Similarity in the Design and the Implementation of a Multi-Platform
CASE Tool'

Taegyun Kim ', Gyusang Shin *, Nacer Boudjlida

! Pusan University of Foreign Studies, Department of Computer Engineering
55-1, Uam Dong, Nam Gu, 608-738, Pusan, Korea
Tel: +82 51 640 3178, Fax: +82 51 640 3038, Email: ktg@taejo.pufs.ac.kr
? Real-Time Computing Department, ETRI-CSTL
161, Kajong Dong, Yusong Gu, Taejon, Korea
Tel: +82 42 860 6566, Email: gsshin@etri.re.kr
3 UHP Nancy 1, LORIA UMR 7503, BP 239
54506 — Vandoeuvre Les Nancy Cedex, France
Tel: +33 383593076, Fax: +33 383 41 30 79, Email: nacer@loria.fr

Abstract

This paper presents similarity in the design and the implementation of a Computer Aided Software Engineering (CASE)
tool on three platforms. OODesigner is a tool that was initially developed to support Object Modeling Technique
(OMT). An initial Unix version has been developed since 1994. In 1997, after the completion of the Unix version, we
began developing a Java version and a Windows version to support Unified Modeling Language (UML). The
development of a CASE tool is a typical application of the Model-View-Controller (MVC) paradigm. Thus, we
obtained a common design pattern among the versions in the MVC point of views. This design similarity can be used to
develop several kinds of CASE tools with the corresponding design notations. In this paper, we present the process we
followed to develop the three versions and we discuss the similarity found among them. We also outline a kind of
generic architecture for the design and the implementation of CASE tools.

Keywords: Design Pattern, Object Modeling Technique, Unified Modeling Language, Computer Aided Software
Engineering Tool, Model-View-Controller Paradigm

From a software engineering point of view, major
research areas in OO technology concerned the following
issues:

e OO programming languages such as Smalltalk,
Objective-C, Eiffel, C++ and Java,

OO analysis and design methodology like Booch’s
00D, Wasserman’s OOSD, Coad’s OOA, Beck
and Cunningham’s CRC, Wirfs-Brock’s RDD,

1. Introduction

Although there may be as many different views of
what the object-oriented (OO) paradigm should be as
there are computer scientists and programmers, it is more
and more commonly admitted that the paradigm ®
substantially contributes to overcoming the software
crisis. Research and development projects, in the past

decade, has shown that OO techniques are a more natural Rumbaugh’s  OMT and Rational =~ Rose’s
way of problem solving than structured techniques[7,11]. UML[3,17,5,1,18,14.8], .
Software engineers can take full advantage of principles e Component-based distributed systems  with

like abstraction, encapsulation, modularity, hierarchy,
typing, concurrency, and persistency in a synergistic
way[2]. Moreover, the long term controversial problem of
software reuse can be solved by means of OO concepts
and mechanisms. Since its emergence, around two
decades ago, the OO technique has gained tremendous
popularity and great momentum.

CORBA and OLE/DCOM technology[ 13,4,16],

e Automated software engineering tool, variously
known as Computer Aided Software Engineering
(CASE), Integrated Project Support Environment
(IPSE), Software Engineering Environment (SEE)
and meta-CASE tools[6].

As CASE tools may importantly contribute in

productivity improvement, many vendors nowadays
supply OO CASE tools to support the above-mentioned

"In proceedings of Proceedings of COnstructing Software Engineering Tools, COSET'99, ICSE'99 Workshop. Pages

137-146. Los Angeles, CA, May 1999.



methods. Since 1994, we also have been developing an
OO CASE tool named OODesigner on a Unix platform.
The initial goals of OODesigner included drawing
facilities for the three models in OMT, documenting class
resources, automatically generating C++ code, reverse
engineering C++ code, storing, searching and reusing
classes in a repository and collecting metrics data.

In 1996, the development of the Unix OODesigner
version was achieved. But we had to totally restructure it
due to encountered maintenance problems. After one
man/year successful restructuring effort, we got a version
that is easier to enhance and to port to other
platforms[9,10]. As a case study for porting to other
platforms, we tried to port the Unix version into a Java
application. We also tried to port the Unix version to a
Windows version using Visual C++. While performing
the platform migration experiments, we identified a kind
of general or common OO CASE tool design and
implementation pattern. In other words, OO CASE tools
may not only have a common design architecture, as a
typical application of Model-View-Controller (MVC)
paradigm[15], but they also have implementation
similarity as they are written in an OO programming
language. In this paper, we present the similarity across
the three versions of OODesigner. We also suggest the
general architecture of OO CASE tools.

