
A Mediator-Based Architecture for Capability Management
Nacer BOUDJLIDA (email: nacer@loria.fr)

LORIA-University Henri Poincaré Nancy 1, Campus Scientifique
BP 239, 54506 Vandœuvre Lès Nancy CEDEX (F)

(In Proc. of the 6th IASTED Intern’l Conf. Software Engineering and Applications, Cambridge, USA, Nov. 2002, p.45-50.)

ABSTRACT
The capture, the structuring and the exploitation of the ex-
pertise or the capabilities of an “object” (like a business
partner, an employee, a software component, a Web site,
etc.) are crucial problems in various applications, like co-
operative and distributed applications or e-business and e-
commerce applications. The work we describe in this paper
concerns the advertising of the capabilities or the know-
how of an object. The capabilities are structured and orga-
nized in order to be used when searching for objects that
satisfy a given objective or that meet a given need. One of
the originality of our proposal is in the nature of the an-
swers the intended system can return. Indeed, the answers
are not Yes/No answers but they may be cooperative an-
swers in that sense that when no single object meets the
search criteria, the system attempts to find out what a set of
“complementary” objects that do satisfy the whole search
criteria, every object in the resulting set satisfying part of
the criteria. In this approach, Description Logics is used
as a knowledge representation formalism and classification
techniques are used as search mechanisms.

KEY WORDS
Knowledge Representation, Database, Description Logic,
Classification, Mediation, Distribution.

1 Introduction

In many situations and applications, one is faced to the
problem of discovering “entities” that satisfy given require-
ments. On the other hand, most often, information retrieval
in a distributed context, like the World Wide Web, usu-
ally lacks selectivity and provides large answer-sets due
to the fact that the available information sources are not
well structured nor well classified. As a result, most of
the systems return yes/no answers (i.e. either they find out
answers to a given query or they fail). The work we de-
scribe here concerns the publishing of the capabilities of
given entities (i.e. what functionalities a given entity is of-
fering, what expertise it has and so on). The capabilities
are organized and structured in order to be exploited when
searching for entities that satisfy an objective or that meet
given needs (searching for a component in the context of
component-based design and component-based program-
ming, searching for a business partner with a given exper-
tise, and looking for an employee whose records and exper-

tise satisfy a given work position profile are application ex-
amples of our work). It is clear that these needs require the
capture and the organization of the entities capabilities to-
gether with the classification of the entities and their capa-
bilities. In this work, we adopted an object-oriented knowl-
edge representation using description logics. From the sys-
tem architecture point of view, we opted for a model based
on distributed and cooperative mediators (or traders). A
significant originality of our approach resides in the type of
answers we aim at providing. Indeed, when no single entity
satisfies the search criteria, the systems attempts to deter-
mine a set of complementary entities who, when grouped
together, satisfy the criteria.

The presentation of this work is structured as follows.
In section 2, we expose some motivations and possible ap-
plication domains together with the architecture of the tar-
get system. Section 3 briefly introduces elements of de-
scription logics. Section 4 shows how description logics
is used for entities capabilities management and retrieval.
The current implementation status is also presented in sec-
tion 4, while concluding remarks are in section 5.

2 Motivations and Architecture

The dynamic discovery of services or capabilities an “en-
tity” offers, has different application domains. Component-
based programming, electronic business (e-business) and
even enterprise knowledge management [1] are among
these application domains. Indeed, in the first domain, a
software component is usually described providing the ser-
vices (or functionalities) it offers. Usually, the component
services are only described by there interfaces (the service
signatures that mention the inputs, the outputs and the pos-
sible exceptions). It is clear that the only syntactic descrip-
tion of a component is not satisfactory when looking for a
specific service: an additional semantic description is re-
quired. Moreover, the elicitation of possible relationships
among services may contribute to find out “the best” ser-
vice or the “the best complementary” services that satisfy a
search query.

In e-business, our work can be applied in the consti-
tution of business alliances or when looking for business
partners. For example, within a given project, our target
system may help in retrieving possible partners, i.e. part-
ners that have the required expertise to be associated in the
project development. Furthermore, we also feel that the

work depicted hereafter may also serve for semantic-based
discovery of Web services [2, 3].

