


 



     

 
 
 
 
 
 
 
 
 
 
 
 
 

A UNIFIED ENTERPRISE MODELLING LANGUAGE FOR ENHANCED 
INTEROPERABILITY OF ENTERPRISE MODELS 

 
 

Hervé Panetto1, Giuseppe Berio2, Khalid Benali3, Nacer Boudjlida3, Michaël Petit4 
 

1CRAN UMR 7039, University Henri Poincaré Nancy I, F-54506 Vandoeuvre-les-Nancy Cedex 
Herve.Panetto@cran.uhp-nancy.fr 

2Dipartimento di Informatica, Università di Torino, Torino, Italy 
 berio@di.unito.it 

3LORIA UMR 7503, F-54506 Vandoeuvre-les-Nancy Cedex 
{Khalid.Benali, Nacer.Boudjlida}@loria.fr} 

4Institut d’Informatique, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium 
mpe@info.fundp.ac.be 

 
 

 
 

Abstract: There is a serious backwardness in awareness, acceptance and wide use of 
the Enterprise Modelling (EM) technology in industry because enterprises cannot 
capitalise from previous modelling efforts. This situation hinders true enterprise 
integration, interoperability, and enterprise knowledge sharing. A Unified Enterprise 
Modelling Language, based on meta-modelling of existing EM Languages, would 
serve as an Interlingua between EM tools providing the business community with a 
common visual, template based language to be used on top of most commercial 
enterprise modelling and workflow software tools.  Copyright © 2004 IFAC 
 
Keywords: enterprise modelling, meta-modelling, interoperability, enterprise system 
 
 
 

1. INTRODUCTION 
 

Today's ”business trends are clearly towards the 
need for managing organizational and operational 
changes within companies in order to face global 
competition and fluctuating market 
conditions” (Vernadat, 1996). This situation poses 
a number of integration (and interoperability) 
problems that enterprises have to tackle: integration 
of markets, integration between several 
development and manufacturing sites, integration 
between suppliers and manufacturers, integration of 
design and manufacturing, integration of multi-
vendor hardware and software components. 
Enterprise Integration is therefore, not anymore 
only a problem of interconnecting physical and 
software applications but it also requires global 
business integration, aiming at the use of the 
existing or new enterprise resources in order to 
better achieve the overall business objectives. 
”Things to be integrated and coordinated need to be 
modelled. Thus, Enterprise Modelling (EM) is 
clearly a prerequisite for enterprise integration”.  

According to Vernadat (1996), enterprise 
modelling is the set of activities or processes used 
to develop the various parts of an enterprise model 
to address some desired modelling finality. It can 
also be defined as the art of “externalising” 
enterprise knowledge, i.e. representing the 
enterprise in terms of its organisation and 
operations (e.g. processes, behaviour, activities, 
information, object and material flows, resources 
and organisation units, and system infrastructure 
and architectures). The finality is to make explicit 
facts and knowledge that add value to the 
enterprises or can be shared by business 
applications and users. The prime goal of enterprise 
modelling is not only to be applied for better 
enterprise(s) integration but also to support analysis 
of an enterprise, and more specifically, to represent 
and understand how the enterprise works, to 
capitalize acquired knowledge and know-how for 
later reuse, to design (or redesign) a part of the 
enterprise, to analyse some aspects of the enterprise 
(by e.g. economic analysis, organization analysis, 
qualitative or quantitative analysis,...), to simulate 



     

the behaviour of (some part of) the enterprise, to 
make better decisions about enterprise operations 
and organization, or to control, coordinate and 
monitor some parts of the enterprise. 
 
Within the initiative on Computer Integrated 
Manufacturing (CIM), Enterprise Modelling was 
born in the United States at the beginning of the 
80's and emerged through large CIM projects (e.g. 
ICAM or CAM-I). In the mid-80's, Europe 
launched several projects on Enterprise Modelling 
giving birth to several enterprise modelling 
languages (including notably GRAI (Doumeingts, 
et al., 1998) and CIMOSA (AMICE, 1997; 
Kosanke, et al., 1999)). As a result, in the 90's 
many commercial tools dealing with EM or 
business process modelling appeared on the 
marketplace, e.g. ARIS ToolSet, FirstSTEP, 
METIS, Enterprise Modeller, KBSI, CimTool, 
MO2GO, e-MAGIM and many others.  
 