This paper is organized as follows. In section 2, we
briefly review the history of the three versions of
OODesigner. The history includes the presentation of the
goals of each version, the restructuring and the porting
processes. In section 3, we introduce case examples to
show the similarity among the three versions. The case
examples are separately presented with respect to MVC
components, and with respect to the design and the
implementation perspectives. In section 4, we present
some suggestions for developing OO CASE tools in
general. These suggestions are presented from an
implementation perspective and from a design
perspective. Finally we conclude in section 5 by outlining
our work and further research topics.

2. OODesigner Historical Process

In this section, we provide historical information
about the three versions of OODesigner including its
goals and its development process. While the product
goals of OODesigner development were almost the same
for the three versions, the process goals were slightly
different. In the following, process goals and product
goals are presented for every version.

2.1 The Unix Version History

The initial development of OODesigner started in
1994 with the objective to provide an environment to
support Rumbaugh’s OMT. At the early stage of the
project, two types of goals were fixed: process goals and
product goals. The product goals were functional
requirements that included the following:

e Support the design of the three models of OMT:
object, functional and dynamic models,
e Provide facilities to document the class resources,
e Maintain a repository for the designed object
models,
Generate C++ code,
Reverse engineer class diagrams from C++ code,
Store and retrieve class definitions for reuse,
Collect metrics data for C++ program.
Being OO novices, at the beginning of the project, we
also fixed for ourselves some process goals like:
e Improve our ability to conduct OO design and
implementation activities,
e Practice an iterative development process,
e Apply OODesigner as a CASE tool for developing
OODesigner itself,
e FEnsure maintainability for further
enhancements and platform migration.
In 1996, the Unix version 1.x was released into the
public domain for free use. Since its first release, Asset
Source for Software Engineering Technology (ASSET)
and fip://203.230.73.24/pub/OOD sites are used as major
distribution routes. The first version was built on a Sun
workstation running OS-4.1.x, X11-R5, Motif-1.2 and
C++-2.0. This version was implemented with 60
thousands of C++ source statements. Figure 1 shows a
typical screen session of the Unix version. We found that
the first version successfully satisfied all the product
goals, but it did not meet the process goals, especially
with respect to maintenance issues. In other words, the
first version worked correctly for the given requirements,
but its class structure was so badly designed that it was
quite difficult to enhance the tool with additional
functionalities. The failure in the process goal satisfaction
is mainly due, in our opinion, to the lack of OO technique
mastery.

product

e B

Figure 1. Typical screen session of the Unix version

As the project had no deadline constraint and as it had
educational purposes, we decided to totally restructure
the produced tool (See [9,10] for details about the



restructuring process). After restructuring, the tool
became:
e Easier to modify, enhance, understand and port to
other platforms,
e More flexible,
independent,
e And finally easier to maintain.
Thanks to these gained benefits, we were able to
conduct a case study of porting issue.

stable, reliable and machine

2.2 The Java Version History

The restructuring activity ended in 1997, and at that
time Java and UML were gaining tremendous popularity.
Thus we decided to port the Unix version to a Java
platform as a case study. We established two types of
goals for the Java version. As a product goal, we decided
to support UML rather than OMT. We also established
the following process goals:

e Learn about Java,

e Apply OODesigner as a CASE tool for platform

migration,

e Try to discover commonalities between C++ and

Java programming.

The Unix version was already fitted with the major
functionalities like C++ reverse engineering and Java
code generation: these functionalities have been used to
port the tool from C++ to Java. So, the porting process
was the following (Figure 2 describes the porting process
in an SADT-like notation[12]).

syntactic transformation informal matching rules
rules from C++ to Java from Motif GUI components
‘ to Java GUI objects

l

modi fying
reversed
class diazram

T

complete class
diagran for
Java wersion

reversed

reverse B
class diagran

C++ source engineering

code of the
Unix wersion

for Ce+
source code

customized
00Designer

inconplete
Java source
conplete Java patching code generating
source code for «+— Java Java

the Java verzion source code source code

T

original
00Designer

Figure 2. Porting process for the Java version

i) Reverse the source code of the Unix version,
thanks to the Unix version itself: this step resulted
in the class diagrams for the Unix version.
Moreover, since we customized the reverse
engineering facility of OODesigner to enable
simple syntactic transformation from C++ to Java,
we did not have to perform syntactic conversion
from C++ to Java.

