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A primer on surfaces

We deal with connected , compact and orientable surfaces of
genus g without boundary.

Discrete metric
Triangulation G .
Length of a curve |γ|G :
Number of edges.

Riemannian metric
Scalar product m on the
tangent space.
Riemannian length |γ|m.
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Systoles and pants decompositions

We study the length of topologically interesting curves for discrete
and continuous metrics.

Non-contractible curves Pants decompositions
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Motivations

Why should we care ?

Topological graph theory: If the shortest non-contractible
cycle is long , the surface is planar-like.
⇒ Uniqueness of embeddings, colourability, spanning trees.
Riemannian geometry:
René Thom: “Mais c’est fondamental !” .
Links with isoperimetry, topological dimension theory, number
theory.
Algorithms for surface-embedded graphs: Cookie-cutter
algorithm for surface-embedded graphs: Decompose the
surface, solve the planar case, recover the solution.
More practical sides: texture mapping , parameterization,
meshing . . .
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Part 1:
Length of shortest curves
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On shortest noncontractible curves

Discrete setting Continuous setting

What is the length of the red curve?

Intuition

It should have length O(
√
A) or O(

√
n), but what is the

dependency on g ?
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Discrete Setting: Topological graph theory

The edgewidth of a triangulated surface is the length of the
shortest noncontractible cycle.

Theorem (Hutchinson ’88)

The edgewidth of a triangulated surface with n triangles of genus g
is O(

√
n/g log g).

Hutchinson conjectured that the right bound is Θ(
√

n/g).
Disproved by Przytycka and Przytycki ’90-97 who achieved
Ω(
√

n/g
√

log g), and conjectured Θ(
√

n/g log g).
How about non-separating, or null-homologous
non-contractible cycles ?
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Continuous Setting: Systolic Geometry

The systole of a Riemannian surface is the length of the shortest
noncontractible cycle.

Theorem (Gromov ’83, Katz and Sabourau ’04)

The systole of a Riemannian surface of genus g and area A is
O(
√

A/g log g).

Known variants for non-separating cycles and null-homologous
non-contractible cycles [Sabourau ’08].
Buser and Sarnak ’94 used arithmetic surfaces achieving the
lower bound Ω(

√
A/g log g).

Larry Guth: “Arithmetic hyperbolic surfaces are remarkably
hard to picture.”
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A two way street: From discrete to continuous

How to switch from a discrete to a continuous metric ?

Proof.
Glue equilateral triangles of area 1 on the triangles .
Smooth the metric.

In the worst case the lengths double.

Theorem (Colin de Verdière, Hubard, de Mesmay ’14)

Let (S ,G ) be a triangulated surface of genus g, with n triangles.
There exists a Riemannian metric m on S with area n such that
for every closed curve γ in (S ,m) there exists a homotopic closed
curve γ′ on (S ,G ) with

|γ′|G ≤ (1 + δ)
4
√
3 |γ|m for some arbitrarily small δ.
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Corollaries

Corollary

Let (S ,G ) be a triangulated surface with genus g and n triangles.
1 Some non-contractible cycle has length O(

√
n/g log g).

2 Some non-separating cycle has length O(
√

n/g log g).
3 Some null-homologous non-contractible cycle has length

O(
√

n/g log g).

(1) shows that Gromov ⇒ Hutchinson and improves the
best known constant.
(2) and (3) are new.
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A two way street: From continuous to discrete

How do we switch from a continuous to a discrete metric ?

Proof.

Take a maximal set of balls of radius ε and perturb them a little.
⇒ Triangulation T

By [Dyer, Zhang and Möller ’08], the Delaunay graph of the
centers is a triangulation for ε small enough.

|γ|m ≤ 4ε|γ|G .

Each ball has radius πε2 + o(ε2), thus ε = O(
√

A/n).
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Theorem and corollaries

Theorem (Colin de Verdière, Hubard, de Mesmay ’14)

Let (S ,m) be a Riemannian surface of genus g and area A. There
exists a triangulated graph G embedded on S with n triangles, such
that every closed curve γ in (S ,G ) satisfies

|γ|m ≤ (1 + δ)
√

32
π

√
A/n |γ|G for some arbitrarily small δ.

