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Warning
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“Commercial”: ECG book coming out soon...
Advice to people having some knowledge of Computer Algebra:

you may leave the room

non technical, superficial. . .
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Circles are never far from triangles



Construction of curves from lines

Parabola: smooth connection between line segments
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Construction of curves from lines



Triangles and curves

[Florence, 1997]
Triangular period



Curves already appear for linear input

Bisecting curve

2D line segments
arcs of parabolas



Curves already appear for linear input

c©Karavelas - CGAL

Voronoi diagram

2D line segments
arcs of parabolas



Curves already appear for linear input

Voronoi diagram

3D line segments
patches of quadric surfaces



More generally:

manipulations of algebraic curves and surfaces

Only considered here
Exact Geometric Computation [Yap][. . . ]
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Why we should not be afraid of Computer Algebra
trying to convice myself...

useful

interesting

not so hard to understand (?)

some people are nice



One tool: Resultant

Resultant of a system of polynomial equations

= necessary and sufficient condition
such that it has a root.

How to compute the resultant? hard problem
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Resultant of a system of polynomial equations

= necessary and sufficient condition
such that it has a root.

How to compute the resultant? hard problem



Sylvester resultant

Univariate case {
P = a0xm + · · ·+ am

Q = b0xn + · · ·+ bn

a0 6= 0, b0 6= 0, m > n,
coefficients in a field K (algebraically closed).



Sylvester resultant


P = a0xm + · · · + am
Q = b0xn + · · · + bn
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Sylvester resultant


P = a0xm + · · · + am
Q = b0xn + · · · + bn

Sylvester resultant =

= 0 iff
P and Q have a

common root in K.
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Demystifying Resultant - I

{
ax + by − c = 0
dx + ey − f = 0

seen as: x unknown, y parameter

Sylvester Resultant =

∣∣∣∣ a d
by − c ey − f

∣∣∣∣
= a(ey − f )− d(by − c)

Boils down to eliminate x
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Demystifying Resultant - II

p, q, s three points in the plane,
t a fourth point.

Is t lying on the circle Cpqs?
p

q s

t ?

t on Cpqs

p

q s

t ?



Demystifying Resultant - II

t on Cpqs

p

q s

t ?

Cpqs center (xc , yc) radius r

(x − xc)
2 + (y − yc)

2 = r2
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Demystifying Resultant - II

t on Cpqs

p

q s

t ?

iff


2xpX + 2ypY + R − (x2

p + y2
p )Z = 0

2xqX + 2yqY + R − (x2
q + y2

q )Z = 0
2xsX + 2ysY + R − (x2

s + y2
s )Z = 0

2xtX + 2ytY + R − (x2
t + y2

t )Z = 0

has a non-trivial solution (X , Y , R, Z ) and

X/Z = xc

Y/Z = yc

R/Z = r2 − x2
c − y2

c .
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Resultant

Resultant often used in simple cases without noticing

Linear algebra helps solve non-linear problems
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Linear algebra helps solve non-linear problems



Digression on algebraic degree

One measure of efficiency and precision of a predicate:
algebraic degree



Digression on algebraic degree

If predicate = sign of a resultant

Resultant has minimal degree =⇒ optimal predicate?

No:

methods often return a multiple of the resultant
−→ resultant hard to compute

the resultant may be factored
−→ predicate can have a lower degree

a factor may be P2 + Q2

−→ the degree does not mean so much
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−→ resultant hard to compute
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Digression on algebraic degree

filtering techniques used for efficiency
−→ maybe not such an interesting measure ?



Digression on algebraic degree

Degree of a predicate
−→ not trivial

Degree of an algorithm
−→ depends on the algebraic expressions of predicates

Degree of a geometric problem
−→ ?

Digression 7→ thread



Another tool: Sturm sequences

P = P0, P1, . . . , Pd ∈ R[X ]

α, β ∈ R ∪{−∞,+∞}

Var(P;α) = number of sign variations in the sequence
P0(α), P1(α), . . . , Pd(α)

Var(P;α, β) = Var(P;α)− Var(P;β)



Sturm sequences

P, Q ∈ K[X ] signed remainder sequence of P and Q =
sequence S(P, Q) : P0, P1, . . . , Pk

P0 = P

P1 = Q

P2 = −Rem(P0, P1)

...