The achievement of our goals clearly requires con-
ceptualizing and structuring the knowledge that concern
the “entities” in a given application domain. In [4], “enti-
ties” are design fragments that are described thanks to key-
words, the relationships between the fragments are consti-
tuted by metrics that measures the similarity between frag-
ments. In [5], entities are object-oriented software compo-
nents and description logics [6, 7] (see section 3) is used,
notably, to describe their intended semantics together with
possible constraints involving objects methods. In [8], “en-
tities” are software objects and the capabilities of a soft-
ware object are specified giving a syntactic part (signa-
tures of the methods or operations the object offers) and
a semantic part expressed as logical expressions (a pre-
condition and a post-condition are associated with every
object’s method). The syntactic conformance of a method
to a query is trivial and the semantic conformance uses
theorem proving techniques. The work we are reporting
on is a continuation of [8]: we investigate alternatives to
first-order logic for describing the semantics of an “entity”
and establishing relationships among entities. Description
logics, as a candidate knowledge representation formalism,
has the notable merit that a single mechanism, the classifi-
cation mechanism, serves at the same time to build and to
query extendible domain descriptions.

From another standpoint and considering the aimed
goals, an entity has to be fitted with means to describe it-
self, i.e. to explicit (we’ll say to publish or to export) its ca-
pabilities to enable foreign entities to explore the published
capabilities. A very natural way, we choosed a trader (also
called mediator) based architecture [9]. The principles of
this type of architecture is briefly recalled hereafter.

In this kind of architecture, an “entity”, called ex-
porter, publishes its capabilities at one or more mediators
sites (arrow (a) on figure 1). Entities, called importers, send
requests to the mediator asking it to find out exporters fit-
ted with a given set of capabilities (arrow (b) on figure 1).
The mediator explores its capability and knowledge base
to try to satisfy the request. The capability search pro-
cess is founded on the exported capabilities and on rela-
tionships between them, these relationships being transpar-
ently established by the mediator. When the request can
be satisfied by some exporters known from the mediator,
the references of those exporters are sent back to the im-
porter (arrow (c) on figure 1). Nevertheless, satisfying the
request falls into different cases: (i) there exists exporters
that fully satisfy the request; (ii) there exists exporters that
partly satisfy the request, but when “combining” or com-
posing the capabilities of different exporters one can fully
satisfy the request; (iii) no single exporter nor multiple ex-
porters satisfy the request. In the later situation, the media-
tor may initiate a cooperation process with other mediators
to attempt to satisfy the request (arrow (d) on figure 1).
The cooperation depth, i.e. the number of mediators that
may be involved in the cooperation process and the num-

ber of exporters in a combination, may be controlled and
constrained by the request. For instance, while searching
for business alliance partners, one can constrain the search
process to at most two possible partners: that means that
the answer to the request cannot be constituted from more
than two exporters (identified by a single mediator or by
cooperative mediators).

The ultimate goal of this work is the design and the
development of a set of services to export, import and me-
diate as well as mechanisms for mediator cooperation. The
coming sections detail the adopted approach and founda-
tions, beginning with a short introduction to description
logics (DL).

Mediator 1
(a)

(b)
(c)

(d)

Exporter

Importer

Capability
and

Knowledge
Base

Capability
and

Knowledge
Base

Mediator2

Figure 1. The Mediator-based Architecture.

3 An Introduction to DL

DL1 is a family of knowledge representation languages
where description of a world is built using concepts, roles
and individuals. Two levels of knowledge are considered:
(i) the terminological level (also called TBox) where con-
cepts and roles are represented and manipulated, and (ii)
the assertion (or fact) level (also called ABox) where indi-
viduals are represented and manipulated. The subsumption
relationship enables organizing the concepts and the roles
according to there degree of generalization and a knowl-
edge base can then be viewed as a hierarchy of concepts
possibly associated with a hierarchy of roles. Further, the
classification and the instanciation mechanisms are the ba-
sic reasoning mechanisms in DL.

Section 3.1 introduces basic definitions and sec-
tions 3.2 and 3.3 respectively define the subsumption re-
lationship and the classification process.