Because most resources in modern enterprise were 
computerised systems, the problem of enterprise 
integration was also been approached with 
workflow systems, each one with its own modelling 
environment (Action Workflow, COSA, 
FlowMark, Lotus Notes, Teamware Flow, 
Ensemble, WorkParty, ...) and, in the late 90’s, 
with EAI (Enterprise Applications Integration) 
tools. In computerised systems, the situation is 
currently worse than before. This is mainly due to 
the “Internet based systems” which, while offering 
very powerful, low cost and open infrastructures, 
fall short of integration. In fact, the many related 
standards (e.g., XML and its customisations) do not 
directly address the “problem of meaning”.  
 
This intensive production of tools has led to a 
Tower of Babel situation in which the many tools, 
while offering powerful and distinct functionalities, 
are unable to interoperate and can hardly or not at 
all communicate and exchange models. This is a 
serious drawback for awareness, acceptance and 
wide use of the EM technology since enterprises 
cannot capitalise from previous modelling efforts. 
This situation hinders true enterprise integration, 
interoperability, and sharing enterprise 
knowledge. 
 
 

2. ENTERPRISE INTEGRATION AND 
ENTERPRISE MODELLING 

 
Enterprise Modelling is an engineering discipline 
closely related to computerised systems. As such, it 
requires the combined use of Enterprise Modelling 
Software Environments (EMSE), Enterprise 
Modelling Languages (EML), and Enterprise 
Engineering Methodologies (EEM). 
According to this point of view, there exists a lot of 
fragmented approaches to enterprise modelling 
(including Methodologies, Languages and Tools). 
They cover different subsets of the different 
components of the enterprise engineering world. 
For instance, the ENV12204 (CEN, 1995) standard 

of CEN provides an Enterprise Modelling 
Language, but does not address any of the other 
components (no tool, methodology or meta-
modelling capacity)); GERAM (GERAM, 1997) 
and ISO/IEC 15288 define methodological 
guidelines for Enterprise Engineering but without 
any modelling language; the Workflow 
Management Coalition (WfMC) provides a 
modelling language (WPDL) but without  
methodological support for using this language for 
modelling processes; the same happens with other 
EAI tools (such as the so called Integration 
Brokers).  
 
They also cover different parts of the enterprise 
life-cycle. For instance, ebXML and WfMC focus 
on software design while approaches like CIMOSA 
mainly concentrate on enterprise requirements and 
design. Additionally, some approaches link 
enterprise models to Enterprise Operation Tools 
(EOT). These links allow the produced models to 
be used, for instance, for process enactment and 
control (e.g. in the WfMC approach, WPDL 
models are used by a workflow engine to control 
the execution of ongoing work). Models may be 
also linked to enterprise software applications like 
ERP (Enterprise Resource Planning) systems (e.g. 
ARIS and mySAP.com). Some other approaches 
only aim at modelling for understanding and 
analysing and they do not provide explicit links to 
operational systems or to other models in the life-
cycle (e.g. ENV12204).  
 
Enterprise modelling approaches may also have 
very different objectives and needs. As a 
meaningful example, we may compare the aims of 
IEM and GRAI. IEM allows representing business 
processes and it provides specific concepts adapted 
for assessing quality management procedures, but it 
cannot directly be employed for an operational 
implementation of the business processes. In fact, 
for quality management, it is not necessary to fully 
define an implemented process. The description has 
only to be sufficient to enable determining whether 
the process steps conform to defined quality 
procedures. This later objective requires, for 
example, representing outcomes of each process 
step and their usage as inputs for other process 
steps. On the other hand, the main objective of 
GRAI modelling is to define the control system of 
an enterprise. This requires a very good 
understanding of the relationships between the 
business processes at the various control levels 
(operational, tactical, and strategic). Quality 
procedures do not guarantee that an enterprise has 
good performance but only that its products 
conform to some quality criteria, whereas 
enterprise control tries guarantee that an enterprise 
takes into account market data and reflects them in 
the enterprise internal behaviours. 
 
