Problèmes de robustesse en géométrie algorithmique

Monique Teillaud

ENS - 12 mars 2008

Computational geometry

Solving geometric problems

- algorithms
- complexity analysis
worst case, average, randomized
- implementation
- applications
shape reconstruction, meshing, computer graphics, geographic information system, CAD, VLSI, structural biology...
http://www-sop.inria.fr/geometrica/

Implementing geometric algorithms

Ingredients for good software

- clean mathematical formalism
- algorithmic study, data structures, complexity
- solving robustness issues
- good design and programming

First problem: convex hull

 DefinitionDimension 1: sorting

Dimension ≥ 2 : convex hull

First problem: convex hull

Definition

Dimension 1: sorting

Dimension ≥ 2 : convex hull

First problem: convex hull

First problem: convex hull
predicate:
compare (x, y)

First problem: convex hull

Incremental construction

First problem: convex hull

Incremental construction

First problem: convex hull

Incremental construction

predicate:
orientation $(p, q, r)=$ $\operatorname{sign}\left(\left|\begin{array}{ccc}1 & 1 & 1 \\ p_{x} & q_{x} & r_{x} \\ p_{y} & q_{y} & r_{y}\end{array}\right|\right)$
(it is a resultant)
degree 2 polynomial

Orientation predicate

Arithmetic issues

$$
\begin{aligned}
& p=(0.5+x \cdot u, 0.5+y \cdot u) \\
& 0 \leq x, y<256, \quad u=2^{-53} \\
& q=(12,12) \\
& r=(24,24)
\end{aligned}
$$

Orientation predicate

Arithmetic issues

$$
\begin{aligned}
& p=(0.5+x \cdot u, 0.5+y \cdot u) \\
& 0 \leq x, y<256, u=2^{-53} \\
& q=(12,12) \\
& r=(24,24)
\end{aligned}
$$

orientation (p, q, r)
evaluated with double

Orientation predicate

Arithmetic issues

$$
\begin{aligned}
& p=(0.5+x . u, 0.5+y . u) \\
& 0 \leq x, y<256, \quad u=2^{-53} \\
& q=(12,12) \\
& r=(24,24)
\end{aligned}
$$

orientation (p, q, r)
evaluated with double
256×256 pixel image

$$
>0,=0,<0
$$

Orientation predicate

Arithmetic issues

$$
s \quad p<_{x} q<_{x} r<_{x} s
$$

$$
q
$$

Orientation predicate

Arithmetic issues
S

$$
\begin{aligned}
& p<_{x} q<_{x} r<_{x} s \\
& r \text { above }(p q)
\end{aligned}
$$

Orientation predicate

Arithmetic issues

$$
\begin{aligned}
& p<_{x} q<_{x} r<_{x} s \\
& r \text { above }(p q) \\
& s \text { above }(q r)
\end{aligned}
$$

Orientation predicate

Arithmetic issues

$$
p<_{x} q<_{x} r<_{x} s
$$

r above ($p q$)
s above (qr)

q

$\Longrightarrow s$ above (pq)

Orientation predicate

Arithmetic issues

$$
\begin{aligned}
& p<_{x} q<_{x} r<_{x} s \\
& r \text { above }(p q) \\
& s \text { above }(q r) \\
& \Longrightarrow s \text { above }(p q)
\end{aligned}
$$

\longrightarrow inconsistency in predicate evaluations

Two major data structures

- [Delaunay] triangulation
- Arrangement

Triangulation

Incremental construction

For each new point p

Triangulation

Incremental construction

For each new point p

- locate $p \longrightarrow$ triangle t

Triangulation

Incremental construction

For each new point p

- locate $p \longrightarrow$ triangle t
orientation
- split t into 3 triangles

Delaunay triangulation

Definition

Delaunay triangulation

Definition

All circumscribing disks are empty
Dimension 2: Euler relation $n-e+f=2 \rightarrow$ linear size Dimension $d>2$: size $\Theta\left(n^{\left\lceil\frac{d}{2}\right\rceil}\right)$