3.1 (Informal) Basics of DL

In DL, concepts model classes of individuals (sets of indi-
viduals) and they correspond to generic entities in an ap-
plication domain. An individual is an instance of a con-
cept. Roles model binary relationships among the individ-
ual classes. A concept is specified thanks to a structured
description that is built giving constructors that introduce
the roles associated with the concept and possible restric-
tions associated with some roles. Usually, the restrictions
constrain the range of the binary relationship that is defined
by a role and the role’s cardinal2.

1The essentials of this section is inspired from [10]. [6] is a “fabulous”
site on the topic.

2The cardinal of a role fixes the minimum and the maximum numbers
of elementary values of the role. Elementary values are instances of a

PERSON
����

SET
����

MAN
��

PERSON
WOMAN

��
(and PERSON (not MAN))

member
��

toprole
head

��
member

TEAM �� (and SET (all member PERSON)
(atleast 2 member))

SMALL-TEAM �� (and TEAM (atmost 5 member))
MODERN TEAM �� (and TEAM (atmost 4 member)

(atleast 1 head) (all team head WOMAN))

Figure 2. DL Example (inspired from [11]).

Concepts are primitive concepts or defined ones.
Primitive concepts may be considered as atoms that may
serve to build new concepts (the defined concepts). Simi-
larly, roles may be primitive roles as well as defined roles.
In the figure 2, PERSON and SET are primitive concepts:
they are introduced using the

��
symbol and they are linked

to a ”TOP” concept (
�

)3; TEAM, SMALL-TEAM and
MODERN-TEAM are defined concepts (they are intro-
duced using the �� symbol. The and constructor enables
defining concepts as a conjunction of concepts: these con-
cepts are the immediate ascendants of the defined one. The
all constructor constrains a role’s range and the atleast and
atmost constructors enable specifying the role’s cardinals.
Finally, the not constructor only applies to primitive con-
cepts. On figure 2, a TEAM is a SET of PERSONs and it is
composed with at least two members. MAN and WOMAN
are incompatible primitive concepts and the set of women
is in the MAN complement set [12, 13].

As for classical logic, a formal semantics may be as-
sociated with the defined concepts and roles. Indeed, using
an interpretation domain, one can then define the notions
of concept and role interpretations as well as the notions
of concept satisfiability, equivalence and incompatibility
(see [10, 6, 7] for further details).

3.2 The Subsumption Relationship

Subsumption is the fundamental relationship that may hold
among described concepts. Intuitively, a concept C (PER-
SON, for example) subsumes a concept D (MAN, for ex-
ample) if the set of individuals represented by C contains
the set of individuals represented by D. More formally, C
subsumes D and it is denoted as �	��
 (or D is subsumed
by C) if and only if �����
�� for every possible inter-
pretation � . C is called the subsuming concept and D the
subsumed one.

concept or basic values like integers, strings and so on.
3Intuitively the TOP concept is the “most general one” and it contains

all the individuals while the BOTTOM concept (�) is the most specific
one and is empty.

The subsumption relationship defines a hierarchical
structure among a set of concepts and it may graphically be
represented as an acyclic oriented graph rooted at

�
(see

the left hand-side of figure 3). The graph-nodes are con-
cepts and the edges are instances of the relationship. The
classification process operates on that hierarchy of con-
cepts.

(b)

C1(a) C2(b) C3(c) C4(d)

C5(a, b)

C6(a, b, e) C7(a, b, c)

C8(b, c, d, f)

T(a)

C1 C2(b) C3(c)

C4
C5

C6 C7 C8

T

C9(b,c)

Figure 3. (a) A hierarchy H of concepts; (b) H after insert-
ing concept C9.

3.3 The Classification Process

The classification process aims at determining the position
of a new concept in a given hierarchy. It operates according
to a three-phase loop: (i) Instanciation: create a concept C
that is a concept to be inserted or to be retrieved in the hi-
erarchy; (ii) Classification: traverse the hierarchy, retrieve
the most specific concepts that subsume C (the “immediate
ascendants” of C), retrieve the most general concepts that
are subsumed by C (the “descendants”) and insert C into
the hierarchy if it does not exist; (iii) Operation: update the
links in the hierarchy while inserting the new concept; the
link updates may generate a loop in this process. The right
hand-side of figure 3 illustrates the process as applied to the
concept
������������ .