ii) Modify the class diagrams generated by the

reverse procedure using the Unix version itself; i.e.

draw new class diagrams for the Java version
using the Unix version. Especially, in this step, we
converted Motif GUI components to the
corresponding Java GUI objects.

iii) Generate the Java code for the modified class
diagrams using Java code generation facility of
OODesigner.

iv) Manually modify the generated source files
whenever a problem is encountered during the
implementation phase.

An important feature of the porting process worth
noting is that the production of the Java version was
supported by the Unix version, so increasing our
productivity. For instance, at the early stage of the
porting process, we could produce 53 classes with about
20,000 source lines within one man/month. Figure 3
shows a typical screen session of the Java version that is
currently under development.

Figure 3. The Java version of OODesigner

2.3 The Windows Version History

While the Unix version was being ported into a Java
version, a PC version of OODesigner was concurrently
being developed using Visual C++. As Windows 95
gained worldwide popularity, we received many requests
from users of OODesigner to provide a Windows version.
Thus we started to develop it from late 1997. We
established the product goal to make a CASE tool for
UML, and we established the process goals as follows:

e Learn how to use Visual C++ development
platform. Especially we wanted to find the
compatibility between Motif GUI and Windows
GUL

e Apply OODesigner as a CASE tool for platform
migration as it was the case in the Java porting
process. In this case, we tried to customize
OODesigner to transform some identifiers in the
Unix version into corresponding names in the
Windows version.

e Identify platform-independent classes and reuse
classes from the Unix version as much as possible.

While translating the Unix version to the Windows
one, we noticed that the object models for the model
component in the MVC perspectives could be totally
reused in the Windows version. Although the view
component and the controller component of OODesigner



are slightly different from those in the Motif and the
Visual C++ development platforms, we tried to find
common control mechanisms and to translate the Unix
version to the Windows one as automatically as possible.
Thus we gained productivity while building the Windows
version. For instance, we could produce 57 classes with
about 20,000 source lines within one man/month. Figure
4 shows the Windows version currently under
development.

MWindow Help

EECREEEL

=) classes
LinkedList
Listhode
Stack

3 ClassVie <[>

Bis editview is for documenting class resources =
q

Ready [ NOM[

Figure 4. The Windows version of OODesigner

3. Versions Similarity

The MVC paradigm divides an interactive application
into three components. The Model Component
encapsulates the core functionality and data. The View
component displays a model’s data to the user. And the
Controller  Component handles GUI events and
communicates them to the model. Since all the CASE
tools have view components to show diagrams and to
provide control mechanisms to edit diagrams with a

Figure

model for the corresponding notation, the development of
CASE tools can be categorized as a typical application of
the MVC paradigm. We recognized some design and
implementation similarity among the three versions
during the porting processes. In this section, we discuss
some case examples of the similarity with respect to the
MVC components.

3.1 The Model Component Point of View

m  From the Design Perspective

It is clear that the model component of OODesigner
had to be platform independent. It consists of object
models to represent OMT or UML notations and it is
totally reused in the three versions. Figure 5 shows the
class diagram to model the notations of the class diagram.
The concrete classes in this figure serve as classes for
representing the corresponding OMT notations. For
example, GenTion, AggTion, AssTion and ColTion
classes on the right bottom of this figure are defined to
represent the notations of generalization, aggregation,
association and collaboration respectively. This model
can be wused for making three versions without
modification.

m  From the Implementation Perspective

We found a very strong implementation similarity of
the model component between C++ and Java. Then, as
for the design, we could totally reuse C++ source code of
the model component to implement the Java version. As
already stated in section 2.2, we gained great productivity
for implementing the Java version because we could
automatically translate C++ syntax into Java using the
customized OODesigner. Figure 6 shows a case example
of an implementation similarity between the C++ and the
Java versions.