Pk = −Rem(Pk−2, Pk−1)

Pk+1 = −Rem(Pk−1, Pk ) = 0

where
Rem(A, B) = remainder of the Euclidean division of A by B



Sturm sequences

Sturm sequence of P =
sequence S(P, P ′) of signed reminders of P and P ′

Var(S(P, P ′);α, β)
is the number of roots of P in the interval [α, β]



Sturm sequences for dummies

by a dummy

P = aX 2 + bX + c

α β

+

+

−

+

+

+

P

P ′

∆

P ′ = 2aX + b
P = P ′.(X

2 + b
4a)− ( b2

4a − c)

P0 = P, P1 = P ′, P2 = ∆

if ∆ > 0
α = −∞, β = +∞

Var(P;α) = 2

Var(P;β) = 0

2 roots
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Sturm sequences

Sequence S(P, P ′Q) of signed reminders of P and P ′Q
counts the number of roots of P at which Q is positive

Sturm sequences allow to compare roots of P and Q



Comparing intersection points

signs of
polynomial expressions

comparison of
algebraic numbers

Sturm sequences −→
signs of
polynomial expressions
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Comparing intersection points

signs of
polynomial expressions

comparison of
algebraic numbers

Sturm sequences −→
signs of
polynomial expressions



Practical efficiency

Arithmetic filters for sign computations:

y n

|P a(x)| > ε
?

Approximate evaluation P a(x)
+ Error ε

sign (P (x)) = sign (P a(x)) Exact computation

Exact geometric computation 6= Exact arithmetics



Practical efficiency

Comparison of algebraic numbers of degree 2:

J

+−
P1 > 0

Case 1,2,3

P1 < 0

Case 3,4,5

K

+−
P3 > 0

Case 3,4

D

+−

P2 > 0; P3 < 0

Case 4,5

Case 3b4

+−
P4 > 0

l1 > l2

Case 3a

+−

Case 4

P4

Case 3a,4

l1 > l2

l1 < l2

l1 > l2

K

+−
P2, P3 > 0

l1 < l2

Case 1,2

D

+−

P3 < 0

Case 2,3

l1 < l2

Case 2,3a

+−
P4 > 0

l1 > l2

Case 3b

+−

Case 3bCase 2

P4

Case 2,3b

l1 > l2l1 < l2l1 < l2

Case 3a

21 5

28 6

13 10

3 7

4 12

6

10

7

12

28

13

3

4

J ′J ′

polynomial expressions pre-computed
static Sturm sequences



Algebra is not just “computations”
it has a meaning...!

B1
A1

y

x

√√√√√√C1
q2
1

√
I1

A1

J
A1 A2

l1 r1 l2 r2

K = 0 ⇐⇒ l1, r1, l2, r2 harmonic division

Geometric interpretation in more complicated cases...?

Optimal degree...?
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Open Source Project
www.cgal.org

Release 3.2 soon

Exclusive news: Out before Microsoft new OS!

new: 2D Circular Kernel
manipulations of circular arcs

Arrangement package redesigned

. . .
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VLSI - CAD



Intersection of two quadrics QS and QT

Levin’s pencil method

find a “good” quadric in the
pencil QR(λ)=λS−T
λ root of degree 3 pol.

Diagonalize R(λ).
Eigenvalues = roots of
degree 2 pol. ∈ Q(λ).
Normalize eigenvectors.

Plug the parameterization
of QR(λ) in QT .
Degree 2 in one of the
parameters. Solve

“good” = simple ruled∣∣∣∣∣∣∣∣
∣∣∣∣∣∣

x x x
x x x
x x x

∣∣∣∣∣∣ ...

. . . ·

∣∣∣∣∣∣∣∣
principal subdeterminant =0



Intersection of two quadrics QS and QT

Levin’s pencil method

find a “good” quadric in the
pencil QR(λ)=λS−T
λ root of degree 3 pol.