Delaunay triangulation

Incremental construction

For each new point p

Delaunay triangulation

Incremental construction

For each new point p

- locate $p=$ find triangles in conflict
in_sphere

Delaunay triangulation

Incremental construction

For each new point p

- locate $p=$ find triangles in conflict
in_sphere

Delaunay triangulation

Incremental construction

For each new point p

- locate $p=$ find triangles in conflict
in_sphere

Delaunay triangulation

Incremental construction

For each new point p

- locate $p=$ find triangles in conflict
in_sphere
- star the region around p

In_sphere predicate

in_sphere $(p, q, r, s)=$
$\frac{\operatorname{sign}\left(\left|\begin{array}{cccc}1 & 1 & 1 & 1 \\ p_{x} & q_{x} & r_{x} & s_{x} \\ p_{y} & q_{y} & r_{y} & s_{y} \\ 1+p_{x}^{2}+p_{y}^{2} & 1+q_{x}^{2}+q_{y}^{2} & 1+r_{x}^{2}+r_{y}^{2} & 1+s_{x}^{2}+s_{y}^{2}\end{array}\right|\right)}{\text { orientation }(p, q, r)}$
sign of degree 4 polynomial

In_sphere predicate

in_sphere $(p, q, r, s)=$

sign of degree 4 polynomial
circumcenter/radius never computed

Exact Geometric Computation

imprecise numerical evaluations
\longrightarrow non-robustness
combinatorial result

Exact Geometric Computation

imprecise numerical evaluations
\longrightarrow non-robustness
combinatorial result

Use of exact arithmetics
Evaluation of signs of polynomial expressions: multiprecision rationals or floats

Exact Geometric Computation

imprecise numerical evaluations
\longrightarrow non-robustness
combinatorial result

Exact Geometric Computation
 \neq
 exact arithmetics

Exact Geometric Computation

 FilteringOptimize easy (frequent) cases
approximate computation
+
rounding errors controlled

Use exact arithmetics only on difficult cases

Cost \simeq cost of floating point/double evaluation

Exact Geometric Computation

Filtering

Approximate evaluation $P^{a}(x)$

+ Error ε

The Computational Geometry Algorithms Library Open Source project

www.cgal.org
>400.000 lines of $\mathrm{C}++$ code
>3.000 pages manual
~ 10.000 downloads per year
~ 850 users on public mailing list, ~ 50 developers LGPL, QPL start-up GeometryFactory interfaces: Python, Scilab

Robustness and efficiency

- Editorial board
(3 members in Geometrica $\subset 11$ members)
- Test-suites each night

Delaunay triangulations

Cgal-3.1-I-124

Pentium-M 1.7 GHz, 1GB g++ 3.3.2, -O2 -DNDEBUG

1.000.000 random points

double	48.1 sec
MP_Float	2980.2 sec
Filtered exact	58.4 sec

25 sec in release CgAL 3.3
(space filling curve)

CgAL-3.1-I-124

Pentium-M 1.7 GHz, 1GB g++ 3.3.2, -O2 -DNDEBUG

Delaunay triangulations

CgAL-3.1-I-124

Pentium-M 1.7 GHz, 1GB g++ 3.3.2, -O2 -DNDEBUG

49.787 points
(Dassault Systèmes)
double loop!
exact and filtered <8 sec

Predicates and constructions

Delaunay triangulation

Only predicates:
orientation, in_sphere

Predicates and constructions

Delaunay triangulation

Only predicates:
orientation, in_sphere

Voronoi diagram geometric dual

also constructions:
circumcenter

Predicates and constructions

Arrangements

Definition

Partition of the plane into

- faces
- edges
- vertices
induced by a collection of
curves

Arrangements

Definition

Partition of the plane into

- faces
- edges
- vertices
induced by a collection of
curves

Arrangements

Line segments

Bentley-Ottmann sweep
SLIDES
highly sensitive to arithmetic rounding

Arrangements

Arithmetic issues

Wrong comparison \longrightarrow

Arrangements

Arithmetic issues

Wrong comparison \longrightarrow

\Longrightarrow intersection missed

Arrangements

Arithmetic issues

Wrong comparison \longrightarrow

Arrangements

Arithmetic issues

Wrong comparison \longrightarrow

pink and blue are not consecutive \Longrightarrow failure

Arrangement

Variants
S set of n segments in the plane

- 1st pb. Compute the pairs of segment that intersect
- 2nd pb. Compute the arrangement A

Arrangement

Variants
S set of n segments in the plane

- 1st pb. Compute the pairs of segment that intersect
- 2nd pb. Compute the arrangement A
- 3rd pb. Compute the trapezoidal map T

$k=$ number of intersections number of edges of $A: \leq n+2 k$ number of walls of $T: \leq 2(n+k)$ size of A and $T: O(n+k)$