In enterprise modelling, there seems to be a 
tendency for approaches combining, in a more or 
less integrated way, several sub-languages or 
views (see e.g. CIMOSA, GRAI, and ARIS). A 



     

combining approach allows taking advantage of the 
strengths of each of the sub-languages and offers 
the advantage that the resulting combined method 
or methodology offers the modeller the capacity to 
meet more modelling objectives. Models built with 
the distinct languages have to be related in some 
way and the languages have to be integrated. This 
need for integrating distinct modelling languages 
and relating models has also been recognised in 
domains like  software formal methods for 
achieving effective and ”practical” solutions to 
complex problems. 
 
However, the integration of several sub-languages 
(often called views) is currently always performed 
within a single tool (i.e. in a single approach which 
creates many overlapping with other existing 
approaches). No tool (at least in the enterprise 
modelling domain) currently supports the 
combination of its own models with models created 
with a language supported by another tool. 
 
A completely integrated language allowing the 
creation of models combining all needed aspects of 
the reality is probably unachievable and the 
supporting tools for that language would be too 
complex to build. Therefore, the only reasonable 
approach seems to be to create a modelling 
environment from “legacy” enterprise modelling 
tools (and languages) allowing to reuse existing 
models and to leverage these existing models and 
tools into an integrated environment. This 
integrated environment should also be 
complemented with a process for extending, in a 
controlled way, a set of limited constructs 
belonging to a core language. As we will see in the 
remainder (section 3.3), a sample of this process 
has been defined during the UEML project.  
 
 

3. THE UEML 
 
The UEML project1 was set up in an attempt to 
contribute to the solving of the problems of 
multiple EMLs. The long term objective of UEML 
is the definition of a core language called Unified 
Enterprise Modelling Language, which would serve 
as an Interlingua between EM tools. This language 
will:  
• Provide the business community with a common 

visual, template based language to be used on top 
of most commercial enterprise modelling and 
workflow software tools;  

• Provide standardised mechanisms for sharing and 
exchanging enterprise models among projects, 
overcoming tool dependencies;  

• Support the implementation of open and 
evolutionary enterprise model repositories to 
leverage enterprise knowledge engineering 
services and capabilities.  

 

                                                 
1 UEML IST-TN 2001 34229, www.ueml.org 

In order to prepare this long term objective, the 
UEML project was initiated with the objective to 
create and manage a working group aiming to:  
• Create a European Consensus on a core set of 

modelling constructs and facilitating 
interoperability in the frame of on-going 
standardisation efforts in this domain.  

• Build a demonstrator portal with services and 
contents to support and promote, testing, 
industrial validation, and to collect comments. 

 
The first objective of the project was to analyse the 
market potential of a UEML, to accurately define 
the specifications of an embryo of such a language 
and to demonstrate and disseminate the concepts. 
 
3.1 The need for UEML 
 
Two main efforts related to the definition of a 
common core language for enterprise modelling are 
PSL (PSL, 2002) and ENV122042 that however do 
not currently provide a satisfactory answer to 
critical and also practical problems. PSL is a logic-
based approach that does not clearly address the 
problem of the basic mapping between a generic 
EML and PSL itself. This mapping should e.g. 
state, for instance, that the concept of Activity 
belonging to an EML corresponds to the concept of 
Activity in PSL. Being a declarative language, PSL 
allows discovering inconsistencies between distinct 
models provided in distinct EMLs. However, it 
neither prevents nor solves these inconsistencies.  
ENV12204 is merely a set of useful concepts for 
understanding the domain of enterprise modelling 
(or even the set of things that need to be 
represented by any enterprise modelling language). 
However, its syntax is not well defined and 
therefore it cannot be used as an exchange format 
between distinct tools. It also does not define 
mappings between existing EMLs and itself. 
 
The usefulness of a UEML would therefore reside 
in the availability of a well-defined syntax and well-
defined mappings (possibly standardised) between 
various EMLs and UEML. We believe that the 
definition of mappings between languages and 
UEML is important but quite independent from the 
UEML definition itself. Thought, they should be 
precisely defined and shared (through, for instance, 
standardisation), they should base on reasonable 
hypotheses and will never be fully (and formally) 
provable.  
 