This shows that Hutchinson ⇒ Gromov.
Proof of the conjecture of Przytycka and Przytycki:

Corollary

There exist arbitrarily large g and n such that the following holds:
There exists a triangulated combinatorial surface of genus g, with
n triangles, of edgewidth at least 1−δ

6

√
n/g log g for arbitrarily small δ.
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Part 2:
Pants decompositions
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Pants decompositions

A pants decomposition of a triangulated or Riemannian
surface S is a family of cycles Γ such that cutting S along Γ
gives pairs of pants, e.g., spheres with three holes.

A pants decomposition has 3g − 3 curves.
Complexity of computing a shortest pants decomposition on a
triangulated surface: in NP, not known to be NP-hard.
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Let us just use Hutchinson’s bound

An algorithm to compute pants decompositions:
1 Pick a shortest non-contractible cycle.
2 Cut along it.
3 Glue a disk on the new boundaries.

This increases the area!

4 Repeat 3g − 3 times.

We obtain a pants decomposition of length

Doing the calculations correctly gives a subexponential bound.
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A correct algorithm

Denote by PantsDec the shortest pants decomposition of a
triangulated surface.

Best previous bound: `(PantsDec) = O(gn).
[Colin de Verdière and Lazarus ’07]
New result: `(PantsDec) = O(g3/2√n).
[Colin de Verdière, Hubard and de Mesmay ’14]
Moreover, the proof is algorithmic.

We “combinatorialize” a continuous construction of Buser.
Several curves may run along the same edge:
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How to compute a short pants decomposition

First idea

Both at the same time
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How to compute a short pants decomposition

First idea

Both at the same time

If the torus is fat, this is too long.

34 / 53



How to compute a short pants decomposition

First idea
Second idea

Both at the same time
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How to compute a short pants decomposition

First idea
Second idea

Both at the same time

If the torus is thin, this is too long.
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How to compute a short pants decomposition

First idea
Second idea
Both at the same time
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How to compute a short pants decomposition

First idea
Second idea
Both at the same time

We take a trade-off between both approaches: As soon as the length
of the curves with the first idea exceeds some bound, we switch to
the second one.
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Lower bounds

Arithmetic surfaces (Buser, Sarnak), once discretized, yield
systoles of size Ω(

√
n/g log g).

→ `(PantsDec) = Ω(
√
ng log g).

Random surfaces: Sample uniformly at random among the
triangulated surfaces with n triangles.

Theorem (Guth, Parlier and Young ’11)

If (S ,G ) is a random triangulated surface with n triangles, and thus
O(n) edges, the length of the shortest pants decomposition of
(S ,G ) is Ω(n7/6−δ) w.h.p. for arbitrarily small δ

We extend this lower bound to other decompositions than pants
decompositions: cut-graphs with fixed combinatorial structure
(skipped).
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Part 3:
A glimpse into arithmetic surfaces
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“Arithmetic hyperbolic surfaces are remarkably hard to
picture”

The embedded graphs built in Part 1 are not very natural.
Maybe arithmetic surfaces yield better lower bounds for Part 2.
They provide lower bounds on the systoles of covers of small
genus surfaces.

Theorem (Buser-Sarnak ’94)

There exists a hyperbolic surface S and an infinite family of covers
Si of S such that

sys(Si ) = Ω(log g(Si )).

Hyperbolic surfaces have area 4π(g − 1).
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The Buser-Sarnak lower bound

A hyperbolic surface is a quotient of the hyperbolic plane H2

by a subgroup Γ of its isometry group Isom+(H2).

We view H2 in the upper half-plane model, then
Isom+(H2) ≡ PSL2(R), which acts by homographies:(

a b
c d

)
z =

az + b
cz + d

.
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Buser-Sarnak surfaces

We pick two integers a, b and look at the subgroup

Γ =

{(
X0 + X1

√
a X2 + X3

√
a

b(X2 − X3
√
a) X0 − X1

√
a

)
| Xi ∈ Z

X 2
0 − aX 2

1 − bX 2
2 + abX 2

3 = 1

}
.

as well as its congruence subgroups for a prime p.

Γ(p) =


(

X0 + X1
√
a X2 + X3

√
a

b(X2 − X3
√
a) X0 − X1

√
a

)
|

Xi ∈ Z
X 2

0 − aX 2
1 − bX 2

2 + abX 2
3 = 1

X0 ≡ 1[p];X1,X2,X3 ≡ 0[p]

 .

