
A Two-Teams Approach for
Robust Probabilistic Temporal Planning

Olivier Buffet and Douglas Aberdeen

National ICT Australia &
The Australian National University
firstname.lastname@nicta.com.au

Abstract. Large real-world Probabilistic Temporal Planning (PTP) is
a very challenging research field. A common approach is to model such
problems as Markov Decision Problems (MDP) and use dynamic pro-
gramming techniques. Yet, two major difficulties arise: 1- dynamic pro-
gramming does not scale with the number of tasks, and 2- the proba-
bilistic model may be uncertain, leading to the choice of unsafe policies.
We build here on the Factored Policy Gradient (FPG) algorithm and on
robust decision-making to address both difficulties through an algorithm
that trains two competing teams of learning agents. As the learning is
simultaneous, each agent is facing a non-stationary environment. The
goal is for them to find a common Nash equilibrium.

1 Introduction

Probabilistic Temporal Planning [1] can be efficiently modeled using Markov
Decision Problems (MDPs) [2]. Dynamic programming is a common approach
to find plans (policies) optimising the expected long-term utility of an MDP.

In particular, PTP leads to a type of MDP taking the form of stochastic
shortest-path problems for which algorithms such as Real-Time Dynamic Pro-
gramming (RTDP) [3] are particularly appropriate. Unfortunately, the “relevant”
part of the state space (from the optimal policies point of view) will grow expo-
nentially with the number of tasks to handle, which makes it difficult to scale to
large real world problems. A possible solution is to switch to a factored algorithm
where each individual task has to learn when it should be triggered, regardless
of the policy for the remaining tasks [4; 5]. Here we consider this method as a
multi-agent reinforcement learning algorithm.

Another difficulty with real-world PTP is that the model may be inaccurate,
resulting in overly-optimistic plans in risk-adverse domains. This uncertainty
usually lies in the transition probabilities, and is due to learning models statis-
tically or by asking. A simple way of representing such uncertain probabilities is
through intervals in which the true model values lie with a given confidence.

Taking this uncertainty into account while planning usually means looking
for a robust plan, i.e., searching for the best plan while an opponent is look-
ing for the worst possible model. Indeed, this game-theoretic point of view has

been successfully applied by modifying dynamic programming algorithms such
as Value Iteration [6] or RTDP [7].

As can be observed, making a planning algorithm scalable or robust leads
to different “multi-agent” solutions. We present an algorithm, Two-Teams-FPG
(TT-FPG), that attempts to tackle both problems by merging these two solu-
tions in a single framework where two teams of learning agents are competing.
Because agents learn simultaneously, each of them is facing a non-stationary en-
vironment. A difficult problem is to ensure convergence to a Nash equilibrium.

We first introduce Markov Decision Problems and Probabilistic Temporal
Planning. Section 3 describes the two domains we are building on: the Factored
Policy Gradient algorithm and robustness. Our two-teams algorithm and its
experimental validation follow in Sections 4 and 5 before a conclusion.

2 Background

2.1 Markov Decision Problems

A Markov Decision Problem [2] is defined here as a tuple 〈S, A, T, r〉. It describes
a control problem where S is the finite set of states of the system considered
and A is the finite set of possible actions a. Actions control transitions from
one state s to another state s′ according to the system’s probabilistic dynamics,
described by the transition function T defined as T (s, a, s′) = Pr(st+1 =
s′|st = s, at = a). The aim is to optimise a performance measure based on the
reward function r : S ×A× S → R.1

An algorithm optimising an MDP has to find a policy that maps states to
probability distributions over actions π : S → Π(A) which optimises the chosen
performance measure, here the value V defined as the average reward gained
during a transition. Other performance measures include the discounted sum of
rewards on an infinite horizon (Vdis =

∑∞
t=0 γtrt, where γ ∈ [0, 1)) and the cost

(c(s, a, s′) = −r(s, a, s′)) to the goal J when our aim is to reach a goal state with
minimal cost.