TucPointf igure

[hePointF ipure

Hultilbjecttizure
List
£

‘ Point ‘ ‘ RoundBowd ‘ RouncBozB Rectangle

‘ Lircle H Dianard H Triangle ‘

LineHoded ist }‘

<&

—
Lire LineHad: ‘

‘ [lzasTerplatel ist

ElassTemlate_“

AITList

\7_ fnyTion

‘ [ualificationTaxt ‘

LinkAttrText ‘

SinglelineText H ClassText

‘ fnyTionInfoluple

fryTionliat |

GenTion ‘ ‘ fgplion ‘ faalion ‘ ‘ [alTion ‘

?‘T

Figure 5. An example of model component: a class diagram for modeling class notations



/I an example of C++ member function within
/I ClassTemplate class
int ClassTemplate::minimized_width(int& maxchar)

{

_classname->uncentering(TRUE);

if (_NofCharsinLine>_classname->width()) {
maxchar = _NofCharsinLine;

}else {
maxchar = _classname->width();

return (_deltaH*maxchar+2*_GapX+_deltaH);

}

/ the correponding Java member function
public final class ClassTemplate
extends Box implements ClassLike {

private int minimized_width(IntVar maxchar) {
_classname.uncentering(true);
if (_NofCharsinLine>_classname.width()) {
maxchar.v = _NofCharsinLine;
}else {
maxchar.v = _classname.width();

}
return(_deltaH*maxchar.v+2*_GapX+_deltaH);
}

}
3.2 The View Component Point of View

Figure 6. Example of an implementation similarity
between C++ and Java source code

m  From the Design Perspective

The view component of OODesigner has the
responsibility to draw a model’s data to a screen. Objects
related to the view component consist of the

corresponding event handlers, graphics context, and fonts.

As these objects are provided by the corresponding
platforms as built-in facilities, and as functions of the
view component are scattered within the controller
component, we did not have to make specific object
models for the view component. Because the three
platforms provide the same functionality with slightly
different names, we only had to find the corresponding
names of the built-in objects to port from Unix version to
the other ones. Table 1 shows the corresponding objects
for the view component across the three platforms.

Although there was a small difference in managing
attributes of the graphic objects, we could reuse the
classes for the view component of the Unix version by
converting the corresponding class names and member
function names.

Table 1. Objects cross-platforms correspondence

repainting event class class

screen handler

Functionality | X Toolkit | Java AWT MFC
graphics GC Graphics CDC

font Font Font CFont
clipping Region Shape CRgn
event user paint() in OnDraw()
handler for defined Canvas in CView

m  From the Implementation Perspective

As for the case of the model component, we could
reuse C++ source code of the Unix version to make the
other versions. We had to make minor changes to some
names for the other platforms. But the already existing
algorithm and the overall architecture for the view
component remains unchanged. Figure 7 shows an
example of source code of the Windows version and the
Java version to manage screen repainting.

/I the member function in the Windows version to repaint screen
void COODView::OnDraw(CDC* pDC)
{
COODDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
CPoint sp = GetScrollPosition();
if (sp.x != _originX || sp.y != _originY) {
_originX = sp.x; _originY = sp.y;
if (_currentFocus != NIL) {
_currentFocus->make_region();
_currentFocus->reset_clip_area();

Figure *all = _figures->get_first();
while (all != NIL) {
all->set_in_canvas(all->
check_in_region(_canvasRgn));
if (all->in_canvas()) {
all->make_region();
}else {
all->reset_region();

all = _figures->get_next();
recalc_clip_area();

}
CPen *oldPen = pDC->SelectObject(_plainPen);
CBrush *oldBrush = pDC->SelectObject(_plainBrush);
Figure *ptr = _figures->get_first();
while(ptr != NIL) {

ptr->draw(pDC);

ptr = _figures->get_next();

}
if (_currentFocus != NIL) {
if (_editingTag) {
_currentFocus->draw(pDC);
}else {
if (_doNotRubberband) {
highlight(_currentFocus);
}else {
rubberbanding(_currentFocus);
}

}

pDC->SelectObject(oldPen);
pDC->SelectObject(oldBrush);
_doNotRubberband = FALSE;

/I the corresponding Java member function
class GraphicController extends Canvas
implements ActionListener, AdjustmentListener{

public void paint(Graphics g) {
int spx = hscrollBar.getValue();
int spy = vscrollBar.getValue();
if (spx != _originX || spy != _originY) {
_originX = spx; _originY = spy;
if (_currentFocus != null) {




