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1. INTRODUCTION
Complex systems seem more easily described and con-

trolled if seen as Multi-Agent Systems (MAS): constellation
of satellites, multi-robots applications... The design of a
MAS is usually built “by hand”, with the need of repeated
simulations to tune the system. Here, we propose to build
the system by having each agent locally learn its own be-
havior.

The use of Reinforcement Learning (RL) in the context
of MAS suffers from several limitations which can make the
learning task nearly impossible :

• combinatorial explosion. The computationnal bur-
den of RL algorithms grows exponentially with the
number of states and actions in the system.
• hidden global state. Usual situated agents can only

rely on an imperfect, local and partial perception of
their environment.
• credit assignment problem. When a positive re-

ward is given by the environment, it is not always ev-
ident to credit positively the “good” actions that led
to this reward.

Our answer to these problems is to use a decentralized
adapted incremental learning algorithm based on a
classical RL technique.

2. OUR FRAMEWORK

2.1 The agents
The agents we decided to work with are very simple reac-

tive ones. Among many possible choices, our agents can be
caracterized as:

• situated with local perception
• with identical capabilities
• possibly heterogeneous (different roles may appear)
• cooperative
• non-communicating
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2.2 RL and MDP
Q-learning (see [2]) is a classical RL algorithm for which

convergence has been proven in the case of stationnary Markov
Decision Processes (MDP).

A MDP is defined as a < S,A, T, r > tuple, S being a
finite set of states and A a finite set of actions. When the
system is in given state s, an action a being chosen, the
probability for the system to end in state s′ is given by
T (s, a, s′). After each transition, the environment generates
a reward given by r(s, a). The problem is then to find the
optimal mapping π(s, a) between states and actions so as to
maximize the reward received over time, usually expressed
as a utility function V (s) =

∑∞
t=0 γ

t(st|s0 = s). Such a
mapping is called a policy.

Whereas a centralized MAS may be considered as a big
MDP, we work with decentralized systems where each agent
is independent from the other as far as decision and learning
are concerned. It corresponds to the NEXP-complete prob-
lem of solving DEC-POMDPs (see [1]). Thus we face two
major difficulties :

1. Non-stationary transitions. By considering other
agents as part of the environment, and because this
other agents have evolving behaviors (they learn it),
transitions are non-stationary.

2. Partial observability. Our agents only have a par-
tial (local) view of the system’s state.

2.3 Incremental Reinforcement Learning
To converger, Q-learning requires the knowledge of the

actual state. As we only have access to observations of the
states, we use a modified version of Q-learning where obser-
vations are assimilated to states and policies are stochastics.

We thus have reduced the problems complexity, but are
now subject to perception aliasing. Furthermore, having the
agents learn a task requiring coordination remains difficult.
We propose to help them to incrementaly learn their policies:

• progressive task: learning begins with a very simple
version of the task to be executed. Then, as learning
progresses, the task is made harder usually by giving
more freedom of action to the agents.
• number of agents: learning starts with a small num-

ber of agents. Then, more agents are added, with ini-
tial policies taken from the original agents and then
refined through learning.
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Figure 1: the bloc merging problem
Agents (circles) have to merge blocs (squares).

3. EXPERIMENTING WITH INCREMEN-
TAL LEARNING

The task chosen involves agents (either yellow or blue)
in a grid world whose goal is to push yellow cubes against
blue ones1. When two agents coordinate their movements to
attain this goal -pushing together a pair of cubes- both cubes
temporarily disappear. Simultaneously, agents responsible
for this fusion receive a positive reward.

Our agents just have four possible actions: moving North,
East, South and West. Agents can push other agents and
other cubes, which makes the consequences of their actions
stochastic, depending on which constraints will be consid-
ered first.

An agent’s perceptions2, as shown on figure 3, are :

• dir(oa) : direction of nearest agent from other color,
• dir(cy) : direction of nearest yellow cube,
• dir(cb) : direction of nearest blue cube,
• near(cy) : is there a yellow cube next to the agent,
• near(cb) : is there a blue cube next to the agent.

4. RESULTS

4.1 The 2-agent and 2-cube case (2a2c)
As said before, we first help our agents by having them

learn increasingly harder tasks. To be more precise, we de-
fine a try as a sequence of n steps3 beginning in a given
situation. The intention is to put agents in a situation from
which they can easily learn how to behave. So this try must
be repeated sufficiently (N times) to be useful. This succes-
sion of tries will be called an experiment for our agents. The
trainer has to define a sequence of progressive experiments
to help learning.

Figure 2 shows the efficiency of this help: high quality
policies are obtained much faster than in the classical help-
less situation.

4.2 More agents and more cubes
Thanks to local perceptions, agents are adapted to envi-

ronments with various numbers of agents and cubes. There-
fore, policies learned in the simple 2a2c case may be re-
used with growing populations. Experiments show that
this method leads to better results than when learning from
scratch. On figure 3 are presented the results when learning

1Colors of agents and cubes are not related in this problem.
2(directions are discretized)
3In a step, all agents make one move simultaneously.
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Figure 2: 2a2c : incremental vs. raw learning
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Figure 3: more agents and more cubes

either from scratch or 2a2c-policies with more agents and
cubes4.

The solutions cannot be optimal. More improvements
(short-term memory, communication) would be necessary to
solve recurrent problems linked to the agents’ lack of focus.

5. CONCLUSION
The results obtained with this incremental learning are

encouraging. Nevertheless, several ameliorations could be
conducted: to use another learning algorithm such as a gra-
dient descent to obtain better policies, and to generate the
help given to agents (by first looking for situations near re-
warded state-action pairs).
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