Arrangement Variants and predicates

1st pb. $\Theta\left(n^{2}\right)$ intersection tests

$$
\left[p_{0} p_{1}\right] \cap\left[p_{2} p_{3}\right] \neq \emptyset
$$

2nd pb. Description of A uses

$$
\left[p_{0} p_{1}\right] \cap\left[p_{2} p_{3}\right]<_{x}\left[p_{0} p_{1}\right] \cap\left[p_{4} p_{5}\right]
$$

comparisons of constructed points
3rd pb. Description of T uses

$$
\left[p_{0} p_{1}\right] \cap\left[p_{2} p_{3}\right]<x\left[p_{4} p_{5}\right] \cap\left[p_{6} p_{7}\right]
$$

Arrangement

Predicates

```
P1 : \(\quad p_{0}<x p_{1}\)
P2 : \(\quad p_{0}<y\left(p_{1} p_{2}\right)\)
P2': \(\left[p_{0} p_{1}\right] \cap\left[p_{2} p_{3}\right] \neq \emptyset\)
P3 : \(\quad p_{0}<x\left[p_{1} p_{2}\right] \cap\left[p_{3} p_{4}\right]\)
P4 : \(\left[p_{0} p_{1}\right] \cap\left[p_{2} p_{3}\right]<{ }_{x}\left[p_{0} p_{1}\right] \cap\left[p_{4} p_{5}\right]\)
P5 : \(\quad\left[p_{0} p_{1}\right] \cap\left[p_{2} p_{3}\right]<{ }_{x}\left[p_{4} p_{5}\right] \cap\left[p_{6} p_{7}\right]\)
```

Predicates i, i^{\prime} are signs of polynomial expressions of degree i in the coordinates of points p_{j}.

Arrangement

Predicates

$$
\text { P1 : } \quad p_{0}<_{x} p_{1}
$$

$$
x_{0}<x_{1}
$$

Arrangement

Predicates

$$
\begin{array}{ll}
\text { P1 : } p_{0}<x p_{1} & \\
x_{0}<x_{1} \\
\text { P2 : } & p_{0}<y\left(p_{1} p_{2}\right)
\end{array}
$$

$$
\text { degree } 1
$$

orientation
degree 2

Arrangement

Predicates

$$
\begin{array}{ll}
\text { P1 : } p_{0}<x p_{1} & \\
x_{0}<x_{1} \\
\text { P2 : } & p_{0}<_{y}\left(p_{1} p_{2}\right)
\end{array}
$$

$$
\text { degree } 1
$$

orientation

degree 2

$$
\mathrm{P}^{\prime}: \quad\left[p_{0} p_{1}\right] \cap\left[p_{2} p_{3}\right] \neq \emptyset
$$

compare $+2 \times$ orientation

Arrangement

Predicates

$$
\left[p_{i} p_{j}\right] \cap\left[p_{k} p_{l}\right]=p_{i}+\left(p_{j}-p_{i}\right) \frac{N}{D}
$$

where
$N=\operatorname{orientation}\left(p_{i}, p_{k}, p_{l}\right)$
$D=\operatorname{orientation}\left(p_{i}, p_{j}, p_{k}\right)-\operatorname{orientation}\left(p_{i}, p_{j}, p_{l}\right)$

Arrangement

Predicates

$$
\left[p_{i} p_{j}\right] \cap\left[p_{k} p_{l}\right]=p_{i}+\left(p_{j}-p_{i}\right) \frac{N}{D}
$$

where
$N=\operatorname{orientation}\left(p_{i}, p_{k}, p_{l}\right)$
$D=\operatorname{orientation}\left(p_{i}, p_{j}, p_{k}\right)-$ orientation $\left(p_{i}, p_{j}, p_{l}\right)$

Explicit formulae + some more proofs

Arrangement

Compromise: algebraic/combinatorial complexity

1 st pb. Compute the pairs of segment that intersect
Naive algorithm $\Theta\left(n^{2}\right)$

- optimal degree 2
- optimal worst-case complexity

Arrangement

Compromise: algebraic/combinatorial complexity

1 st pb. Compute the pairs of segment that intersect
Naive algorithm $\Theta\left(n^{2}\right)$

- optimal degree 2
- optimal worst-case complexity

Lower bound $\Omega(n \log n+k)$.
There are algorithms

- optimal complexity
- degree 3

Arrangement

Compromise: algebraic/combinatorial complexity

2nd pb. Compute the arrangement A
Simple algorithm:

- solve 1st pb
- sort intersection points on each segment
- degree 4
- $O((n+k) \log n)$

Lower bound $\Omega(n \log n+k)$.