_currentFocus.make_region();
_currentFocus.reset_clip_area();

}
Figure all = _figures.get_first();
while (all = null) {
all.set_in_canvas(all.check_in_region(_canvasRgn));
if (all.in_canvas()) {
all.make_region();
}else{
all.reset_region();

all = _figures.get_next();
recalc_clip_area();

Figure ptr = _figures.get_first();
while(ptr != null) {

ptr.draw(g);

ptr = _figures.get_next();

if (_currentFocus != null) {

if (_editingTag) {
_currentFocus.draw(g);
showCaret();

} else if (_popupflag == true) {
draw_dots(_currentFocus);
_popupflag = false;

}else {
rubberbanding(_currentFocus);

}

Figure 7. A sample source code of Visual C++ and
Java to repaint screen

3.3 The Controller Component Point of View

m  The Design Perspective

Although the model components and the view
components of the three versions are very similar, their
respective controller components are slightly different.
Therefore the reuse rate for the controller components is
relatively small as compared to the other two components.
The controller compe
with the physical in
into messages to |

programming as compared to Java and Visual C++
programming. But the major drawback of Motif
programming is that we have to declare the event
handlers and callback functions as static members
within the corresponding classes. Thus, event
handlers always find out the proper object to
receive the events that occurs, and they have to
delegate their event-handling role to the proper
member functions. This mechanism results in
increasing the number of member functions.

The Java version: In this version, we directly use
Java AWT classes to provide the application
frames. The built-in classes reduce the GUI
component construction effort. Figure 9 shows the
object model for the controller component of the
Java version. In this figure, the stereotypes
<<library>> and <<interface>> annotations means
that the annotated classes are built-in classes and
built-in interfaces respectively. Figure 8 and figure
9 show that the design of the classes is similar in
the two versions even though their inheritance
hierarchies are different. The good point of the
event handling mechanism in Java programming is
that we do not have to explicitly identify the
object that receives the corresponding events. In
other words, the built-in member functions that
implement the proper interface are not declared as
static members, in contrast to Motif programming.
Thus, additional member functions are not needed
to actually deal with the events. On the contrary,
unlike Motif programming the usability to register
and to unregister event handlers brings some
inconvenience: flag variables have to be used to
deal with the dynamic event handlers. The use of
these flags makes the system more complicated.
The Windows version: The merits and the demerits
of the Windows version are very similar to those

of the Java version. Microsoft Foundation Class
(MECY lihrarv can he need ta conctriect the

II%HH%HEEHHHI%HHiEiiHII

differences among th

tclibrary}) (¢interface)} (Clitmany}) (Cinterface)>

o The Unix vers | comm
function. The i

‘ Frame ‘

ActionListner

Ad justmentlistner

‘ Carvas

application o

T

T

members and

had to enca e
corresponding Hodeler
Figure 8 show
component o
mechanism to
can be effic
unregistering

mechanism
. StateModal
handlers if n et

1

O00esigrer ObjectModeler

1

Madelerlist

IIIHHHHHHHIIII
IEIHHHHHHHHII

GraphicContraller

€¢libmary sy

Scrollbar Caret

€¢library sy
M

t¢1ibrary??

{

MainPopup

MySys

i

t¢1ibraryy?

File

i

(¢likmary})

Fileliriter

j

(Clibmanyd)

FileReader

i
:
i

(¢1ibrary)

Event

:



m  From The Implementation Perspective

Unlike the case of the model component and the view
component, we could not totally reuse C++ source code
of the Unix version to produce the other versions: to deal
with the event handlers, many changes were required in
the controller component. We have to introduce more
conditional statements in the Java version and the
Windows version. Figure 10 shows an example of source
code of the Unix and the Windows versions to deal with
an event handling.

