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Abstract

In uncertain and partially observable envi-
ronments control policies must be a function
of the complete history of actions and obser-
vations. Rather than present an ever grow-
ing history to a learner, we instead track
sufficient statistics of the history and map
those to a control policy. The mapping has
typically been done using dynamic program-
ming, requiring large amounts of memory.
We present a general approach to mapping
sufficient statistics directly to control policies
by combining the tracking of sufficient statis-
tics with the use of policy-gradient reinforce-
ment learning. The best known sufficient
statistic is the belief state, computed from
a known or estimated partially observable
Markov decision process (POMDP) model.
More recently, predictive state representa-
tions (PSRs) have emerged as a potentially
compact model of partially observable sys-
tems. Our experiments explore the usefulness
of both of these sufficient statistics, exact and
estimated, in direct policy-search.

1 Introduction

Acting in partially observable domains without a
model of the system dynamics is challenging. In gen-
eral, policies must map entire histories to actions in
order to obtain the optimal policy possible under par-
tial observability. Fortunately, it is not necessary to
represent the entire history to a learner. Instead a
sufficient statistic of the history can be used.

Sufficient statistics are those where no information rel-
evant to predicting well is lost. A simple example is the
POMDP belief state that represents the probability of
being in each underlying state of the system. A con-
trol policy can then be found — using methods such as

value iteration — by using sufficient statistics instead
of the underlying MDP states [James et al., 2004]. The
drawback is that such algorithms are typically at best
PSpace-complete with respect to the size of the state
space. Even small problems may fail to converge to a
sensible policy due to memory consumption.

We propose an alternative approach, combining suffi-
cient statistics generated with true or estimated mod-
els, with direct policy-search methods from reinforce-
ment learning. In particular, we show how any suffi-
cient statistic can be mapped directly to control poli-
cies using policy-gradient reinforcement learning [Sut-
ton et al., 2000; Baxter et al., 2001]. Even though gra-
dient methods guarantee only local convergence, they
are attractive because their memory usage is indepen-
dent of the size or complexity of the state space.

The POMDP belief state is the well know sufficient
statistic for partially observable dynamical systems.
To demonstrate the applicability of our approach to
any sufficient statistic we also compare using POMDP
belief states to the more recent predictive state repre-
sentation (PSR) of dynamical systems [Littman et al.,
2002; Singh et al., 2004]. PSRs are interesting because
they offer a potentially more compact representation
than POMDPs. Also, the fact that they are based di-
rectly on observable “tests” makes them amenable to
discovering the PSR model from action/observation
trajectories. We believe this paper represents the first
use of PSR models for direct policy-search, and the
first use of estimated PSR models for any kind of con-
trol. For this reason, much of the paper is dedicated
to describing PSR models for direct policy search.

Because sufficient statistics are usually vectors we need
reinforcement learning methods suited to function ap-
proximation. Previous approaches to planning with
PSRs have assumed access to the exact PSR model and
hence adopted exact planning algorithms, such as in-
cremental pruning [James et al., 2004]. Reinforcement
learning methods that are not known to be robust un-
der function approximation have also been used, such



as SARSA [Rafols et al., 2005], or Q-learning [James et
al., 2004]. These methods also fail to scale when there
are many underlying states, or many PSR core-tests.
Our choice of algorithm is the Natural Actor-Critic
(NAC) algorithm [Peters et al., 2005], which is guar-
anteed to converge to at least a local maximum even
under function approximation and partial observabil-
ity. NAC also has memory usage that is independent
of the state space.

Our experiments focus on a comparison of policies
learned using various statistics including: estimated
and exact PSR prediction vectors and estimated and
exact POMDP belief states. We found that exact (and
estimated) PSRs do indeed allow better than reac-
tive policies to be learned. However, we also found
that, when mapping statistics to action distributions,
POMDP belief states have the advantage that linear
mappings are particularly easy to learn for the case
where the belief state accurately identifies the true
state. A final contribution of this paper is to note that
the PSR discovery problem may in practice be equally
difficult to problem of estimating the number of hid-
den MDP states, potentially negating a key benefit of
PSRs in some cases.

