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Computational geometry

Solving geometric problems

algorithms

complexity analysis
worst case, average, randomized

implementation

applications
shape reconstruction, meshing, computer graphics,
geographic information system, CAD, VLSI, structural
biology...
http://www-sop.inria.fr/geometrica/



Implementing geometric algorithms

Ingredients for good software

clean mathematical formalism

algorithmic study, data structures, complexity

solving robustness issues

good design and programming



First problem: convex hull
Definition

Dimension 1: sorting

Dimension ≥ 2: convex hull
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First problem: convex hull
Incremental construction

p

qr

predicate:

orientation(p, q, r) =

sign

∣∣∣∣∣∣
1 1 1
px qx rx

py qy ry

∣∣∣∣∣∣


(it is a resultant)

degree 2 polynomial



Orientation predicate
Arithmetic issues

p = (0.5 + x .u, 0.5 + y .u)
0 ≤ x , y < 256, u = 2−53

q = (12, 12)
r = (24, 24)

orientation(p, q, r)
evaluated with double

256 x 256 pixel image
> 0 , = 0 , < 0
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Orientation predicate
Arithmetic issues

p

q

r

s
p <x q <x r <x s

r above (pq)

s above (qr)

=⇒ s above (pq)

−→ inconsistency in predicate evaluations
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Two major data structures

[Delaunay] triangulation

Arrangement



Triangulation
Incremental construction

For each new point p

locate p −→ triangle t orientation

split t into 3 triangles
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Delaunay triangulation
Definition

All circumscribing disks are empty

Dimension 2: Euler relation n − e + f = 2 → linear size
Dimension d > 2: size Θ

(
nd d

2 e
)
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Incremental construction

For each new point p

locate p = find triangles in conflict in_sphere

star the region around p
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Delaunay triangulation
Incremental construction

p

For each new point p

locate p = find triangles in conflict in_sphere

star the region around p



In_sphere predicate

in_sphere(p, q, r , s) =

sign


∣∣∣∣∣∣∣∣
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px qx rx sx

py qy ry sy

1 + p2
x + p2

y 1 + q2
x + q2
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x + r2

y 1 + s2
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y
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orientation(p, q, r)

sign of degree 4 polynomial

circumcenter/radius never computed
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Exact Geometric Computation

imprecise numerical evaluations
−→ non-robustness

combinatorial result
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imprecise numerical evaluations
−→ non-robustness

combinatorial result

Use of exact arithmetics

Evaluation of signs of polynomial expressions:
multiprecision rationals or floats



Exact Geometric Computation

imprecise numerical evaluations
−→ non-robustness

combinatorial result

Exact Geometric Computation
6=

exact arithmetics



Exact Geometric Computation
Filtering

Optimize easy (frequent) cases

approximate computation
+

rounding errors controlled

Use exact arithmetics only on difficult cases

Cost ' cost of floating point/double evaluation



Exact Geometric Computation
Filtering

y n

|P a(x)| > ε
?

sign (P (x)) = sign (P a(x)) Exact computation

Approximate evaluation P a(x)
+ Error ε



The Computational Geometry Algorithms Library
Open Source project

www.cgal.org

> 400.000 lines of C++ code
> 3.000 pages manual
∼ 10.000 downloads per year
∼ 850 users on public mailing
list, ∼ 50 developers
LGPL, QPL
start-up GeometryFactory
interfaces: Python, Scilab

Robustness and efficiency

Editorial board
(3 members in Geometrica
⊂ 11 members)

Test-suites each night

...



Delaunay triangulations

CGAL-3.1-I-124
Pentium-M 1.7 GHz, 1GB
g++ 3.3.2, -O2 -DNDEBUG

1.000.000 random points

double 48.1 sec
MP_Float 2980.2 sec
Filtered exact 58.4 sec

25 sec in release CGAL 3.3
(space filling curve)



Delaunay triangulations

CGAL-3.1-I-124
Pentium-M 1.7 GHz, 1GB
g++ 3.3.2, -O2 -DNDEBUG

degeneracies explicitely
handled
symbolic perturbations...



Delaunay triangulations

CGAL-3.1-I-124
Pentium-M 1.7 GHz, 1GB
g++ 3.3.2, -O2 -DNDEBUG

49.787 points
(Dassault Systèmes)

double loop !
exact and filtered < 8 sec



Predicates and constructions

Delaunay triangulation

Only predicates:
orientation, in_sphere

Voronoi diagram
geometric dual

also constructions:
circumcenter
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Predicates and constructions

Predicates

> 0< 0 = 0

Combinatorial

Structure

Input

Constructions

Geometric

embedding



Arrangements
Definition

Partition of the plane
into

faces

edges

vertices

induced by a collection of
curves
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Arrangements
Line segments

Bentley-Ottmann sweep
SLIDES

highly sensitive to arithmetic rounding
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Arithmetic issues

Wrong comparison −→
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Arrangements
Arithmetic issues

Wrong comparison −→

=⇒ intersection missed
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Arrangements
Arithmetic issues

Wrong comparison −→

?