In this framework, a query is represented as a con-
cept Q to be classified in a given hierarchy. The result of
the query is the set of instances of the concepts that are
subsumed by Q. One should notice that description log-
ics has been used in the database domain [12, 14]4, not
only for querying but also for database schema design and
integration [15], for reasoning about queries (query con-
tainment, query refinement, query optimization, . . .) [16].
From our concern, description logics is used for query pur-
poses with the special objective to produce more than “Yes
or No” results. For example, in our approach, the evalua-
tion of
�� �!�"����� as a query against the graph concept hier-
archy on figure 3, would not return an empty result but it
would return “a wider answer” that contains
$# �&%'�(�"����� and

�)��������*��+,�(-.� . Let us now detail the approach.

4 Capability Management

The possible application domains being introduced to-
gether with the adopted architecture and the representation
formalism, this section describes our contribution to the

4See also [6] for the proceedings of the various “Knowledge Repre-
sentation meets DataBase” (KRDB) Workshops.

mediator-based capability management. Section 4.1 shows
how description logics is used to represent an application
domain knowledge, section 4.2 introduces classification al-
gorithms that have been implemented, section 4.3 explains
how these algorithms serve in capability retrieval and, fi-
nally, section 4.4 reports on the current status of the imple-
mentation.

4.1 Application Domain Representation

As figured by the meta-model in figure 4 (expressed in a
UML class diagram notation), we assume that a media-
tor manages one or more domain knowledge represented
as concept hierarchies. We consider that a given domain
may be described thanks to a set of activities (we’ll call
functions)5 and that an activity is described by the set of
the required skills or capabilities to carry it out.

Domain
DnameName

...
Export
Import

Mediator
1..* 1..*

1..*

1..*

1..* 1..*
Federation

Registery

Requires
0..*

Function
Fname

Individual Capability
CnameSkills

Figure 4. Class Diagram.

Using the description logics terminology, a domain is
an immediate descendant of the TOP node concept, a func-
tion is a descendant (immediate or not) of the correspond-
ing domain(s) and a capability is a property (an attribute)
of a function. Let
 � be the set

� ���"����� ���������(���
	 of capa-
bilities that are required by a function � . In the graph rep-
resentation a dependency edge exists from a function ��� to
a function �� if the capabilities that are required by ��� in-
cludes the ones required by ��� . The ascendants of � are
the Most Specific Subsuming Concepts (MSSC), i.e. they
constitute a set ��������� of functions � � ������� ��� � such that�
� ��� � � ��� �(
 �����
 � . A similar way, the descendants
of � are the Most General Subsumed Concepts (MGSC),
i.e. they constitute a set ��! "��� of functions � � �����������"#
such that

�$� ��� � � �&% �
 ��� �
 � .
In the hierarchical representation of a domain, ev-

ery described function satisfies � ������� � � � � �' (��� .
Moreover, we assume that a list of individuals is attached
to every node: that list contains references to the instances
of the object class represented by the node. As an example,
the figure 5 shows a partial representation of the software
engineering domain limited to two functions, analysis and
programming, programming being itself specialized with
regard to individual capabilities in given programming lan-
guages. On that figure, the programming capabilities clas-
sification are denoted �")������������"* and the references to the

5Domain decomposition into functions may be user-defined as it may
be based on standard categorizations or on defined ontologies, for exam-
ple.

individuals that possess the skills required by every �+ are
not represented. Further, the leaves of the hierarchy are
linked to a bottom node whose usefulness is described in
the next section.

Software Engineering

Design
Programming

Functional OO
Procedural

F4(Java, Cobol,
Pascal)

F5(Java, Cobol,
SQL)

F0(Ada)

F3(Java, Cobol)

F1(Java)F2(Cobol)

Analysis

Figure 5. (Partial) Software Engineering Hierarchy.

4.2 The Classification Algorithms

As stated before, classification is a process that enables
discovering whether a subsumption relationship holds be-
tween a concept , , and those present in a hierarchy - .
The classification process is decomposed into 3 steps:

1. Retrieve the most specific subsuming concepts of ,
(denoted MSSC(X), further);

2. Retrieve the most general concepts subsumed by ,
(denoted MGSC(X), further);

3. (Possibly) Update the links between , and its MSSC
and its MGSC.