Dynamic Programming — Well-known stochastic dynamic programming algo-
rithms such as value iteration (VI) make it possible to find a deterministic policy
maximising Vdis (or minimising J). Value iteration works by computing the value
function V ∗

dis(s) that gives the expected reward of the optimal policies. It is the
unique solution of the fixed point equation [8]2

V (s) = max
a∈A

∑
s′∈S

T (s, a, s′) [r(s, a, s′) + γV (s′)] . (1)

Updating Vdis with this formula leads to the optimal value function. For con-
venience, we also introduce the Q-value: Q(s, a) =

∑
s′∈S T (s, a, s′)[r(s, a, s′) +

W (s′)], where W can be V , γVdis or J depending on the performance measure.
1 As the model is not sufficiently known, we do not make the usual assumption

r(s, a) = Es′ [r(s, a, s′)]. The expectation depends on the (unknown) true model.
2 An equivalent formulation exists for minimising the long-term cost J .

Policy-Search — Apart from dynamic programming, there exists various di-
rect policy-search algorithms. They often amount to the problem of optimising
a function (the performance measure) in a space of parameters on which the
policy depends. William’s REINFORCE [9] is the first example of tuning the
parameters of a connexionist controller based on immediate reinforcement sig-
nals. These algorithms do not necessarily rely on the knowledge of the exact state
of the system: they can find a (locally) optimal policy using partial observations.

In our work, we have mainly used the on-line policy-gradient algorithm OL-
POMDP [10; 11]. Here, the policy is defined as a function µa(θ, o) giving the
probability of choosing action a under observation o, where θ is the policy’s
vector of parameters. OL-POMDP works by approximating the gradient after
each simulation step and following it. At time t, if action at is performed while
observing ot and receiving reward rt, the update is achieved by computing:

zt+1 = βzt +
∇µat

(θt, ot)
µat

(θt, ot)
(2)

θt+1 = θt + αtrtzt+1 (3)

where β and αt are learning rates.

2.2 Probabilistic Temporal Planning

Our planning domain is described by: a set of condition variables C = {C1, . . . ,
C|C|}, a set of resourcesR = {R1, . . . , R|R|} and a set of tasks T = {T1, . . . , T|T |}.

A task t can be triggered if certain conditions hold (pre-conditions) and if
certain resources are available. After the task’s duration, one of several possi-
ble outcomes outT (1), outT (2) . . . arise, depending on a probability distribution
Pr(outT (k)), and setting some conditions or consuming some resources. Tasks
can run simultaneously and can be repeated if necessary.

Our objective is to reach a goal state specified as a conjunction of conditions.
Indeed, among previous probabilistic temporal planners — as CPTP [12], Prottle
[13], Tempastic [14] and a military operations planner [15] — most are based on
the MDP framework and dynamic programming algorithms.

PTP with MDPs — A simple way of turning such a probabilistic temporal
planning problem into an MDP is, as done in [16; 15], to define:

– States as instants when some tasks end, resulting in a new situation where a
decision can be made. A state is then defined by: current conditions, current
resources and currently running tasks.

– Actions as the decision of triggering a set of eligible tasks. Triggering no task
is valid as it amounts to waiting for the next decision point.

– Transition probabilities depend on each task’s probability distribution over
outcomes.

– Rewards are defined as: 0 by default and +1 when the goal is reached.

One could also give a negative reward for resource consumption or when a
plan fails, what we detect by setting a time limit (on goal reachability, see [17]).
In our implementation, +1000 is given when the goal is reached, and a progress
estimator is used to help the planner move towards the goal (see [5]).

To give a graphical view of this transcription from PTP to MDP, Figure 1
presents side-by-side a representation of evolving tasks as from a probabilistic
temporal planning problem, and a simple MDP.