?

pink and blue are not consecutive =⇒ failure



Arrangement
Variants

S set of n segments in the plane

1st pb. Compute the pairs of segment that intersect

2nd pb. Compute the arrangement A

3rd pb. Compute the trapezoidal map T

k= number of intersections

number of edges of A: ≤ n + 2k
number of walls of T : ≤ 2(n + k)
size of A and T : O(n + k)
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Arrangement
Variants and predicates

1st pb. Θ(n2) intersection tests
[p0p1] ∩ [p2p3] 6= ∅

2nd pb. Description of A uses

[p0p1] ∩ [p2p3] <x [p0p1] ∩ [p4p5]

comparisons of constructed points

3rd pb. Description of T uses

[p0p1] ∩ [p2p3] <x [p4p5] ∩ [p6p7]



Arrangement
Predicates

P1 : p0 <x p1

P2 : p0 <y (p1p2)
P2’: [p0p1] ∩ [p2p3] 6= ∅
P3 : p0 <x [p1p2] ∩ [p3p4]
P4 : [p0p1] ∩ [p2p3] <x [p0p1] ∩ [p4p5]
P5 : [p0p1] ∩ [p2p3] <x [p4p5] ∩ [p6p7]

Predicates i , i ′ are signs of polynomial expressions of degree i
in the coordinates of points pj .



Arrangement
Predicates

P1 : p0 <x p1

x0 < x1

degree 1

P2 : p0 <y (p1p2)

orientation

degree 2
P2’: [p0p1] ∩ [p2p3] 6= ∅

compare + 2 × orientation

degree 2



Arrangement
Predicates

P1 : p0 <x p1

x0 < x1

degree 1
P2 : p0 <y (p1p2)

orientation

degree 2

P2’: [p0p1] ∩ [p2p3] 6= ∅

compare + 2 × orientation

degree 2



Arrangement
Predicates

P1 : p0 <x p1

x0 < x1

degree 1
P2 : p0 <y (p1p2)

orientation

degree 2
P2’: [p0p1] ∩ [p2p3] 6= ∅

compare + 2 × orientation

degree 2



Arrangement
Predicates

[pipj ] ∩ [pkpl ] = pi + (pj − pi)
N
D

where

N = orientation(pi , pk , pl)
D = orientation(pi , pj , pk )− orientation(pi , pj , pl)

P3 : p0 <x [p1p2] ∩ [p3p4]
P4 : [p0p1] ∩ [p2p3] <x [p0p1] ∩ [p4p5]
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Explicit formulae + some more proofs −→ degree
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Arrangement
Compromise: algebraic/combinatorial complexity

1st pb. Compute the pairs of segment that intersect

Naive algorithm Θ(n2)

optimal degree 2

optimal worst-case complexity

Lower bound Ω(n log n + k).
There are algorithms

optimal complexity

degree 3
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Arrangement
Compromise: algebraic/combinatorial complexity

2nd pb. Compute the arrangement A

Simple algorithm:
- solve 1st pb
- sort intersection points on each segment

degree 4

O((n + k) log n)

Lower bound Ω(n log n + k).



Curved objects

the world is not linear
CAD
structural biology
. . .

curves appear with linear input:

Voronoi diagrams of line segments
= subset of arrangement of curves

manipulations of curves and surfaces
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Curved objects

the world is not linear
CAD
structural biology
. . .

curves appear with linear input:

Voronoi diagrams of line segments
= subset of arrangement of curves

Exact manipulations of curves and surfaces



Arrangements of curves

Combinatorial complexity well studied

Effective computation ? recent work
European projects ECG, ACS → CGAL

Problems

Generalize algorithms
2 curves intersect more than once,. . .

Predicates
algebraic aspects

Implementation

algorithms and data structures
predicates



Arrangements of curves
Algebraic aspects

Bézout’s theorem:
two curves of degree d , d ′ intersect in d .d ′ points

2 conics

degree 4

2 circles

(x − a)2 + (y − b)2 − r2 = 0
(x − a′)2 + (y − b′)2 − r ′2 = 0

Bézout’s bound: complex projective space
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Algebraic aspects

Bézout’s theorem:
two curves of degree d , d ′ intersect in d .d ′ points

2 conics

degree 4

2 circles

(x − a)2 + (y − b)2 − r2 = 0
(x − a′)2 + (y − b′)2 − r ′2 = 0

homogeneization: x2 + y2 + w(...) = 0
all circles contain (1, i , 0) and (1,−i , 0)