Let us detail steps 1 and 2, step 3 being directly de-
rived from the two first steps. In the first step, the set of
concepts that subsume X is computed thanks to a top-down
traversal of the concept hierarchy as sketched by the fol-
lowing algorithm skeleton inspired from [11] and where C
denotes the current traversed node.

Function Explore4Mssc(C, .)
If C does not subsume . Then return(/10)
Else // C is temporarily the MSSC

If C is a leaf of the hierarchy Then return(/ C 0)
Else mssc = /10

For every descendant D of C do
mssc = mssc 2 Explore4Mssc(D, .) od

If mssc = /10 Then return(C) Else return(mssc)

In the second step, mgsc, the set of concepts that are sub-
sumed by , are determined by, roughly, exploring the de-
scendants of the , ’s most specific subsuming concepts.

The analysis of the above algorithm skeleton leads to
the following: when the algorithm returns a non empty set
mssc, mgsc is computed exploring the descendants of the
concepts in mssc; but if mssc is empty, an additional graph
traversal is required for computing mgsc. From the results
of this analysis, we decided to propose two distinct algo-
rithms, one for computing mssc and an other for computing

mgsc. Distinguishing the computing of mssc from the one
of mgsc reduces the number of visited nodes and it favours
early graph-pruning.

Indeed, in the preceding algorithm, while top-down
computing mssc, since a concept may have many super-
concepts, some nodes may be visited as many times as their
respective number of “father-nodes”. Moreover, when a
node
 is visited, either the concept it represents is a super-
concept of , (in such a case
 is added to the result set)
or it is not and consequently, its descendants have not to be
visited: the hierarchy may be pruned at that node. The fol-
lowing adapted algorithm introduces node marks to avoid
multiple visits or unuseful visits of a node.

Function Explore4Mssc2(C, .)
If C is marked Then return(/�0)

// The node is already visited
Else Mark C

If C does not subsume .
Then Mark all the descendants of C; Return(/�0)

Return(/10)
Else // C is temporarily the MSSC

// The remaining is unchanged

Considering again the initial algorithm that computes
mssc, if the computation fails (i.e. it returns an empty
set), computing mgsc requires another top-down traversal
of the hierarchy. But, if , , the domain function to be clas-
sified is described by novel capabilities, i.e. by capabili-
ties that are not present in any node of the hierarchy, then
MGSC(,) is empty: so the graph traversal was unuseful
and can be avoided using a bottom-up traversal strategy
rather than a top-down one. The following algorithm en-
ables the bottom-up computing of MGSC(,).

Function Explore4Mgsc(C, .)
If C is marked Then return(/�0)
Else Mark C

If C does not subsume .
// No C’s ascendant is subsumed by .

Then Mark all the C’s ascendants; Return(/10)
Else mgsc = /�0

For every ascendant A of C do
mgsc = mgsc 2 Explore4Mgsc(A, .) od

If mgsc = /�0 Then return(C) Else return(mgsc)

Let us now apply these concepts and algorithms to our
concern, i.e. entities capability management.

4.3 Capability Management

Remember that we aim at retrieving a set of individuals or a
set of objects whose skills meets a given set of capabilities:
let

� , � ������� � , �
	 denote that set of capabilities (conceptu-
ally,

� , ��������� � , �
	 describes a function in the application
domain). The request is viewed as a concept , having the
given capabilities and the query evaluation consists in “sit-
uating” , in the classification hierarchy.

Let
 � � � , � ������� � , � 	 be the capabilities required
from , and let

� � , � denote the set of individuals that sat-
isfy
 � . If

� �����*� denotes the set of individuals associ-
ated with a node ��� then

� � , � ���	���
"� � ����*� , � being the

number of nodes ��� that refer to individuals that satisfy the
query. Let
���� � � � � � ���������(� �#�� 	 be the respective capabil-
ities of the nodes � � . From a procedural standpoint,

� � , �
is obtained thanks to the computing of MSSC(X) and/or
MGSC(X). Let us formally and informally detail the vari-
ous situations.