2 POMDPs

Partially observable Markov Decision Processes have
been popular for representing dynamic systems with
uncertainty. Given the current (hidden) state of the
system s ∈ S, and a control action a ∈ A, the prob-
ability of next state s′ is given by Pr(s′|s, a). An
observation o ∈ O is then generated with probabil-
ity Pr(o|s′, a), dependent only on the action and next
state. We assume finite state, observation, and action
spaces. Rewards are given for state transitions r(a, s′).
The reward at step i is denoted ri := r(ai, si). We seek
to maximise the normalised discounted sum of rewards

R(θθθ) = E
{

(1− γ)
∑∞

t=0
γtri

∣∣∣θθθ} .

We assume a parameterised stochastic control policy
where the probability of choosing action ai+1 is given
by Pr(ai+1|hi, θθθ), where h is the length i history of
observations and actions, h = a1o1a2o2 . . . aioi, and θθθ
is matrix of real valued parameters.

It is generally not feasible for a policy to depend di-
rectly on an exponentially large number of possible
histories. Instead, actions are computed from a suf-
ficient statistic of history. A simple example is the
POMDP belief state b, a vector giving the probability
of each underlying state s ∈ S. Given a belief state
for time index i− 1, the next belief state is computed

from the chosen action ai, the observation oi

bi(s′)=
Pr(oi|s′, ai)

∑
s∈S bi−1(s) Pr(s′|s, ai)∑

s′′∈S Pr(oi|s′′, ai)
∑

s∈S bi−1(s) Pr(s′′|s, ai)
.

(1)
Unfortunately this approach requires knowledge of
model parameters Pr(s′|s, ai) and Pr(o|s′).

2.1 Model-Free RL in POMDPs

A non-sufficient, but simple, statistic is to use the last
k observations and actions. We can easily create a
table of all possible combinations of the last k (ob-
servation,action) pairs mapped to action likelihoods.
But this approach is not desirable because it requires
O((|O||A|)k|A|) parameters for an exact representa-
tion and fails if more than k steps of history are re-
quired. This is an example of a k-order Markov model
[Littman et al., 2002]. We could consider adapting the
amount of history automatically, extending the his-
tory when statistical tests indicate the inability of the
system to fully resolve hidden state, e.g., the U-Tree
algorithm of McCallum [1996].

Alternatively, we could learn the POMDP parameters
and compute a sufficient statistic using (1) and the es-
timated model. Chrisman [1992] did this with a Baum-
Welsh style EM estimation of the parameters from a
long window of history, essentially a modified form of
hidden Markov model training. Littman et al. [2002]
suggest that this approach requires a good initial esti-
mate of the model.

3 Predictive State Representations

Predictive state representations [Littman et al., 2002]
are an alternative to POMDPs for modelling dynamic
systems with hidden state. Instead of POMDP belief
states, PSRs maintain a prediction vector that gives
the probability of observing each of a small set of ac-
tion/observation sequences called “tests”. As we shall
see, the PSR equivalent of (1) is a linear transforma-
tion of the current prediction vector using a set of PSR
parameters. The power of PSRs is in the proof that a
finite number of test predictions is a sufficient statistic
for the system, potentially allowing policies with ac-
cess to the PSR prediction vector to act as optimally
as possible under partial observability. Moreover, PSR
vectors are potentially more compact than POMDP
belief states because it is guaranteed that the number
of core tests will be equal to, or less than, the number
of underlying states [Singh et al., 2004].

We now adopt the description of PSRs given by Bowl-
ing et al. [2006]. A test t is a sequence t =
a1o1a2o2 . . . aioi of action/observation pairs that may
occur in the future. The test succeeds if o1o2 . . . oi is



observed after performing actions a1a2 . . . ai. The null
test ε succeeds by definition and is always part of the
test set. A prediction Pr(t|h) is the probability that
test t succeeds given the history and assuming the pol-
icy chooses the actions specified in the test. Suppose
there exists a core set of tests Q such that the predic-
tion for any other test can be computed from a linear
combination of the predictions of tests in Q. If this
is the case the system can be modelled compactly as
a linear PSR. More precisely, if we follow the stan-
dard PSR convention of defining Pr(Q|h) as a |Q| row
vector of predictions for the core tests, and mt as a
|Q| column vector of parameters for test t, then for all
possible tests Pr(t|h) = Pr(Q|h)mt. In other words,
Pr(Q|h) entirely summarises the history.

