end{array} \right\}.$$

Claim: For well chosen a and b (eg a = 2 and b = 3), Γ/H² and Γ(p)/H² are compact surfaces S and S(p).

Genus and systole

• Claim: $g(S(p)) = O(p^3)$.

• Indeed, $g(S(p)) = O([\Gamma, \Gamma(p)]g(S))$, where $[\Gamma, \Gamma(p)]$ is the index of $\Gamma(p)$ in Γ , i.e., the order of

$$\Gamma/\Gamma(p) = \left\{ \begin{pmatrix} X_0 + X_1\sqrt{a} & X_2 + X_3\sqrt{a} \\ b(X_2 - X_3\sqrt{a}) & X_0 - X_1\sqrt{a} \end{pmatrix} \mid \begin{array}{c} X_i \in \mathbb{Z}_p \\ X_0^2 - aX_1^2 - bX_2^2 + abX_3^2 \equiv 1[p] \end{array} \right\}.$$

$$X_0^2 \equiv \mathbb{1}[p^2] \Rightarrow X_0 \equiv \pm \mathbb{1}[p^2].$$

- Furthermore, $X_0 \neq \pm 1$, thus $|X_0| = \Omega(p^2)$, and $Trace(g) = 2X_0 = \Omega(p^2)$.
- The *translation length* of g is controlled by its trace:
 l(g) = 2argch(1/2Trace(g)), and thus sys(S(p)) = Ω(log p).

Zooming out

- Starting from a well-chosen (i.e., arithmetic) surface *S*, we can find covers *S*(*p*) using congruences for which the systole grows logarithmically.
- To get discrete systolic lower bounds, it is enough to triangulate the first surface *S* and lift the triangulation.

Can we start with a surface that is already naturally triangulated, for example with triangles of angles $\pi/2, \pi/3$ and $\pi/7$?

Hurwitz surfaces

Yes [Katz, Schaps, Vishne '07] but this requires taking the X_i in ℤ[cos 2π/7] instead of just ℤ.
 → The number theory is more involved (orders in quaternion)

 \rightarrow The number theory is more involved (orders in quaternior algebras).

- *Hurwitz surfaces* are hyperbolic surfaces with the maximal number of symmetries (automorphisms). They are obtained from (2, 3, 7) triangles.
 - \rightarrow Surfaces with maximal symmetry have big systoles.

The Bolza surface

• The Bolza surface is the genus 2 surface obtained from an equilateral octagon.

- Its fundamental group is a subgroup of the (2, 3, 8) triangle group.
- [Katz, Katz, Schein, Vishne '16] show that it is an arithmetic surface (using ℤ[√2]) and use congruence subgroups to compute covers with the systole growing logarithmically.

Appendix: Discrete systolic inequalities in higher dimensions

• (M, T): triangulated *d*-manifold, with $f_d(T)$ facets and $f_0(T)$ vertices.

• Supremum of
$$\frac{\text{sys}^d}{f_d}$$
 or $\frac{\text{sys}^d}{f_0}$?

Theorem (Gromov)

For every *d*, there is a constant C_d such that, for any Riemannian metric on any essential compact *d*-manifold *M* without boundary, there exists a non-contractible closed curve of length at most $C_d vol(m)^{1/d}$.

- We follow the same approach as for surfaces:
 - Endow the metric of a regular simplex on every simplex.
 - Smooth the metric.
 - Push curves inductively to the 1-dimensional skeleton.

Appendix: Discrete systolic inequalities in higher dimensions

- (M, T): triangulated *d*-manifold, with $f_d(T)$ facets and $f_0(T)$ vertices.
- Supremum of $\frac{\text{sys}^d}{f_d}$ or $\frac{\text{sys}^d}{f_0}$?

Theorem (Gromov)

For every *d*, there is a constant C_d such that, for any **piecewise** Riemannian metric on any **essential** compact *d*-manifold *M* without boundary, there exists a non-contractible closed curve of length at most $C_d vol(m)^{1/d}$.

- We follow the same approach as for surfaces:
 - Endow the metric of a regular simplex on every simplex.
 - Smooth the metric. Non-smoothable triangulations [Kervaire '60]
 - Push curves inductively to the 1-dimensional skeleton.

• Corollary: $\frac{\text{sys}^d}{f_d}$ is upper bounded by a constant for essential triangulated manifolds.

In the other direction, starting from a Riemannian manifold:

- Take an ε -separated net and its Delaunay complex.
- Hope that it will be a triangulation

In the other direction, starting from a Riemannian manifold:

- Take an ε -separated net and its Delaunay complex.
- *Perturb* this net using the scheme of [Boissonat, Dyer, Ghosh '14]
- Hope that it will be a triangulation The Delaunay complex is a triangulation.

This allows us to translate discrete systolic inequalities w.r.t. the number of vertices to continuous systolic inequalities.

But are there any?

Appendix: Discrete systolic inequalities in higher dimensions

In the other direction, starting from a Riemannian manifold:

- Take an ε -separated net and its Delaunay complex.
- *Perturb* this net using the scheme of [Boissonat, Dyer, Ghosh '14]
- Hope that it will be a triangulation The Delaunay complex is a triangulation.

This allows us to translate discrete systolic inequalities w.r.t. the number of vertices to continuous systolic inequalities.

But are there any?

Question: Are there manifolds M of dimension $d \ge 3$ for which there exists a constant c_M such that, for every triangulation (M, T), there is a non-contractible closed curve in the 1-skeleton of T of length at most $c_M f_0(T)^{1/d}$?