Curved objects

- the world is not linear
- CAD
- structural biology
- ...

Curved objects

- the world is not linear
- CAD
- structural biology
- ...
- curves appear with linear input:

Voronoi diagrams of line segments
= subset of arrangement of curves

Curved objects

- the world is not linear
- CAD
- structural biology
- ...
- curves appear with linear input:

Voronoi diagrams of line segments
= subset of arrangement of curves

Curved objects

- the world is not linear
- CAD
- structural biology
- ...
- curves appear with linear input:

Voronoi diagrams of line segments = subset of arrangement of curves

Curved objects

- the world is not linear
- CAD
- structural biology
- ...
- curves appear with linear input:

Voronoi diagrams of line segments = subset of arrangement of curves
manipulations of curves and surfaces

Curved objects

- the world is not linear
- CAD
- structural biology
- ...
- curves appear with linear input:

Voronoi diagrams of line segments
= subset of arrangement of curves

Exact manipulations of curves and surfaces

Arrangements of curves

Combinatorial complexity
well studied
Effective computation?
recent work
European projects ECG, ACS \rightarrow CGAL
Problems

- Generalize algorithms

2 curves intersect more than once,...

- Predicates
algebraic aspects
- Implementation
- algorithms and data structures
- predicates

Arrangements of curves

Algebraic aspects

Bézout's theorem: two curves of degree d, d^{\prime} intersect in $d . d^{\prime}$ points

Arrangements of curves

Algebraic aspects

Bézout's theorem:
two curves of degree d, d^{\prime} intersect in $d . d^{\prime}$ points
2 conics
degree 4

Arrangements of curves

Algebraic aspects

Bézout's theorem: two curves of degree d, d^{\prime} intersect in $d . d^{\prime}$ points

2 conics

degree 4

2 circles

$$
\begin{aligned}
& (x-a)^{2}+(y-b)^{2}-r^{2}=0 \\
& \left(x-a^{\prime}\right)^{2}+\left(y-b^{\prime}\right)^{2}-r^{\prime 2}=0
\end{aligned}
$$

homogeneization: $x^{2}+y^{2}+w(\ldots)=0$ all circles contain $(1, i, 0)$ and $(1,-i, 0)$

Bézout's bound: complex projective space

Arrangements of curves

Algebraic aspects

Bézout's theorem: two curves of degree d, d^{\prime} intersect in $d . d^{\prime}$ points

2 conics

degree 4

2 circles

$$
\begin{aligned}
& (x-a)^{2}+(y-b)^{2}-r^{2}=0 \\
& \left(x-a^{\prime}\right)^{2}+\left(y-b^{\prime}\right)^{2}-r^{\prime 2}=0
\end{aligned}
$$

$\Longleftrightarrow 1$ circle and 1 line (radical axis) degree 2

Bézout's bound: complex projective space

Arrangements of curves

Algebraic aspects
major predicate

points' coordinates = algebraic numbers
Question:
exact comparison of algebraic numbers

Arrangements of curves

Algebraic aspects

major predicate

points' coordinates $=$ algebraic numbers
Question:
exact comparison of algebraic numbers
(note: Different notions of degree

- above: degree of polynomial expressions
- here: degree of roots)

Arrangements of curves

Comparison of algebraic numbers

2 main approaches

- root isolation and comparison of intervals when roots are very close or equal up to separation bound \longrightarrow very slow

Arrangements of curves

Comparison of algebraic numbers

2 main approaches

- root isolation and comparison of intervals when roots are very close or equal up to separation bound \longrightarrow very slow
- algebraic methods for root comparison not sensitive to special cases

Arrangements of curves

Comparison of algebraic numbers

Sturm sequences
$P, Q \in \mathbb{K}[X]$ signed remainder sequence of P and $Q=$ sequence $\mathcal{S}(P, Q)$: $P_{0}, P_{1}, \ldots, P_{k}$

$$
\begin{aligned}
P_{0} & =P \\
P_{1} & =Q \\
P_{2} & =-\operatorname{Rem}\left(P_{0}, P_{1}\right) \\
& \vdots \\
P_{k} & =-\operatorname{Rem}\left(P_{k-2}, P_{k-1}\right) \\
P_{k+1} & =-\operatorname{Rem}\left(P_{k-1}, P_{k}\right)=0
\end{aligned}
$$

where
$\operatorname{Rem}(A, B)=$ remainder of the Euclidean division of A by B

Arrangements of curves

Comparison of algebraic numbers

Sturm sequences
$a, b \in \mathbb{R} \cup\{-\infty,+\infty\}$
$\operatorname{Var}(\mathcal{S} ; a)=$ number of sign variations in the sequence
$P_{0}(a), P_{1}(a), \ldots, P_{d}(a)$

$$
\operatorname{Var}(\mathcal{S} ; a, b)=\operatorname{Var}(\mathcal{S} ; a)-\operatorname{Var}(\mathcal{S} ; b)
$$