Diagonalize R(λ).
Eigenvalues = roots of
degree 2 pol. ∈ Q(λ).
Normalize eigenvectors.

Plug the parameterization
of QR(λ) in QT .
Degree 2 in one of the
parameters. Solve

Improvement

work in P3

Relax the constraint on
QR(λ)

Rational, ruled.

Apply Gauss reduction of
the quadratic form:
PT RP diagonal.
Rational transformation.

Plug the parameterization
in QT .
Degree 2 in one of the
parameters. Solve



Intersection of quadrics

Levin’s pencil method√√√√√

New parameterization
- rational when it exists,

involves
√

pol. otherwise.
- quasi-optimal in √ .

Implemented

c©Dupont et al



Arrangement of quadrics
Projection approach

c©Wolpert

Planar arrangement of curves of degree 4
a curve can have 6 singular points
Sort out (upper, lower) → arrangement on each quadric

Surfacic approach



Arrangement of quadrics
Sweeping approach

Sweeping plane:
Trapezoidal map of evolving conics

Volumic approach:
vertical decomposition



Arrangement of quadrics
Sweeping approach

Events:

- new quadric
- features in the map intersect

worst-case

?

x solution of

∃ y , z1, z2 s.t.
{

Qi(x , y , z1) = 0
Qj(x , y , z1) = 0

and
{

Qk (x , y , z2) = 0
Ql(x , y , z2) = 0

x in an extension field of degree 16
Comparison of events:
difference of events in an extension field of degree 256. . .

Optimal degree...?
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Apollonius diagram
Additively weighted Voronoi diagram

Weighted points σi = (pi , ri), pi ∈ R2, ri ∈ R

δi(x) = ‖x − pi‖ − ri

Ci ⊂ R3 : x3 = ‖x − pi‖ − ri

⇐⇒ (x3 + ri)
2 = (x − pi)

2 x3 + ri > 0 half-cone

Apollonius diagram =
lower envelope of the half-cones.

Bisector of σi and σj =
projection of a plane conic section Ci ∩ Cj .

Σi sphere ⊂ R3, center (pi , ri) radius
√

2ri

Same in Rd
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Bisector of σi and σj =
projection of a plane conic section Ci ∩ Cj .

Σi sphere ⊂ R3, center (pi , ri) radius
√

2ri
Xi projection of x onto Ci
x ∈ A(σi) iff ‖x − pi‖ − ri < ‖x − pj‖ − rj (∀j)

iff pow(Xi ,Σi) < pow(Xi ,Σj)

Same in Rd



Apollonius diagram
Additively weighted Voronoi diagram

Weighted points σi = (pi , ri), pi ∈ R2, ri ∈ R

δi(x) = ‖x − pi‖ − ri

Ci ⊂ R3 : x3 = ‖x − pi‖ − ri

⇐⇒ (x3 + ri)
2 = (x − pi)

2 x3 + ri > 0 half-cone

Apollonius diagram =
lower envelope of the half-cones.

Bisector of σi and σj =
projection of a plane conic section Ci ∩ Cj .

Σi sphere ⊂ R3, center (pi , ri) radius
√

2ri

A(σi) = projection of the intersection of
the half-cone Ci with the power region of Σi

Same in Rd



c©Karavelas

Tricky predicates
Degree 16

Implementation degree 20:
degree 16 requires ∼ 100 times as many arithmetic
operations...

Optimal degree...?
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Challenges

theoretical: questions on degree...

Robust (Exact?) computation on higher degree
curves and surfaces

Improvement of practical efficiency for low degree curves
CAD-VLSI (circular arcs):

∼ 10 times slower than industrial non-robust code
good start!
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theoretical: questions on degree...

Robust (Exact?) computation on higher degree
curves and surfaces

Improvement of practical efficiency for low degree curves
CAD-VLSI (circular arcs):

∼ 10 times slower than industrial non-robust code
good start!



Challenges

Applications to Structural biology
Manipulations of a large number of spheres

(low degree surfaces. . . )

c©Halperin et al.
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