Given a history h, a new action a and subsequent ob-
servation o, we can update the PSR vector Pr(Q|h) by
updating each element of Pr(q|h) for all q ∈ Q

Pr(q|hao)=
Pr(haoq)
Pr(hao)

=
Pr(aoq|h) Pr(h)
Pr(ao|h) Pr(h)

=
Pr(aoq|h)
Pr(ao|h)

.

Because the probability that t succeeds can be pre-
dicted with Pr(t|h) = Pr(Q|h)mt we have

Pr(q|hao) =
Pr(Q|h)maoq

Pr(Q|h)mao
. (2)

The learning problem is to find the |Q|× 1 vectors mt

for all core tests Q and all tests that are single step
prefix extensions aoq ∀q ∈ Q, a ∈ A, o ∈ O, the union
of which we denote by X . The discovery problem is
finding the minimum set of core tests Q.

4 RL with Online PSRs

Our goal is to learn good control policies purely from
experience. We first describe the PSR estimation al-
gorithm. We adopt the online constrained-gradient al-
gorithm of McCracken and Bowling [2006] because 1)
it deals with both the learning and discovery prob-
lems from experience rather than from the POMDP
model; 2) it does not require resets; 3) it avoids the
bias problems associated with some Monte-Carlo esti-
mators [Bowling et al., 2006]; 4) it admits the possi-
bility of learning online, simultaneously with the pol-
icy, which may reduce the total number of samples
required to learn, and may in fact be helpful in large
or non-stationary domains.

4.1 Online PSR Learning

Algorithm 1 is an alternative presentation of the con-
strained gradient algorithm for online learning and dis-
covery of PSRs [McCracken and Bowling, 2006]. The
algorithm continues until a maximum number of can-
didate core tests have been found. Lines 6–8 update

predictions for each t ∈ X . The routine expand(Q)
adds tests to T to guarantee:

1. if q ∈ Q then aiojq ∈ T ∀ai ∈ A and oj ∈ O;
2. if tao ∈ T then t ∈ T ;
3. if tao ∈ T then taoj ∈ T ∀oj ∈ O.

Because of these conditions lines 6–8 are guaranteed to
update all the core tests, producing a PSR vector for
step i. Lines 9–12 use the updated PSR vector to esti-
mate the value of all other tests by solving a series of
least squares problems for mt. The updated prediction
is then Pr(t|h) = Pr(Q|h)mt. Least squares estima-
tion can introduce errors (such as values outside [0,1]).
In line 13 the routine normalise(Pr(T |hi)) constrains
all entries to obey

Pr(taoj |hi)←
Pr(t|hi) Pr(taoj |hi)∑

o′∈O Pr(tao′|hi)
∀oj ∈ O,

which restricts the probability of all one step exten-
sions of test t to sum to Pr(t|hi).

So far we have only achieved the update of all the test
predictions. Lines 14–17 find tests that are about to
succeed and performs a TD like gradient step to make
the prediction value of a successful test Pr(tao|hi)
closer to that of its parent’s value Pr(t|hi). This tunes
the PSR to make accurate predictions by moving the
predictions in the direction of what is about to hap-
pen. This requires that the PSR learning is delayed by
the length of the maximum test. A look ahead buffer
is kept, allowing matching of tests to actual futures.

The final part of Algorithm 1 is to discover new core
tests. Lines 18–25 propose a new core test every N
iterations. A test is potentially in Q if its predictions
over all histories Pr(t|H) are orthogonal to all other
core tests Pr(Q|H), i.e., if it is impossible to compute
the test prediction from a linear combination of the
current core tests. The orthogonality of candidates
t ∈ X is measured by computing the condition number
(using singular value decomposition) of a matrix made
up of Pr(Q|H) plus the column of predictions for the
candidate test Pr(t|H). The test that results in the
lowest condition number is added to the core set as the
most independent test. Here we have diverged slightly
from McCracken and Bowling [2006] by allowing only a
single core test to be added at each time, not requiring
a minimum threshold to be satisfied. We also require
that N is much greater than the number of stored
rows of Pr(Q|H) to remove initially poor predictions of
new tests. These measures avoid adding two core tests
in one round that might individually be independent
of the core test set, but are not independent of each
other. Note that for the purposes of learning a good
control policy it does not matter if non-core tests are



Algorithm 1 Online PSR Learning & Discovery
1: i = 1 Q = {ε}, T =expand(Q), αpsr step size
2: Let Pr(T |H) be an N × |T | matrix with rows in-

dexed by hi = i mod N and columns indexed by
tests t ∈ T .