T5

T4

T3

T2

T1
t−24 t t−18

[success]

[abortion]

(...)

s1

s2 s3 s4 s5

a1 a2

P = .8

P ≤ .2

a- A running PTP problem b- A simple MDP

Fig. 1. In this work, PTP problems (a) are turned into MDPs (b).

3 Two Multi-Agent Approaches

We now come back to the two problems we want to address — scalability and
robustness of the planning algorithm — and discuss the solutions that are the
basis of our contribution.

3.1 Factored Policy Gradient

Most probabilistic temporal planners are based on MDPs and dynamic program-
ming. This leads to state- and action-spaces that grow exponentially with the
number of tasks. Indeed, if n tasks are eligible in state s, there are 2n possible
actions. The number of possible next states from s grows similarly. This is a
major problem even if algorithms do not necessarily develop the complete state-
space. Ensuring optimality requires keeping in memory more than the relevant
states (states which can be visited by some optimal policy).

Reducing Spatial Complexity — To tackle this problem, the first idea behind the
Factored Policy-Gradient planner (FPG) [5] is to avoid enumerating states by
using a direct policy-search.3 In fact, reducing the algorithm’s spatial complexity

3 Another approach is to compute an approximation of the Q-values.

requires reducing the number of degrees of freedom through the choice of the
policy’s parameterisation.

FPG’s parameterisation is mainly influenced by the distributed perspective
of PTP: it is quite natural to see this kind of problem as the problem of having
multiple “task-agents” coordinating their decisions to trigger their respective
tasks. An interesting property of this factorization is that the number of possible
deterministic policies remains the same: at each decision point, if n tasks are
eligible, there are 2n local deterministic strategies. This is good news because the
optimal policy will still be obtainable given a sufficiently rich parameterisation
for each agent.

If we are prepared to sacrifice the existence of an optimal deterministic pol-
icy, we may introduce partial observability and reduce the number of parameters
(degrees-of-freedom). We do this to simplify the agents, hence speeding up learn-
ing for very large domains.

Multi-Agent Policy Search — A lot of work has been done on multi-agent deci-
sion making, often based on dynamic programming. Yet, convergence guarantees
of dynamic programming often require a stationary environment, which is not
satisfied in multi-agent settings as the environment comprises agents with chang-
ing behaviors. But a factored policy-gradient setting can still be seen as a single
learning agent.

Examples of successful applications of direct policy search to cooperative
multi-agent settings are [18], [19] and [20]. All three are based on policy-gradient
algorithms. It is important to observe that they can differ in how reward is
distributed among agents: in [19], the algorithm attempts to guess if an agent
should get more reward than another.

A last remark is that a multi-agent policy search makes it easier to reuse
knowledge when the planning domain changes. Assuming a partially observable
setting in which an agent does not know about currently running tasks, new tasks
can be easily added while the policies linked to already existing tasks may need
only moderate changes to remain efficient. This is a strong argument as real-
world planning domains often evolve with time. Also, task-dependent policies
may give a more understandable solution than a monolithic policy.

3.2 Robustness

Earlier Work — The second aspect of real-world domains we want to take into
account is the uncertainty of the model. This uncertainty is sometimes repre-
sented as a set of possible models, each assigned a model probability [21]. The
simplest example is a set of possible models that are assumed equally probable
[6; 22]. But, rather than construct a possibly infinite set of models we repre-
sent model uncertainty by allowing each probability to lie in an interval [23;
24]. That is, we know that T (s, a, s′) ∈ [Prmin(s′|s, a), P rmax(s′|s, a)].

Uncertain probabilities have been investigated in resource allocation prob-
lems [21] — investigating efficient exploration [25] and state aggregation [23]

— and policy robustness [6; 24; 22]. We focus on the later, considering a zero-
sum two-player game where the opponent chooses from the possible models to
counter the planner’s actions.