Other approaches which attempt to solve the 
problems of exchange and interoperability between 
computerised systems do not deal clearly with the 
enterprise modelling area. They can be classified as 
ways for enabling business level communication 
between distinct computer-based systems and 
therefore as bottom-up approaches. For instance, 
ebXML, WPDL, EAI techniques are useful for 
defining communication at business level among 

                                                 
2 A new version of ENV 12204, EN ISO 19440 is 
expected in early 2004. 



     

enterprise software. These approaches are really 
useful for programming software layers such as 
middleware (e.g. CORBA) and customising 
software architectures. This description of purely 
software aspects can be considered as a kind of 
high level programming that anyway requires 
enterprise modelling as a prerequisite.  
 
However, another prerequisite for the exchange of 
models (or to make models interoperable) through 
a common language to be meaningful is to clearly 
understand the semantic links existing between the 
models themselves. This understanding is 
fundamental because without it, an exchanged 
model could be understood in a totally different 
way by the receiving tool, and thus misinterpreted. 
 
 
3.2 The need for meta-modelling 
 
In order to understand the links between distinct 
languages, meta-modelling is an important issue. 
Meta-modelling allows defining the syntax of a 
language3. The product of meta-modelling is 
usually called a meta-model. 
 
Meta-models need to be described by using meta-
modelling techniques (i.e. languages for making 
meta-models). Approaches like XML (DTDs and 
Schemas), MOF, Telos, can be used. These 
techniques are content-independent (applicable for 
the definition of any language). Other meta-
modelling techniques are content-dependent (and 
sometimes domain-specific): for instance, XMI is 
an exchange format based on the meta-model of 
UML (UML, 2003) in XML designed for enabling 
exchange of UML models. 
 
Accordingly, a UEML could be defined as a 
content-dependent domain-specific meta-model 
through a content-independent meta-model. The 
UEML might just use content-independent meta-
modelling techniques4 as a way for its definition. 
 
Currently, several Meta-Modelling Languages (and 
also tools) exist but none of them are specifically 
targeted for the definition of EMLs. The reason is 
that these Meta-Modelling Languages were often 
developed to design and implement Information 
Systems, Knowledge Base Systems and computer-
based infrastructures (environments) allowing to 
program meta-models. 
 
 
3.3 The UEML approach 
 
In the UEML project, a UEML meta-model was 
built on the basis of three existing languages 
                                                 
3 A meta-model may also be used to define part or all of 
the semantics of the language. But this is often not 
recommended. 
4 It should be noted that the notion of meta-modelling 
technique is relative. In fact, it is often true that a 
language can be used as a meta-modelling technique for 
another (sometimes, the same) language. 

(namely IEM, EEML and GRAI). An illustrative 
scenario was defined in which models of a common 
situation are stored in distinct software tools and 
exchanged. First, models of this scenario where 
elaborated in the three distinct languages and. the 
exchange was performed manually by specialists of 
these languages. More precisely, given a first 
model in IEM, specialists of GRAI and EEML 
provided the “semantically equivalent” model in 
their own languages. Afterward, IEM, EEML and 
GRAI constructs have been meta-modelled using 
UML class diagram. This resulted in three so-called 
“original meta-models”. At the same time, the links 
between the concepts of every original meta-model 
and their use in the models of the Scenario were 
defined to illustrate how a unique real-world 
phenomenon is modelled with the three original 
meta-models. 
 
With the aim to define a common meta-model for 
core constructs, we compared and “unified” the 
three meta-models through an incremental 
approach. We compared the three meta-models 
peer-to-peer to find any correspondence between a 
concept in one meta-model and a concept in 
another one. 
 
Once the peer-to-peer correspondences (and 
absence of correspondences) had been defined, a 
set of common concepts were identified (Table 1) 
and further elaborated into the first version of the 
UEML meta-model 1.0 (Fig. 1). This meta-model 
represents the common concepts underlying the 
three original EMLs. This meta-model being 
remarkably different from the three meta-models 
by the use of an appropriate higher level of 
abstraction and considering some discrepancies 
among the three original meta-models, we 
informally re-defined new correspondences 
between the UEML meta-model and each original 
meta-model. Finally, the UEML meta-model and 
the new correspondences were validated against a 
subset of the Scenario. 
 