3: Let Pr(Q|H) be an N × |Q| matrix with columns
indexed by tests q ∈ Q ⊂ T .

4: while |Q| < max core tests do
5: For action ai, get subsequent observation oi

6: for each {t : aioit ∈ T } do
7: Pr(t|hi) = Pr(aioit|hi−1)

Pr(aioi|hi−1)

8: end for
9: for each {t : aioit /∈ T } do

10: mt = arg minm ‖Pr(Q|H)m− Pr(t|H)‖2
11: Pr(t|hi) = Pr(Q|hi)mt

12: end for
13: normalise(Pr(T |hi))
14: for each {tao : tao observed in future} do
15: Pr(tao|hi)←(1−αpsr) Pr(tao|hi)+αpsr Pr(t|hi)
16: end for
17: normalise(Pr(T |hi))
18: if i mod N = 0 (i.e., matrix full) then
19: for each {aot : t ∈ X} do
20: Pr(Q̂|H) = [Pr(Q|H) Pr(aot|H)]
21: κκκaot = conditionNumber(Pr(Q̂|H))
22: end for
23: Q ← {Q, arg minaot κκκaot}
24: T = expand(Q)
25: end if
26: i← i + 1
27: end while

accidentally added to Q, provided at least all the true
core tests are in the final set.

Algorithm 1 is slow, solving many O(|Q|3) least
squares problems for each received action/observation
pair. However, once the algorithm has found the max-
imum number of core tests we can switch to tracking
the PSR prediction vector using the O(|Q|) update (2).
This requires a final set of least squares solutions to
compute parameter vectors mt, ∀t ∈ X .

4.2 Natural Actor-Critic

The Natural Actor-Critic (NAC) algorithm [Peters
et al., 2005] combines policy-gradient (PG) actors,
with value based critic estimates; taking advantage
of policy-gradient properties of local convergence un-
der function approximation and partial observability,
with the lower variance of value based methods. Fur-
thermore, NAC actor gradient estimates are natural
gradients and make full use of each sample through a
least-squares approach to the data. NAC is well suited
to improving a policy where the observation of state

is a vector basis feature. In the case of PSRs the basis
feature is exactly the PSR prediction vector Pr(Q|hi).
In the case of POMDP belief states the basis feature
is bi. For convenience we use the notation b for both
forms, meaning a basis feature.

The algorithm of Peters et al. [2005] produces noisy
batch gradient estimates. We modified NAC to adjust
the parameters at every step, i.e., stochastic gradient
ascent. We hope to outperform batch methods because
the policy can improve at every step. We also avoid
the problems introduced when noisy batch gradient es-
timates are treated as exact and used in quasi-newton
methods, line searches, or conjugate gradient methods.
RL methods that use soft-max functions must be par-
ticularly careful not to step too far in any apparently
good direction because the soft-max exhibits a plateau
(an apparent local maximum) in the gradient for most
large absolute parameters values. The natural gradi-
ent compensates for this by ensuring that gradients
tell us how to step in probability space, independently
of the parameterisation. We briefly describe NAC but
defer to Peters et al. [2005] for a full explanation.

We begin with the Bellman equation for fixed param-
eters θθθ where the value of action a in state s is Q(s, a).
This can also be written as the value V(s) plus the
advantage of action a, A(s, a):

Q(s, a)=V(s)+A(s, a)=r(s, a)+γ
∑
s′∈S

Pr(s′|s, a)V(s′).