Case 1: The individuals in
� � , � exactly satisfy the re-

quest, that means
������� � � � ���

% � � ��� � � �� � � �!� � � �
% �"� �

� �� �
 ��� �$#�, + �
 � such that � �� � , + .
This case arises when %'&(&
 � , �*)+%-,.&
 � , � :

in other words, a single node satisfies the query (r = 1).
For example, considering figure 5, the node �	/ satisfies the
request for individuals having skills in Java and Cobol pro-
gramming languages.

Case 2: The individuals in
� � , � have capabilities that

are “wider” than those requested. That means that
�0�1�

� � � � ���
% �32 �*� � ,�+ �
 � �4# � �� � �5� � � �

% �6� � � �� �
7���
such that � �� � , + .� � , � is the union of the individuals that are associ-
ated with the nodes in MGSC(X). As an example, consid-
ering
 � � �98 %;: %'�=< %?> � %A@ 	 , � � , � is the individuals as-
sociated with the node �CB on figure 5 .

Case 3: No single individual satisfies the preceding situ-
ations, but when “put together”, several individuals satisfy
the requested capabilities, i.e. - �!� � being the graph hier-
archy of an application domain � and
 � � � � � ������� ��� � 	
being the capabilities of the individuals associated with the
node � : D	#?� � - �&� � , such that

� , + �
 � # � � �

�� � , + � � � .

In this situation, the required capabilities may be sat-
isfied by groups of individuals, while every separate group
only partly satisfies them. These groups are constituted by
MSSC(X). More formally, that means

� � , � ��� ���
"� � ���� �
where � � (

�E�F� � � � ���) are nodes in - �&� � and where���G�H� � � � ���
 ����I
 � � �����
"�
 �C� �
 � . One should
notice that the groups capability sets may overlap or not
(i.e.

��� � �AJC�1� � � � ����
 � ��K
 � �ML �ONQP
 � ��K
 � �RLQS�'N).
For example, referring again to figure 5,

� �()�� � � 	 is the an-
swer to the request for Java and Ada skilled programmers.

Case 4: No single individual nor group of individuals to-
tally satisfy the requested capabilities, but individuals exist
who partly possess the required skills. For example, only
“incomplete” answers (

� �) � ��1) can be returned when
looking for individuals having Java, Ada and C program-
ming skills.

Case 5: None of the requested capabilities is satisfied
by any individual or group of individual (e.g. C++ and
C programmers): this situation means that MSSC(X) and
MGSC(X) are empty sets.

4.4 Status of the Implementation

The algorithms that have been introduced have been imple-
mented in Java considering the conceptual abstraction of
the system as depicted in figure 4. Only the and construc-
tor has been considered for the moment: that means that the
current implementation only covers the cases 1, 2, 3 and 5.
The introduction of constructors other than the only and is
required to deal with the fourth case. Moreover, one should
notice that the fourth and the fifth cases lead to a failure
when only one mediator is implied in the request evalua-
tion. But if we assume a federation of mediators, these are
typical situations where cooperation between mediators is
required. That cooperation will proceed as follows. In situ-
ation 5, the whole request is transmitted to a next mediator
who will execute the same process as the one that has been
sketched in the previous section. In situation 4, the reason
of the failure has first to be identified: mainly the unsatis-
fied part of the request has to be identified. The identifica-
tion is founded on concept complement, defined as: if A is
subsumed by B then comp(B,C) = A and (B, C)) A6. Intu-
itively, the concept complement designates the knowledge
that is missing in a concept B to enable B to be an instance
of A.

5 Concluding Remarks

In this paper, we presented an approach for modelling,
representing and exploiting properties of “objects” called
object capabilities. The approach is founded on descrip-
tion logics to provide a semantic description of an appli-
cation domain. This foundation has the merit to use a sin-
gle mechanism, the classification process, for at the same
time building the domain representation and exploiting it.
A “classical” approach, like an object-oriented modelling
and a database implementation, has several drawbacks, like
the multiplicity of representation and exploitation mecha-
nisms, and it lacks extendibility [17].

