

Basics of Database Security (Spring Computer Science School) INI, June 17-19 2006, Algeria

Nacer Boudjlida LORIA, UHP Nancy 1 (F) Nacer.Boudjlida@loria.fr

DB-Security-Basics, June 2006, Algiers, DZ

- Technical and Organizational point of view:
- 1. Protecting data against
 - 1. Unauthorized access
 - 2. Unauthorized operations
 - 3. Watching the database activities (Auditing)
- 2. Operational Security: tend toward service continuity:
 - 1. Replication
 - 2. Recovery

I. Preamble:

- i. DBMS
- ii. DB applications in C/S Architectures
- II. Protecting Database Access
- III. Operational Security and Recovery
- **IV.** Operational Security Thanks to Replication
- V. Database Auditing

VI. Concluding Remarks

- 1. Data Description ("objects", attributes, relationships, constraints)
- 2. (High Level, Set-Oriented) Data Manipulation
- 3. Consistency and Privacy
- 4. Concurrency Control
- 5. Security (and Recovery from failure)

Database Management System Architecture

- Accessing Data/Object Servers
 - x SQL Queries

x Remote (compiled) procedures (<u>Preferred</u>)

DBMSs in C/S Architectures

• Web Servers and Data/Object Servers

DB-Security-Basics, June 2006, Algiers, DZ

- <u>Middleware</u> : the Client-Server "glue"
- <u>General Middleware includes</u>:
 - **x** Communication stacks
 - x <u>Authentification services</u>
 - x Remote procedure calls
 - x Message queues
 - x Distributed naming services
 - x etc.

• <u>Specific Middleware</u>:

- x Database: ODBC, JDBC, DRDA, EDA/SQL
- **x** Transaction: TxRPC, Transactional RPC
- **x** Distributed Objects: CORBA, OLE/DCOM
- x Internet: HTTP, <u>S(ecure)-HTTP</u>

'Basics'' of Database Security: Outline

1. Preamble:

- 1. DBMS
- 2. DB applications in C/S Architectures
- 2. Protecting Database Access
- 3. Operational Security and Recovery
- 4. Operational Security Thanks to Replication
- 5. Database Auditing
- 6. Concluding Remarks

Data Integrity and Privacy

- <u>Privacy</u>:
 - x Encryption, Delusions
 - x Login, Password,
 - x Views
 - x Priviledges, Roles and Profiles
- Identification Levels
 - 1. Operating/Networking System
 - 2. DBMS
 - 3. [Database(s)]

''Basics'' of Database Security: Outline

1. Preamble:

- 1. DBMS
- 2. DB applications in C/S Architectures
- 2. Protecting Database Access
- 3. Operational Security and Recovery
- 4. Operational Security Thanks to Replication
- 5. Database Auditing
- 6. Concluding Remarks

- x Program failure
- x DBMS failure
- x Operating System failure
- x etc.
- Tightly Coupled with Concurrency Control
- Technical as well as Organizational Problem

- Transaction: Atomic sequence of actions
- ACID Transaction Properties:
 - **x** Atomicity
 - **x** Consistency
 - **x** Isolation
 - **x D**urability (<u>Skip details</u>?)
- <u>Recovery</u>: Transaction logs (Transaction history)
 <u>*Undo*</u>: "Play" the transaction backward (Rollback)
 <u>*Redo*</u>: "Play" the transaction forward

- A<u>tomicity</u>: Money transfer from C1 to C2
 - x Withdraw from C1 (C1 \leftarrow C1 100)
 - x Deposit into C2 (C2 \leftarrow C2 + 100)
 - x Problem <u>after</u> Withdrawal and <u>before</u> Deposit