(3)
Now b is the basis feature, or sufficient statistic,
that reveals information about the current state s.
We substitute linear approximators for the value
and advantage functions, with parameter vectors v
and w respectively: V̂(s) := b(s)ᵀv, Â(s, a) :=
(∇θθθ log Pr(a|b(s), θθθ))ᵀw, leading to

b(s)ᵀv+(∇θθθ log Pr(a|b(s), θθθ))ᵀw

= r(s, a) + γ
∑
s∈S

Pr(s′|s, a)b(s′)ᵀv. (4)

The surprising choice of ∇θθθ log Pr(a|b(s), θθθ) as fea-
tures for estimating Â(s, a) has the nice property that
the parameters w turn out to be exactly the natu-
ralised gradient of the long-term average reward with
respect to the policy (actor) parameters [Peters et al.,
2005]. This is a consequence of the Policy-Gradient
theorem of [Sutton et al., 2000]: let Pr(s|θθθ) be the
steady state probability of state s and B(s) is a base-
line to reduce the variance of gradient estimates

∇θθθR(θθθ) =
∑
s∈S

Pr(s|θθθ)
∑
a∈A
∇θθθ Pr(a|s)(Q(s, a)− b(s))

(5)
The obvious baseline for making Q(s, a) zero mean is
b(s) = V(s), which gives Q(s, a) − V(s) = A(s, a).



Again, we substitute the linear approximation Â(s, a)
for A(s, a) and make use of the fact that our policy is
actually a function of b := b(s) and θθθ:

∇θθθR(θθθ) =∫
S
Pr(s|θθθ)

∫
A
∇θθθ Pr(a|b, θθθ)(∇θθθ log Pr(a|b, θθθ))ᵀwda ds.

But ∇θθθ Pr(a|b, θθθ) = Pr(a|b, θθθ)∇θθθ log Pr(a|b, θθθ) gives

∇θθθR(θθθ) =
∫
S
Pr(s|θθθ)

∫
A
Pr(a|b, θθθ)

∇θθθ log Pr(a|b, θθθ)(∇θθθ log Pr(a|b, θθθ))ᵀda dsw =: Fθθθw

A key observation is that the matrix Fθθθ is the outer
product of the log action gradient, integrated over all
states and actions. This is the Fisher information ma-
trix. On the other hand, the naturalisation of gradi-
ents consists of pre-multiplying the normal gradient by
the inverse of the Fisher matrix, leading to cancella-
tion of the two Fisher matrices F−1

θθθ ∇θθθR(θθθ) = w.

NAC proceeds by solving a TD estimate of (4) for w
and stepping the policy parameters θθθ in that direction.
The TD estimate replaces the summation by a sam-
pled approximation γbiv of the discounted value of the
observed next state. This approximation introduces a
zero-mean error σ. Rewriting (4) as a sampled linear
system and manipulating, and defining the eligibility
trace as zi :=

∑i
j=1 λi−j [∇θθθ log Pr(ai|bi−1, θθθi)ᵀ,bᵀ

i ]ᵀ,
yields

zi[(∇θθθ log Pr(ai|bi−1, θθθi)ᵀ, (bi−1 − γbi)ᵀ][wᵀ
i ,vᵀ

i ]ᵀ + σ

= zir(si, ai) =: gi

The NAC algorithm solves for w by averaging both
sides over M steps (removing σ) and solving the result-
ing least squares problem AM [wᵀ,vᵀ]ᵀ = ωωωM , where

AM =
1
M

M∑
i=1

zi[(∇θθθ log Pr(ai|bi−1, θθθi)ᵀ, (bi−1−γbi)ᵀ],

(6)
and ωωωi = 1

M

∑M
i=0 gi.

Algorithm 2 is our online version of NAC. The main
difference from the original is the avoidance of a O(d3)
matrix inversion for solving AM [wᵀ,vᵀ]ᵀ = ωωωM , where
d = |θθθ| + |b|. Instead, we implement the Sherman-
Morrison rank-1 matrix inverse update, with com-
plexity O(d2). As the number of parameters and
the basis vector grow, NAC still becomes prohibitive.
For example, a tabular representation of policy, such
as used for k-step finite-memory experiments, needs
(|O||A|)k|A| parameters to represent the exact pol-
icy and length (|O||A|)k basis vectors. Even our on-
line version of NAC would then require O(d2) =
O((|O||A|)2k) steps per iteration. So our finite mem-
ory and other tabular representation experiments used

Algorithm 2 An Online Natural Actor-Critic

1: i = 1, A−1
1 = I, θθθ1 = [0], z1 = [0]

2: αpg=step size, γ=Critic discount, λ=Actor dis-
count

3: Get observation b0

4: while not converged do
5: Sample action ai ∼ Pr(·|bi−1, θθθi)
6: zi = λzt−1 + [∇θθθ log Pr(ai|bi−1, θθθi)ᵀ,bᵀ

i ]ᵀ

7: Do action ai

8: Get reward ri

9: gi = rizi

10: Get updated statistic bi

11: yi = [∇θθθ log Pr(ai|bi−1, θθθi)ᵀ,bᵀ
i−1]