Bézout’s bound: complex projective space



Arrangements of curves
Algebraic aspects

Bézout’s theorem:
two curves of degree d , d ′ intersect in d .d ′ points

2 conics

degree 4

2 circles

(x − a)2 + (y − b)2 − r2 = 0
(x − a′)2 + (y − b′)2 − r ′2 = 0

⇐⇒ 1 circle and 1 line (radical axis)
degree 2

Bézout’s bound: complex projective space



Arrangements of curves
Algebraic aspects

major predicate

points’ coordinates = algebraic numbers

Question:

exact comparison of algebraic numbers

( note: Different notions of degree

above: degree of polynomial expressions

here: degree of roots )
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Arrangements of curves
Comparison of algebraic numbers

2 main approaches

root isolation and comparison of intervals
when roots are very close or equal
up to separation bound −→ very slow

algebraic methods for root comparison
not sensitive to special cases
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Arrangements of curves
Comparison of algebraic numbers

Sturm sequences
P, Q ∈ K[X ] signed remainder sequence of P and Q =
sequence S(P, Q) : P0, P1, . . . , Pk

P0 = P

P1 = Q

P2 = −Rem(P0, P1)

...

Pk = −Rem(Pk−2, Pk−1)

Pk+1 = −Rem(Pk−1, Pk ) = 0

where
Rem(A, B) = remainder of the Euclidean division of A by B



Arrangements of curves
Comparison of algebraic numbers

Sturm sequences

a, b ∈ R ∪{−∞,+∞}

Var(S; a) = number of sign variations in the sequence
P0(a), P1(a), . . . , Pd(a)

Var(S; a, b) = Var(S; a)− Var(S; b)



Arrangements of curves
Comparison of algebraic numbers

Sturm sequences allow to

count roots

Sturm sequence of P = S(P, P ′)

Var(S(P, P ′); a, b)
is the number of roots of P in the interval [a, b]



Arrangements of curves
Comparison of algebraic numbers

Sturm sequences allow to

count roots

compare roots

- P, Q relative prime,
- P square free,
- a < b non roots of P.

S = (P, P ′Q, . . . ) Sturm sequence of P, P ′Q

Var(S; a, b) =
∑

P(ρ)=0, a<ρ<b

sign(Q(ρ))



Arrangements of curves
Comparison of algebraic numbers

Case of degree 2. P Q



Arrangements of curves
Comparison of algebraic numbers

comparison reduces to

sign of algebraic expressions !

−→ Efficient filtered exact computations



Arrangements of curves
Comparison of algebraic numbers

Small degree:
algebraic expressions can be pre-computed
static Sturm sequences (degree 2)

J

+−
P1 > 0

Case 1,2,3

P1 < 0

Case 3,4,5

K

+−
P3 > 0

Case 3,4

D

+−

P2 > 0; P3 < 0

Case 4,5

Case 3b4

+−
P4 > 0

l1 > l2

Case 3a

+−

Case 4

P4

Case 3a,4

l1 > l2

l1 < l2

l1 > l2

K

+−
P2, P3 > 0

l1 < l2

Case 1,2

D

+−

P3 < 0

Case 2,3

l1 < l2

Case 2,3a

+−
P4 > 0

l1 > l2

Case 3b

+−

Case 3bCase 2

P4

Case 2,3b

l1 > l2l1 < l2l1 < l2

Case 3a

21 5

28 6

13 10

3 7

4 12

6

10

7

12

28

13

3

4

J ′J ′

The polynomial expressions have a true geometric meaning
Sturm sequences ⇔ resultant based methods. . .



and applications

generic arrangements
manipulations of 2d circular arcs

VLSI design

industrial data
89,918 input arcs
495,209 vertices
878,799 edges
383,871 faces

CGAL 3.3: 169 sec
Pentium 4, 2.5 GHz, 1GB
Linux (2.4.20 Kernel)
g++4.0.2



Hot topics

exact drawing of curves
= any zoom possible

exact topology of curves
arrangements of quadrics, spheres

surfacic approaches
volumic approaches

algebraic issues, data structures. . .

design of interface geometry/algebra
geometric/algebraic concepts // C++ concepts

definition of the degree of predicates/algorithm/problem
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Where it happens (unordered - non exhaustive)

USA

NYU (Chee Yap, pioneer of the Exact Geometric
Computation, CORE library)

University of N. Carolina (Dinesh Manocha et al, MAPC,
ESOLID no degeneracies allowed)



Where it happens (unordered - non exhaustive)

Mostly in Europe

MPI Saarbrücken (arrangements of 2d cubics, 3d quadrics,
EXACUS prototype → CGAL)

Tel-Aviv (generic arrangements of curves, CGAL)

Athens (algebraic aspects, Voronoi of conics)



Where it happens (unordered - non exhaustive)

in France

INRIA Rocquencourt/UPMC
SALSA, real algebraic geometry, RUR,
software FGb/RS (→ Maple)

INRIA Lorraine
VEGAS, quadrics, Voronoi of 3D lines

INRIA Sophia Antipolis
GEOMETRICA + ABS

arrangements of spheres,
computations on 2d/3d circular arcs,
specifications of curved and algebraic operations (with

MPI),
CGAL design and implementation

collaboration on interface FBb/RS ↔ CGAL