The current state of this work does not treat, from the
implementation point of view, the problem of the cooper-
ation between mediators. This is part of on-going work.
Indeed, when there exists no individual or group of indi-
viduals who satisfies requested capabilities, a mediator may
initiate a cooperation with another mediator in order to at-
tempt to satisfy the request. The cooperation may be gov-
erned by defined policies and constraints (for example, to
constraint the size of the answer set to at least or at most n
groups of individuals). The extensions to this work requires
additional constructors in the description logics language.
It also requires a kind of query decomposition mechanism
to determinate which parts of an initial request have to be
addressed to the cooperating mediators. It is clear that an
additional level of knowledge is required: this level will in-
form on the capabilities of the mediators themselves (i.e.

6Two concepts are equivalent if a mutual subsumption relationship
holds among them, i.e.

�����
if
�������	�
���

.

what domain knowledge does every mediator manage). Fi-
nally, in order to integrate our proposal into realistic plat-
forms, we think about integrating the current system with
“traditional” databases to enable a more detailed descrip-
tion of an application domain and its individuals.

References

[1] Ikujiro Nonaka and Hirotaka Takeuchi. The Knowledge Cre-
ating Company; How Japanese Companies Create the Dy-
namics of Innovation. Oxford University Press, 1995.

[2] UDDI. Universal Description, Discovery and Integration.
Technical White Paper, Sept. 2000. (http://uddi.org).

[3] T. Dyck. UDDI 2.0 Provides Ties That Bind, April 2002.
(http://www.eweek.com/).

[4] T-D. Han, S. Purao, and V. Storey. A Methodology for
Building a Repository of Object-Oriented Design Frag-
ments. In 18th Int. Conf. on Conceptual Modelling, ER’99,
203–217, Paris, Nov. 1999. Springer Verlag. LNCS 1728.

[5] A. Borgida and P. Devanhu. Adding more ”DL” to IDL:
Towards more Knowledgeable Component Interoperability.
In 21rst Int. Conf. on Software Engineering, ICSE’99, pages
378–387, Los Angeles, CA, May 1999. ACM Press.

[6] DL-org. Description logics. http//dl.kr.org/.

[7] I. Horrocks. Description Logic: Axioms and Rules. Talk
given at Dagstuhl ”Rule Markup Technique” Workshop,
February 2002. http://www.cs.man.ac.uk/ horrocks/Slides/.

[8] M. Bouchikhi and N. Boudjlida. Using Larch to Specify the
Behavior of Objects in Open Distributed Environments. In
Proc. Maghrebian Conf. on Software Engineering and Arti-
ficial Intelligence, 275–287, Tunis, Tunisia, Dec. 1998.

[9] OMG. The Object Model Architecture Guide.
http://www.omg.org/

[10] A. Napoli. Une introduction aux logiques de description.
Technical Report No 314, INRIA-LORIA, Nancy, 1997.

[11] B. Nebel. Reasoning and Revision in Hybrid Representation
Systems. LNAI 422, Springer Verlag, 1990.

[12] A. Borgida. Description Logics in Data Management. IEEE
TKDE, 7(5):671–682, 1995.

[13] M. Schmidt-Schauss and G. Smolka. Attribute Concepts
Description with Complements. Artificial Intelligence Jour-
nal, 48(1):1–26, 1991.

[14] N. Boudjlida. Knowledge in Interoperable and Evolutionary
Systems. In L. Dreschler-Fischer and S. Pribbenow, editors,
KRDB’95, Workshop on “Reasoning about Structured Ob-
jets: Knowledge Representation Meets Databases”, pages
25–26, Bielefeld, Germany, Sept. 1995.

[15] D. Calvanese and al. Information Integration: Conceptual
Modeling and Reasoning Support. In 6th Int. Conf. on Co-
operative Information Systems, CoopIS’98, 280–291, 1998.

[16] C. Beeri, A. Levy, and M-C. Rousset. Rewriting Queries Us-
ing Views in Description Logics. In ACM Symp. on Princi-
ples Of Database Systems, pages 99–108, Tucson, Arizona,
1997.

[17] M.A. Bouneffa and N. Boudjlida. Managing Schema
Changes in Object-Relationship Databases. Proc. 14th Int.
Conf. on Conceptual Modelling, OO-ER’95, 113–122, Gold
Coast, Australia, Dec. 1995. Springer-Verlag, LNCS 1021.