ᵀ− γ[0ᵀ,bᵀ
i ]ᵀ

12: µi = 1− 1
t

13: ui = (1− µi)A−1
t−1zi

14: qᵀ
i = yᵀ

i A−1
t−1

15: A−1
i = 1

µi
A−1

t−1 −
uiq

ᵀ
i

1.0+qᵀ
i zi

16: [wᵀ
i ,vᵀ

i ]ᵀ = A−1
i gi

17: θθθt+1 = θθθi + αpgwi

18: i← i + 1
19: end while

a simplified O(d) version of the algorithm that sets A
to the identity matrix, equivalent to the GPOMDP
algorithm of Baxter et al. [2001]. NAC can be viewed
as a generalisation of GPOMDP that incorporates cur-
vature information to accelerate convergence, without
changing the optimisation problem.

4.3 Policy Architecture

The policy maps history statistics bi to distributions
ãi over actions using a function f with outputs x and
the soft-max function. We implemented two versions
of f : the first is an exact tabular representation where
xi = f(aioi . . . ai−k−1oi−k−1) is a row of parameter
matrix θθθ, indexed by the last k steps of history. The
second maps vectors (Figure 1), either POMDP beliefs
or PSR prediction vectors, to x using a linear approxi-
mator x = θθθb. In this case θθθ is an |A|× |S| parameter
matrix. Now let U(a) be the unit vector with a 1 in
row a. Thus, assuming element-wise exponentiation

ãi =
exp(xi)∑

a∈A exp(xi(a))
; Pr(ai = a′|bi−1, θθθi) = ãi(a′);

∇θθθi
log Pr(ai = a′|bi−1, θθθi) = (U(a′)− ãi)b

ᵀ
i . (7)

5 Experiments

We experimented on 6 small POMDP benchmarks
commonly used in PSR papers [James et al., 2004;
Bowling et al., 2006]. They range from 2 to 11 states,
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Figure 1: A linear approximator architecture for map-
ping sufficient statistic b to stochastic policies.

and 2 to 7 observations. All experiments used the dis-
count factors defined in the scenario files. We hand-
tuned αpg to the best power of 10 for each scenario.
Our benchmark algorithms are split into two cate-
gories: those with policies that depend explicitly on
zero or more steps of history and use an exact tabular
policy parameterisation; and those that use sufficient
statistic vectors and a linear policy parameterisation.
The exception was PSR experiments on Shuttle. This
problem required a multi-layer perceptron with 3 hid-
den units using a tanh non-linearity and initial pa-
rameters randomly initialised to ‖θθθ‖∞ < 0.01. We
comment why this was necessary later. The tabular
algorithms include:

Random: the policy is a uniform distribution over all
actions. No learning occurs.

Blind: completely unobservable. The policy is a sta-
tionary distribution over actions.

Reactive: policies depend only on oi.

Finite Memory: policies depend on k past (oi, ai)
pairs, with k = 2.

MDP: policies depend on the true state of the sys-
tem. This algorithm provides an upper-bound on the
obtainable long-term reward.

The NAC algorithm is not known to work with ba-
sis vectors that are a non-deterministic indication of
state. This reason, and the high complexity of NAC
with exact policy representation, led us to use the
vanilla gradient algorithm for these runs. The exact
policy representation gives these algorithms an advan-
tage, but would not be scalable to larger problems due
to the exponential explosion in parameters with grow-
ing history length. The results are given in Table 1.
Standard deviations over 30 trials are also given. On a

3GHz Pentium IV desktop the average time required
to reach 95% of maximum R was from 2 seconds per
run (reactive Tiger) up to 180 seconds (finite-memory
4x3 Maze). Similarly, the number of learning steps
varied from 1.3 ·106 (reactive Tiger) to 1.6 ·107 (finite-
memory 4x3 Maze).

The more interesting experiments involve learning a
policy from sufficient statistics, exact or estimated.
We expected that they would out-perform the reac-
tive approach, while not expecting them to beat the
fully observable MDP case.