DB-Security-Basics, June 2006, Algiers, DZ

DB-Security-Basics, June 2006, Algiers, DZ

- I<u>solation</u>: Withdrawal and Deposit (same account)
- T1: { $X \leftarrow \text{Read}(C)$; $X \leftarrow X 200$; $C \leftarrow \text{Write}(X)$ }
- T2: { $Y \leftarrow \text{Read}(C)$; $Y \leftarrow Y + 600$; $C \leftarrow \text{Write}(Y)$ }
- <u>Concurrent execution of T1 and T2</u> (Dirty Reads)
 - **x T1**: $X \leftarrow \text{Read}(C)$: $X \leftarrow 5000$
 - **x T1**: $X \leftarrow X 200$: $X \leftarrow 4800$
 - x T2: Y \leftarrow Read(C): Y \leftarrow 5000
 - x T2: Y ← Y + 600: Y ← 5600
 - x T2: C \leftarrow Write(Y): C \leftarrow 5600
 - x **T1**: C \leftarrow Write(X): C \leftarrow **4800** (instead of 5400)

- **D**<u>urability</u>: Permanent database updates
- 1. (Non) Repeatable Reads
 - \times C in Database = 5000
 - $\mathbf{x} \mathbf{T1}: \operatorname{Read}(\mathbf{C}) \to \mathbf{X}:$
 - $\mathbf{x} \text{ T2: Read}(\mathbf{C}) \rightarrow \mathbf{Y:}$
 - $\mathbf{X} \mathbf{T1}: \mathbf{X} \leftarrow \mathbf{X} + 5000:$
 - **T1**: Write(X) \rightarrow C:
 - x T2: Read(C) → Y:

- X ← 5000
 - Y **← 5000**
 - X ← 10 000
 - C ← 10 000
- Y **←10 000**

• Different values !!!

- **D**urability: Permanent database updates (cont'd)
- 2. (Non) Shadow tuples
 - **T1**: Read(X) such that X = 500
 - **x** T2: Read(X) such that X = 500
 - x **T1**: Delete(X)
 - **x** T2: Read(X) such that X = 500
- No X, such that X = 500, exists anymore

- Introduced in SQL'92
- *Level 0*: Dirty reads permitted
 - **x** While a data item D is being updated by T1
 - x Any other transaction can read D but it CANNOT modify it
- *Level 1*: Dirty reads not allowed
- *Level 2*: Reads repeatability not allowed before commit
- Level 3: Inhibits shadow tuples

- Write Ahead Loging Protocol (WAL)
- Rollback: 'Execute' Transaction Log backward

DB-Security-Basics, June 2006, Algiers, DZ

- <u>Concurrency</u> <u>Control</u> <u>and</u> <u>Serialisability</u>: Concurrent execution is equivalent to sequential (serial) execution
- Foundations: partial ordering of actions
- Techniques
 - x Time stamping (not usually implemented)
 - x Two-Phase Locking (ensures Serialisability)
 - 7 Phase1: Acquire Locks
 - 7 Phase2: Free Locks
 - 7 Does not prevent from deadlocks or livelocks

- Most Usual Types of locks:
 - **x** Shared: multiple reads and no update
 - **x** EXclusive: single update
 - **x** Intention locks: Read, Write, Update

• cf. Select ... for update/at isolation level serializable/holdlock

• Distributed DB:

x DB = « Union » of « Fragments »

• <u>Context</u>:

- x Multiple sites cooperate in (sub-)transactions
- x Commit/Rollback on every site

• <u>Two-Phase Commit Protocol</u>

- x Lampson [1976], Gray [1978]
- x Most commonly implemented
- **x** Ensures transaction <u>A</u>tomicity [Baer & al., ICSE81]
- **x** Requires a coordination site

• <u>Coordination site</u>:

x Decomposes a transaction into sub-transactions depending on data location (cf. Query processing)

• Transaction failure:

- x One or more sites cannot commit
- x One or more answers to the prepare message are missing...