Arrangements of curves

Comparison of algebraic numbers

Sturm sequences allow to

- count roots

Sturm sequence of $P=\mathcal{S}\left(P, P^{\prime}\right)$

$$
\begin{aligned}
& \qquad \operatorname{Var}\left(\mathcal{S}\left(P, P^{\prime}\right) ; a, b\right) \\
& \text { is the number of roots of } P \text { in the interval }[a, b]
\end{aligned}
$$

Arrangements of curves

Comparison of algebraic numbers

Sturm sequences allow to

- count roots
- compare roots
- P, Q relative prime,
- P square free,
- $a<b$ non roots of P.
$\mathcal{S}=\left(P, P^{\prime} Q, \ldots\right)$ Sturm sequence of $P, P^{\prime} Q$

$$
\operatorname{Var}(\mathcal{S} ; a, b)=\sum_{P(\rho)=0, a<\rho<b} \operatorname{sign}(Q(\rho))
$$

Arrangements of curves

Comparison of algebraic numbers

Case of degree 2. P Q

Arrangements of curves

Comparison of algebraic numbers
comparison reduces to sign of algebraic expressions !
\longrightarrow Efficient filtered exact computations

Arrangements of curves

Comparison of algebraic numbers

Small degree:
algebraic expressions can be pre-computed static Sturm sequences

The polynomial expressions have a true geometric meaning Sturm sequences \Leftrightarrow resultant based methods. . .

and applications

- generic arrangements
- manipulations of 2d circular arcs

VLSI design

industrial data 89,918 input arcs 495,209 vertices 878,799 edges 383,871 faces

CGAL 3.3: 169 sec Pentium 4, 2.5 GHz, 1GB Linux (2.4.20 Kernel)
g++4.0.2

Hot topics

- exact drawing of curves
= any zoom possible

Hot topics

- exact drawing of curves
= any zoom possible
- exact topology of curves

Hot topics

- exact drawing of curves
= any zoom possible
- exact topology of curves
- arrangements of quadrics, spheres
- surfacic approaches
- volumic approaches algebraic issues, data structures. . .

Hot topics

- exact drawing of curves
= any zoom possible
- exact topology of curves
- arrangements of quadrics, spheres
- surfacic approaches
- volumic approaches
algebraic issues, data structures. . .
- design of interface geometry/algebra geometric/algebraic concepts // C++ concepts

Hot topics

- exact drawing of curves
= any zoom possible
- exact topology of curves
- arrangements of quadrics, spheres
- surfacic approaches
- volumic approaches
algebraic issues, data structures. . .
- design of interface geometry/algebra geometric/algebraic concepts // C++ concepts
- definition of the degree of predicates/algorithm/problem

Where it happens (unordered - non exhaustive)

USA

- NYU (Chee Yap, pioneer of the Exact Geometric Computation, Core library)
- University of N. Carolina (Dinesh Manocha et al, MAPC, Esolid no degeneracies allowed)

Where it happens (unordered - non exhaustive)

Mostly in Europe

- MPI Saarbrücken (arrangements of 2d cubics, 3d quadrics, ExACUS prototype \rightarrow CGAL)
- Tel-Aviv (generic arrangements of curves, CGAL)
- Athens (algebraic aspects, Voronoi of conics)

Where it happens (unordered - non exhaustive)

in France

- INRIA Rocquencourt/UPMC

SALSA, real algebraic geometry, RUR, software FGb/RS (\rightarrow Maple)

- INRIA Lorraine

VEGAS, quadrics, Voronoi of 3D lines

- INRIA Sophia Antipolis

Geometrica + Abs
arrangements of spheres,
computations on 2d/3d circular arcs,
specifications of curved and algebraic operations (with MPI),

CGAL design and implementation

- collaboration on interface $\mathrm{FBb} / \mathrm{RS} \leftrightarrow \mathrm{CGAL}$