Estimated POMDP: the underlying POMDP pa-
rameters are estimated using a modified Baum-Welsh
style EM algorithm [Chrisman, 1992]. Re-estimation
is performed every N steps using a history of N oa-
pairs (with N = 1000). The model is initialised with
the correct number of states, and random values in the
transition and observation tables. There are indepen-
dent transition and observation matrices for each ac-
tion, allowing the actions to drive the evolution of the
estimated belief. The belief state is updated with (1).

Estimated PSR: discovery was performed up to the
maximum number of core tests shown in Table 2. For
the smaller problems we overestimate the number of
core tests, allowing for some error in discovery. For
larger scenarios the discovery struggled to find more
than the indicated number of core tests. Learning was
performed with a step size of αpsr = 1, giving the full
probability mass to the successful test. Smaller val-
ues of αpsr performed poorly in practice. This occurs
because for αpsr < 1 the momentum term does not
allow test probabilities to fully commit to their parent
test values. Such a high α does not necessarily degrade
the final result because the final PSR parameters come
from a least squares estimation that finds a compro-
mise solution that best matches all the probabilities in
the history matrix.

Exact POMDP: the true POMDP model is used to
compute the belief state using (1).

Exact PSR: the exact PSR model is computed from
the true POMDP model using the depth first search
algorithm presented in Littman et al. [2002]. We con-
firmed the correctness of the core tests by comparing
with previous papers. The only discrepancy was the
Paint problem where we found only 2 core tests, agree-
ing with McCracken and Bowling [2006], but disagree-
ing with the 4 reported by James et al. [2004].

Table 2 gives the results.1 The immediate conclusion
is that all statistics are successful in improving upon

1The results were generated using the LibPG
policy-gradient toolkit: http://sml.nicta.com.au/∼daa/
software.html.



the reactive policy except for the estimated PSR for
Tiger and Paint, and the exact PSR model for Paint.
The Paint scenario seems to be ill-conditioned from a
PSR point of view, possibly because the observation is
almost always “not blemished”, so any two tests will
appear almost linear. This was confirmed by observ-
ing that the SVD of the Paint history matrix produced
only 2 significant singular values, and more values on
the edge of machine precision. The other difficult sce-
nario, Tiger, suffers from a poor local maximum which
is to always “listen”, avoiding the large penalty for
opening the wrong door. This, combined with noisy
estimation of the PSR parameters, means policies get
stuck in this poor maximum.

Empirically we observed that it was generally more
difficult to learn a policy from PSR prediction vectors
than from belief states. This is despite the fact that
PSRs have provably at least as much representational
power as POMDPs. This led to a simple result about
using belief states in conjunction with perceptrons

Proposition 1. Let Pr(a|bi, θθθ) be parameterised as
a linear transformation xi = θθθbi, as input to a soft-
max function (7). Also let a∗ = π(s) be the optimal
deterministic policy given full observability. Then θθθ
can always be constructed such that as ‖θθθ‖ → ∞, the
policy performance approaches that of a POMDP “vot-
ing” heuristic ai = arg maxa

∑
{s:π(s)=a} b(s).

Proof. We prove this by constructing the parameters
θθθ that implement the voting policy. We set all param-
eters in row θθθa to 0 except for the entries θθθπ(s),s which
we set to χ→∞. Now the output of the linear approx-
imator for each action is x(a) =

∑
{s:π(s)=a} χb(s).

Because the soft-max function uses the ratio of expo-
nentials of x(a), a sufficiently large χ turns the soft-
max into a hard-max, always choosing the action voted
for by the states with the largest sum of beliefs.

Thus, a linear transform of a belief state to soft-max
input can always represent a policy at least as good,
and possibly better, than the POMDP voting heuristic
policy [Simmons and Koenig, 1995]. Of course, the
existence of a set of parameters that represents a good
policy does not imply that it will be found by NAC,
it does however suggest a lower bound on the quality
of linearly parameterised policies we should achieve
with good sufficient statistics. Unless it is known that
each core tests suggests only states with a common
optimum action, we cannot easily construct a similar
linear parameterisation for PSR prediction vectors.