DB-Security-Basics, June 2006, Algiers, DZ

• Transaction Logs: (Usually) WAL Protocol

DB-Security-Basics, June 2006, Algiers, DZ

- <u>Serialisability</u>: Serial execution equivalent to concurrent execution
- ACID properties
- <u>Mechanisms</u>:
 - x Concurrency Manager
 - x Integrity Manager
 - x Recovery Manager
 - **x** Programmers
 - x Security Officer [+ DB Administrator]

- Log management:
 - **x** Configuration
 - 7 Database creation
 - 7 During database « life »
 - x Periodic Save
 - x [Restore, when needed]

• Commit vs Checkpoint

x Data Server configuration (*checkpoint frequency*)

DB-Security-Basics, June 2006, Algiers, DZ

- Checkpoint: configuration parameters
 - x Log-checkpoint_interval (number of blocks)
 - x Log_checkpoint_timeout (in seconds)
- Loging:
 - 1. Redo logs
 - 2. Rollback segments/Undo Tablespaces
- Automatic Archive Logs

DB-Security-Basics, June 2006, Algiers, DZ

- Back-Up and Recovery
 x Total/Partial
- Recovery
 - x Rollforward (cache recovery)
 - x Rollbackward (*transaction recovery*)

DB-Security-Basics, June 2006, Algiers, DZ

''Basics'' of Database Security: Outline

- 1. Preamble:
 - 1. DBMS
 - 2. DB applications in C/S Architectures
- 2. Protecting Database Access
- 3. Operational Security and Recovery
- 4. Operational Security Thanks to Replication
- 5. Database Auditing
- 6. Concluding Remarks

- Synchronize the content of a storage unit with its replicate
- Switch in case of failure
- Replicate
 - x At least the logs
 - x And/or sensitive data
- Requires more space
- Activity overhead (may conflict performance issues)

• Example: Oracle Multiplexing

DB-Security-Basics, June 2006, Algiers, DZ

Replication and Distribution

• Case of Replication Servers with primary copy

Replication and Distribution

• Case of Replication Servers with primary copy

DB-Security-Basics, June 2006, Algiers, DZ

• Case of Replication Servers with primary copy

- x Case of primary site failure
 - 7 Elect an other one
- x Case of secondary site failure
 - 7 Exclude it during the failure
 - 7 Re-synchronization (Logs)

'Basics'' of Database Security: Outline

1. Preamble:

- 1. DBMS
- 2. DB applications in C/S Architectures
- 2. Protecting Database Access
- 3. Operational Security and Recovery
- 4. Operational Security Thanks to Replication
- 5. Database Auditing

6. Concluding Remarks

- Record events (*audit options*) about
 - x Database(s)
 - \mathbf{x} User(s)
 - x Data Server(s)
- Process:
 - 1. Install or Configure the Audit Mechanism
 - 2. Define the audit options
 - 3. Manage the audit trail

1. Install or Configure the Audit Mechanism

- *audit_trail* = true (init file)
- sys.aud\$ exists

2. Define the audit options

- 1. Per session/per access
- 2. Whenever successfull/not successfull
- 3. Per type of SQL statements
- 4. Per type of system priviledge commands
- 5. Per type of action on database objects

- *audit* select on U1.MaTable whenever not successfull
- *audit* select table, update table by U1, U2
- *audit* role whenever successfull
- *audit* all privileges by U1, U2
- *audit* insert, delete, update on sys.aud\$ per access
- *noaudit* select table by U1, U2

- 3. Manage the audit trail
 - a) Fix the right size (create/alter table)
 - b) Explore
 - Dictionary tables and views
 - o *dba_stmt_opts, all_def_audit_opts,* etc.
 - c) Save or purge

• DB security:

- x Tools and mechanisms exist
- x But, it's not only a matter of DB technology
 - 7 Platform
 - 7 Network
 - 7 Global enterprise security: policy and rules
- New challenges:
 - x Ubiquituous/mobile computing
 - x Replicated Mobile Data
 - x Web-based computing

The (Very) Basics of Database Security

That's all Folks !

Thank you for paying attention.

Any questions ?

DB-Security-Basics, June 2006, Algiers, DZ