 
3.4 Defining mappings among EMLs 
 
The clear definition of the meta-models of existing 
EMLs and of UEML with meta-modelling 
techniques is necessary but not sufficient to achieve 
a meaningful exchange of models. The 
correspondences among constructs between two 
distinct languages have to be precisely defined by 
comparing semantics of these constructs. However, 
this is a difficult task because: 
• EMLs are often based on informal semantics, i.e. 

some natural descriptions of constructs meaning. 
• The way in which EMLs are used in specific 

context and situations may change. 
 
Therefore, as suggested in Sect. 3.1, mappings 
between languages should rely on reasonable 
hypotheses should be clearly stated and become the 
base for building the language, and possibly be 
standardised further.  



     

 
Fig. 1: The UEML 1.0 meta-model 

Table 1: Extract of the common concepts of UEML 
COMMON CONCEPT GRAI IEM EEML 

ACTIVITY Extended activity Action state Task 
ROLE Not explicit IEM Object state Role 
RESOURCE Resource Resource class Resource 

INPUT/OUTPUT FLOW Input/Flow 
Ouput/Flow  Successor/ProcessElement Flow (control flow= false) 

CONSTRAINT FLOW Control/Flow 
(trigger=false) No direct Flow (control flow= false and 

linked to Role) 

CONTROL FLOW Control/Flow 
(trigger=true) ControlSuccessor/ProcessElement Flow (control flow= true) 

RESOURCE FLOW Resource/Flow 
(trigger=false) ResourceSuccessor/Resource State Role (linked to Task) 

CONNECTION OPERATOR Logical operator Connection Element State DecisionPoint (not  (Inport or Outport)) 
PORT Connector Port Decisionpoint (Inport or Outport) 

 
Mappings can be defined, more or less precisely, in 
various languages. For example, they can be 
expressed informally in natural language or through 
the use of a meta-modelling language. From a 
technical viewpoint, XSLT is a proposal to define 
transformation of XML documents based on a set 
of transformation rules expressed on the basis of 
XML schemas. The advantage of this approach is 
that software tools are already operational to 
interpret these mappings and apply them on XML 
documents. This approach could be considered as a 
means of implementing correspondences among 
EMLs, provided that these have XML syntax. 
Defining relationships at the language level can 
also be done in an “a priori” manner when new 
methodologies and methods are under definition. 
Therefore, a UEML can be a good starting base for 
placing under control the process of defining new 
methods and methodologies as well as the rules 
applied in a specific methodology.  
 
 

4. CONCLUSION AND OUTLOOK 
 
4.1  Future perspective for enterprise modelling 
 
This analysis of the state of the art in enterprise 
modelling (Petit, and al., 2002) demonstrates the 
need to define and develop a UEML approach to 

solve the current problems faced by workers in the 
enterprise modelling domain. 
But such UEML approach can only be successful 
and effective under two conditions:  
• Providing a global approach of interoperability 

among enterprise modelling software going 
further than only providing a common format of 
exchange;  

• Making clear and effective the link between 
enterprise modelling and Enterprise Applications 
and Software.  

 
 
4.2 UEML as a global approach to enterprise 

modelling 
 
As stated earlier, a common exchange format, if 
deemed successful, cannot be described 
independently of mappings to and from existing 
EMLs. Furthermore, this requires the explicit 
definition of meta-models of the involved 
languages and of the mappings among their 
concepts. However, in order to avoid that UEML, 
as a common format, becomes yet another language 
among the large set of existing ones, it requires a 
larger view of interoperability among EM tools. 
The UEML language and approach must be 
flexible to be able to cope with future proprietary 
emerging languages and with the evolution of 
existing EMLs. The long term objectives of a 



     

UEML approach would then be to provide the 
necessary concepts and tools to achieve the 
following:  
• Interoperability between already existing 

supporting tools as well as newly developed tools,  
• Well-founded integration basis between distinct 

enterprise modelling languages,  
• Consistent global models on which also distinct 

methodologies can be integrated,  
• Improvement of existing methodologies and 

definition of new methodologies. 
 