/I an example of event handler of the Unix version

void GraphicController::start_draw(
Widget, XtPointer thisController,XEvent *event,BOOL *)

{
if (event->xbutton.button != Button1) return;
if (OODesigner::EditingTag) return;
GraphicController *controller =
(GraphicController*) thisController;
if (controller->_currentDrawingType == NIL) return;
controller->_isFixed = FALSE;
XtRemoveEventHandler(controller->_canvas_widget,
PointerMotionMask,FALSE,
(XtEventHandler)&GraphicController::fix_pointer,
thisController);
XtRemoveEventHandler(controller->_canvas_widget,
PointerMotionMask,FALSE,
(XtEventHandler)&GraphicController::trace_enter,
thisController);
controller->local_start_draw(event);
}

/ the corresponding Visual C++ member function
void COODView::start_draw(CPoint event)

{
if (F_start_draw == FALSE) return;
if (EditingTag) return;
if (_currentDrawingType == 0) return;
_isFixed = FALSE;
F_fix_pointer = FALSE;
F_trace_enter = FALSE;
local_start_draw(event);

Figure 10. A sample source code of C++ and Visual
C++ to deal with a button-pressed event

4. Observations

In this section, we provide some recommendations for
building OO CASE tools from design and
implementation perspectives. The view component in the
MVC paradigm is qualified as an independent component
of a system. But from our experience, we notice that the
view component is tightly coupled with the controller
component. And it is almost clear that the view
component is only a subset of the controller component.
Thus we think that it is better to decompose a system into
MC components rather than into MVC components.
Figure 11 outlines a package architecture we propose for
building CASE tools. At the top level, two sorts of
packages serve to build the controller component and the
model component. The controller package consists of two
types of packages. The Interactive Controller package
offers the services to deal with the input-devices

generated events. As this controller component is the
most complicated part in the system, lot of design and
implementation effort may be dedicated to its production.

The Static Controller package is in charge of
processing callbacks by selecting application pulldown
menus. As these kinds of services can be processed not
interactively but sequentially, we can implement the
static controller package more or less concurrently. The
functionalities of CASE tools such as loading or saving
files, automatically generating or reversing source code
are examples of services that are provided by the static
controller package.

The model component has also two kinds of sub-
components. The Methodology Specific Object Model
must be constructed to support the notations of the
method for which the tool is developed. The object model
in figure 5 is a typical example. The General Purpose
Object Model includes classes like Stack, List,
OrderedCollection, and SymbolTable. Some of these may
be provided by the specific platforms, otherwise they
have to be developed. If these classes are completely
developed, they can be very reusable across the different
platforms. In our case, we tried to make the general-
purpose classes by ourselves as much as possible to
easily translate from a platform into the others.

1

[
< et -
Controller |eg_ _________________] Hodel
1 1
1 1
Methodology General

Interactive Static Specific Purpose
Controller Controller Chject Model Object Model

Figure 11. Architecture to build CASE tools

Let us now turn our attention to the implementation
perspective. Even though different OO programming
languages offer some different syntax structures, their
main theme has inherent generality. Thus it is very
important to keep the uniformity of the basic features of
OO programming while implementing. We believe that
the success of this porting study results from the fact that
the Unix version became well structured after
restructuring process[9,10]. The virtue of the Unix
version due to the fact that we tried to:

e Reduce duplication of data members in class
clusters and reduce duplication of code in member
functions of the same name by dividing member
functions properly.

e Let all data members be allocated dynamically and
intensively use dynamic binding for method
invocation.

o Keep the class size, the number of class members
and the method size as small as possible.



e Use inheritance aggressively. But we limited the
largest inheritance depth to be less than six.

e Encapsulate Motif widgets with the corresponding
callback functions. All graphical user interface
components have been implemented as classes.

e Encapsulate global members or library functions
in the corresponding class. And we also confined
platform dependent library functions to reside in
local parts of source code.

e Make destructor more complete to make the
software more reliable.

e Use some coding conventions of our own. For
example, we decided i) not to use reference type
but to use pointer type, ii) not to use template class,
iii) not to use nested class.

In our experience, it was especially important to keep
class sizes as small as possible to make the software more
portable. On the other hand, we found that there are big
risks of misunderstanding and misusing some features of
a specific OO language or the functionality of class
libraries that may be available on a given platform. The
chance of misuse sometimes leads the system into
serious hazardous states. Thus if we are supposed to be
involved in a new project with new circumstances never
experienced, we need a long time and a carefully
designed learning course to teach the details of
implementation issues.