Claim: For well chosen a and b (eg a = 2 and b = 3), Γ/H2

and Γ(p)/H2 are compact surfaces S and S(p).
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Genus and systole

Claim: g(S(p)) = O(p3).
Indeed, g(S(p)) = O([Γ, Γ(p)]g(S)), where [Γ, Γ(p)] is the
index of Γ(p) in Γ, i.e., the order of

Γ/Γ(p) =

{(
X0 + X1

√
a X2 + X3

√
a

b(X2 − X3
√

a) X0 − X1
√

a

)
| Xi ∈ Zp

X 2
0 − aX 2

1 − bX 2
2 + abX 2

3 ≡ 1[p]

}
.

Claim: sys(S(p)) = Ω(log p).
Indeed, for a non-trivial element g of Γ(p),
1 = X 2

0 − aX 2
1 − bX 2

2 + abX 2
3 , and p|X1,X2,X3, thus

X 2
0 ≡ 1[p2]⇒ X0 ≡ ±1[p2].

Furthermore, X0 6= ±1, thus |X0| = Ω(p2), and
Trace(g) = 2X0 = Ω(p2).
The translation length of g is controlled by its trace:
l(g) = 2argch(1/2Trace(g)), and thus sys(S(p)) = Ω(log p).
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Zooming out

Starting from a well-chosen (i.e., arithmetic) surface S , we can
find covers S(p) using congruences for which the systole grows
logarithmically.
To get discrete systolic lower bounds, it is enough to
triangulate the first surface S and lift the triangulation.

Can we start with a surface that is already naturally triangulated,
for example with triangles of angles π/2, π/3 and π/7?
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Hurwitz surfaces

Yes [Katz, Schaps, Vishne ’07] but this requires taking the Xi
in Z[cos 2π/7] instead of just Z.
→ The number theory is more involved (orders in quaternion
algebras).
Hurwitz surfaces are hyperbolic surfaces with the maximal
number of symmetries (automorphisms). They are obtained
from (2, 3, 7) triangles.
→ Surfaces with maximal symmetry have big systoles.

Animation by Greg Egan
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The Bolza surface

The Bolza surface is the genus 2 surface obtained from an
equilateral octagon.

Its fundamental group is a subgroup of the (2, 3, 8) triangle
group.
[Katz, Katz, Schein, Vishne ’16] show that it is an arithmetic
surface (using Z[

√
2]) and use congruence subgroups to

compute covers with the systole growing logarithmically.
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Appendix: Discrete systolic inequalities in higher dimensions

(M,T ) : triangulated d -manifold, with fd (T ) facets and f0(T )
vertices.
Supremum of sysd

fd
or sysd

f0 ?

Theorem (Gromov)

For every d, there is a constant Cd such that, for any Riemannian
metric on any essential compact d-manifold M without boundary,
there exists a non-contractible closed curve of length at most
Cdvol(m)1/d .

We follow the same approach as for surfaces:

Endow the metric of a regular simplex on every simplex.
Smooth the metric.
Push curves inductively to the 1-dimensional skeleton.
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(M,T ) : triangulated d -manifold, with fd (T ) facets and f0(T )
vertices.
Supremum of sysd

fd
or sysd

f0 ?

Theorem (Gromov)

For every d, there is a constant Cd such that, for any piecewise
Riemannian metric on any essential compact d-manifold M
without boundary, there exists a non-contractible closed curve of
length at most Cdvol(m)1/d .

We follow the same approach as for surfaces:
Endow the metric of a regular simplex on every simplex.
Smooth the metric. Non-smoothable triangulations
[Kervaire ’60]
Push curves inductively to the 1-dimensional skeleton.

Corollary: sysd
fd

is upper bounded by a constant for essential
triangulated manifolds.
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Appendix: Discrete systolic inequalities in higher dimensions

In the other direction, starting from a Riemannian manifold:

Take an ε-separated net and its Delaunay complex.
Hope that it will be a triangulation
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Perturb this net using the scheme of [Boissonat, Dyer, Ghosh
’14]
Hope that it will be a triangulation The Delaunay complex is a
triangulation.

This allows us to translate discrete systolic inequalities w.r.t. the
number of vertices to continuous systolic inequalities.

But are there any?

Question: Are there manifolds M of dimension d ≥ 3 for which
there exists a constant cM such that, for every triangulation
(M,T ), there is a non-contractible closed curve in the 1-skeleton of
T of length at most cM f0(T )1/d?
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