These objectives pose a number of requirements on 
the UEML approach:  
• The availability of meta-modelling concepts, 

methods and tools to properly define EMLs 
(existing ones, new emerging ones, UEML, their 
extensions and particularisations for specific 
purposes or applications);  

• The availability of concepts, methods and tools to 
properly define relationships among distinct 
EMLs and a UEML together with relationships 
between models created with different EMLs and 
UEML; 

• The concepts and tools to properly define 
methodologies associated with EMLs,  including 
UEML;  

• The specification of an open architecture in 
which all these elements can be implemented to 
provide an evolutionary multi-language platform 
for enterprise modelling centred on UEML. 

 
This platform would allow creating coherent, 
global and logically centralised (integrated) 
models of the enterprise but which may be 
distributed within different enterprise modelling 
applications at a physical level. 

 
4.3 From enterprise modelling to enterprise 

systems 
 
We consider that Enterprise Engineering or 
Enterprise Modelling make sense provided that we 
are able to link the tools developed in this field 
with the Enterprise Applications and Software. 
Enterprise Modelling must be considered as the 
way to design the architecture and the model of the 
enterprise independently from existing or future 
Enterprise Applications and Software. We see the 
various levels as shown in the Fig. 2.  
 

 
 
Fig. 2: Enterprise Modelling and Enterprise 

Application Levels 
 
To our opinion, the future within ten years will be 
capabilities to generate, from the enterprise 

modelling level, the specifications allowing to 
choose or customize Enterprise Applications and 
Software (EAS) or to derive specifications of 
software applications for the enterprise models. 
Moreover, we believe that the EAS such as ERP, 
SCM or CRM will no longer have a centralised 
structure. Rather, they will have a modular and 
distributed structure. Each module will be chosen 
and customized according to specifications 
generated from the enterprise models. On the one 
hand, such a structure might decrease the time and 
cost of EAS development, and increase the 
adequacy of EAS to the needs of the enterprise. 
This should result in an increased acceptance of 
EAS by end-users, higher adaptability of EAS to 
the enterprise structure and improved Return on 
Investment of EAS development. 
 

REFERENCES 
 
AMICE. (1993). CIMOSA: Open System 

Architecture for CIM, Research Reports 
ESPRIT, 1, Project 688/5288. Springer-Verlag. 

Bernus P., Mertins K., and Schmidt G. (Eds) 
(1998). Handbook on Architectures of 
Information Systems. Springer Verlag, ISBN 3-
540 64 453 9. 

CEN (1995), CEN/CENELEC ENV 12204. 
Advanced Manufacturing Technology, Systems 
Architecture, Constructs for Enterprise 
Modelling, CEN, Brussels.  

Doumeingts G., Vallespir B. and Chen D. (1998). 
Decision modelling GRAI grid, Chapter in: P. 
Bernus, K. Mertins, G. Schmidt (Eds.) 
Handbook on architecture for Information 
Systems, Springer-Verlag. 

GERAM (1997). Generalized Enterprise Reference 
Architecture and Methodology Version 1.5, 
IFAC-IFIP Task Force on Enterprise 
Integration. 

Kosanke K., Vernadat F.B., and Zelm M. (Eds.) 
(1999). CIMOSA: CIM open systems 
architecture - evolution and application in 
enterprise engineering and integration. 
Computers in Industry, special issue, 40(2-3). 

Petit M, and al. (2002). D1.1: State of the Art in 
Enterprise Modelling, UEML TN IST 2001 
34229, www.ueml.org 

PSL (2002). Industrial automation system and 
integration - Process specification language: 
Part 11: PSL-Core. ISO/CD 18629-11. 

UML (2002). UML 1.5 specification, OMG. 
Vernadat F.B. (1996). Enterprise modelling and 

integration: principles and applications. 
Chapman & Hall. 

 
ACKNOWLEDGEMENT 

 
The authors would like to thank all the UEML core 
members for their scientific contribution to this 
work. This work was funded by the European 
Commission IST 5th framework programme. 