5. Concluding Remarks

In this paper, we described our observation of recent
case studies we conducted to develop three versions of an
Object-Oriented CASE tool on different platforms. The
experience gained and the lessons learned from first,
restructuring the initial version of the tool[9,10] and then
from porting it to different platforms enabled us to
empirically improve the design and the development
process together with the mastering of OO technology.
As a matter of fact, the process improvement has been
facilitated by the reflexive nature of OODesigner since its
restructuring as well as the development of the Java and
the Windows versions have been supported by
OODesigner itself. Further, these studies helped us in
identifying commonalities and a kind of common pattern
for the development of CASE tools that support a given
0O design method. From this case study, we observed
that:

e There is a strong similarity in the design and the

implementation of a multi-platform CASE tool in
MVC point of views.

e It is better to decompose a system into MC
components rather than into MVC components
when we design architecture of a CASE tool.

e [t is very important to keep the uniformity of the
basic features of OO programming while we
implement an OO software. The virtue of
portability could be achieved when we

consistently apply uniformity of OO paradigm to
OO software construction.

A further topic we intend to address in the near future
concerns comparative metrics between the developed
versions, as we did for the Unix versions (the one before
restructuring and the one after restructuring). An
additional topic will deal with process support[6]: we feel
that the same kind of process model can be followed
either to develop and to enhance the tool, or to use the
tool to support the design and the implementation of OO
applications.

Acknowledgements

This work was supported by a grant No KOSEF 981-
0923-123-2 from the Korea Science and Engineering
Foundation and also by a grant from Electronics and
Telecommunications Research Institute.

References

[1] K. Beck, W. Cunningham. A Laboratory for Teaching
Object-Oriented Thinking. In Proceedings of OOPSLA’89,
pages 1-6, New Orleans, USA, October 1989.

[2] G. Booch. Object-Oriented Design with Applications. The
Benjamin/Cummings Publishing Company, 1991.

[31 G. Booch. Object-Oriented  Development. [EEE
Transactions on Software Engineering, 12(2):211-221,
February 1986.

[4] D. Chappell. Understanding ActiveX and OLE. Microsoft
Press, 1997.

[5] P. Coad, E. Yourdon. Object-Oriented Analysis. Yourdon
Press, 1990.

[6] A. Finkelstein, J. Kramer, and B. Nuseibeh. Sofiware
Process Modelling and Technology. John Wiley & Sons,
1994.

[71 R. G. Fishman, C. F. Kemerer. Object-Oriented and
Conventional Analysis and Design Methodologies. /[EEE
Computer, 25(10):22-40, October 1992.

[8] M. Fowler, K. Scott. UML Distilled: Applying the Standard
Object-Oriented Modeling Language. Addison-Wesley,
1997.

[9] T. Kim, N. Boudjlida. An Experience Report Related to
Restructuring OODesigner: A CASE Tool for OMT. In
Proceedings of Asia-Pacific  Software  Engineering
Conference, pages 220-227, Taipei, Taiwan, December
1998.

[10] T. Kim, G. Shin. Restructuring OODesigner: A CASE
Tool for OMT. In Proceedings of 20°'th International
Conference on Software Engineering, pages 449-451, Kyoto,
Japan, April 1998.

[11] P. H. Loy. A Comparison of Object-Oriented and
Structured Development Method. ACM SIGSOFT SE Notes,
15(1):44-48, January 1990.

[12] D. A. Marca, C. L. McGowan. SADT, Structured Analysis
and Design Techniques. McGraw Hill, 1987.

[13] T. J. Mowbray, R. Zahavi. The Essential CORBA. John
Willey & Sons, 1995.

[14] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorenzen. Object-Oriented Modeling and Design. Prentice
Hall, 1991.

[15] Y. P. Shan. An Event-Driven Model-View-Controller
Framework for Smalltalk. In Proceedings of OOPSLA’89,
pages 347-352, New Orleans, USA, October 1989.



[16] K. Wallnau, E. Morris. P. Feiler, A. Earl, and E. Litvak. [17] A. 1 Wasserman, P. A. Pircher, R. J. Muller. An Object-

Engineering Computer-Based Systems with Distributed Oriented Structured Design Method for Code Generation.
Object Technology. In Proceedings of the International ACM SIGSOFT SE Notes, 14(1):32-55, January 1989.

Conference on Worldwide Computing and Its Applications, [18] R. J. Wirfs-Brock, R. E. Johnson. Surveying Current
Tsukuba, Japan, 1997, Lecture Notes on Computer Science Research in Object-Oriented Design. Communications of

#1274, Springer-Verlag. the ACM, 33(9):104-124, September 1990.