Put another way, knowing the true MDP state always
allows you to compute a direct mapping to an opti-
mal action. Since the POMDP belief state is a direct
approximation of which state you are in, you can al-

ways compute a soft-max mapping that chooses the
best action voted for by the most likely states in the
belief vector. This also explains our experience with
PSRs and the Shuttle problem. We could not do better
than a reactive policy without introducing hidden lay-
ers into the parameterisation, allowing a much richer
mapping from the sufficient statistic vector to a policy.

Learning is particularly difficult with estimated PSR
parameters, with averaged results significantly worse
than the exact PSR experiments (but still better than
reactive). Figure 2 shows the difference in convergence
between the estimated PSR and exact PSR on the Net-
work problem. Improving Algorithm 1 by reducing the
errors from least squares estimates and gradient steps
would help significantly. The fastest of these algo-
rithms was the exact belief state, requiring on average
from 2 seconds (Tiger) to 350 seconds (Cheese). The
slowest was the estimated PSR algorithm, requiring
between 120 seconds (Tiger) to 8000 seconds (Cheese).
The majority of the time was taken up in the online
PSR discovery and learning. In terms of the number
of iterations required NAC is an order of magnitude
faster than the tabular vanilla PG algorithm used for
Table 1. The average number of iterations ranged from
best case 8.6 · 104 (exact POMDP Tiger) to 3.8 · 106

(exact PSR Maze). Thus, if experience is more expen-
sive than computation time then NAC is attractive,
otherwise vanilla estimates are faster.

Table 1 shows that these common PSR benchmark do-
mains can actually be solved quite well using finite
history methods. This is largely because this amount
of history suffices for most of these problems. Also,
tabular methods have the advantage of an exact pol-
icy representation. The Tiger problem is interesting
because the finite history methods fails compared to
PSRs, exactly because it is a problem that requires
more than two observations to do well.

Our experiments perform model estimation and pol-
icy improvement separately. We also attempted to do
this simultaneously.2 This can be dangerous if the
policy finds a poor local maximum before giving the
estimation algorithm sufficient time to explore the full
system dynamics. However, for the Network and Shut-
tle problems we achieved average values of 12 and 1.3
respectively. Simultaneous learning on the other sce-
narios led only to the reactive policy.

2A modification to the PSR estimation is necessary to
allow the policy to get a PSR prediction vector based on the
most recent observation, while still allowing the PSR to use
a look-ahead buffer for making TD steps. Our modification
was to wind forward the PSR estimate through all actions
and observations in the look-ahead buffer using the most
recently computed parameter vectors mt ∀t ∈ T .



Table 1: Baseline results with tabular representations.
Scenario Tiger Paint Network Shuttle 4x3Maze Cheese
Rnd -30 -.20 -12 -0.2 -.10 .01
Blind -1.0± .00 .00± .000 -1± 0.2 0.4± .01 .05± .001 .01± .001

React -1.0± .00 .00± .000 10± 0.2 1.1± .01 .09± .001 .11± .001

Hist 0.8± .49 .18± .003 14± 1.0 1.8± .02 .14± .002 .19± .002

MDP 10± .00 .65± .001 26± 0.3 1.8± .00 .18± .001 .20± .001

Table 2: Final results over 30 runs for sufficient statistics algorithms. Numbers in brackets show the true and
discovered number of core tests for each scenario.
Scenario Tiger (2) Paint (4) Network (7) Shuttle (8) 4x3Maze (11) Cheese (11)
Est.Belief 0.4± 1.0 .11± .021 14± 0.4 1.8± .05 .15± .003 .16± .011

Est.PSR -1.5± 1.5 (3) .01± .012 (3) 12± 1.5 (8) 1.6± .23 (8) .11± .007 (10) .14± .030 (8)
Belief 1.4± .033 .13± .001 13± 0.7 1.8± .03 .14± .001 .16± .006

PSR 1.2± .529 (2) .00± .000 (2) 14± 0.6 (7) 1.7± .16 (8) .12± .019 (11) .16± .002 (11)

Figure 2: Exact PSR predictions (top) are easier to
learn from than Estimated PSR predictions (bottom).

6 Conclusion

We have demonstrated that tracking sufficient statis-
tics with exact and estimated models can be used to
learn significantly better than reactive policies. Finite
memory statistics also work well, but will not scale
well to problems with more actions, observations, and
greater history. NAC was effective at learning from
vector representations of state. Future work will im-
prove online PSR estimation, exploring the usefulness
of non-linear PSR representations.
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