In previous work [7], we have focussed on making the Real-Time Dynamic
Programming algorithm (RTDP) [3] robust. As other robust dynamic program-
ming algorithms, the two-player game is made easier thanks to the assumption
that next-state distributions T (s, a, ·) are independent from one state-action pair
(s, a) to another. This makes it possible to find worst models locally, i.e., for each
state-action pair independently. It is all the more beneficial that the resulting
sequential game only requires looking for pure strategies (deterministic policies)
for both players.

The Case of Probabilistic Temporal Planning — In the case of probabilistic
temporal planning, the model uncertainty is specified at the level of independent
tasks. For our planning problems, a convenient representation is that of interval
of probabilities in which the true probability of a given outcome is known to lie.
Based on this uncertain per task model, probability intervals can be computed
for the corresponding MDP state transitions.

Unfortunately, the independence assumption used in robust dynamic pro-
gramming does not hold anymore with PTP. Indeed, as tasks can be triggered
from different states, two transition probabilities T (s1, a1, s

′
1) and T (s2, a2, s

′
2)

may depend on a common task outcome probability Pr(outTl
(k)). In a frame-

work where the “bad” task outcomes may be different depending on the de-
cision point (current state), this independence assumption may be unrealistic
and make the opponent’s task too easy. As described in next section, our direct
policy search attempts to remove this assumption.

4 The Two-Team Approach

4.1 Principle

In robust PTP, the opponent is controlling outcome probabilities, not transition
probabilities. For each task, it has to tune as many probabilities as there are
different possible outcomes. The constraints are that they must sum to one:∑

k

Pr(outTl
(k)) = 1

and each of them has to remain in its dedicated interval:

Pr(outTl
(k)) ∈ [Prmin(outTl

(k)), P rmax(outTl
(k))]

Fig. 2 illustrates these constraints with three possible outcomes. An interesting
characteristic of the resulting set of possible distributions is its convexity, which
will be helpful when searching for optimal solutions.

We would like to avoid the independence assumption between the MDPs
state-action pairs. Another choice of assumption should hold in most cases: that

out1

out2out3

pmin

out1

pmax
out1

out1

out2out3

Fig. 2. A triangle is a probability simplex representing all possible probability dis-
tributions with three different outcomes (Pr(outi) = 1 at the outi vertex). The left
triangle is the trapezium showing the interval constraint for out1. The right triangle
shows possible models at the intersection of the three interval constraints.

probability distributions over outcomes are independent from one task to an-
other. It may be wrong with two quite similar tasks, but such tasks will often be
associated with similar worst case models. Using this new assumption, it is natu-
ral to factor the opponent’s control problem by assigning one opponent-agent to
each task, i.e., applying an FPG-like factorization on the side of the opponent.

Immediately, the view of the robust probabilistic temporal planning frame-
work as two opposing teams follows, with one player by task in each team.

4.2 The Game Being Played

Here we clarify the rules of the “game”. A starting point in any game is deciding
whether it is simultaneous or sequential. As robust planning is meant to deal
with a worst case scenario, it is logical to consider a sequential game where the
planner plays first, before the opponent observes this choice and then responds.

This does not mean that the game considered requires making a decision at
each decision point, which would lead to the unrealistic situation of task models
depending on the current state of the system. In fact, this game consists in:

– choosing a — possibly stochastic — policy for the planner, and
– choosing a global model (considering all tasks) for the opponent;

then the value of a game is the average reward gained by the planner under these
two choices, and the opposite for the opponent.

The point of view adopted here is that of a game where player A’s strategy
may be known to player B, but is a mixed strategy. As the actual move will known
only after player B’s own choice, there is little difference in this setting between
a sequential and a simultaneous game. In fact, it can simply be considered as
a repeated simultaneous game as it makes it possible for B to learn A’s
strategy. Conversely, the planner can learn B’s strategy and adapt to it.

4.3 Algorithm

The game-theoretic framework just described would ideally require learning at a
quite high level, one player’s action being the choice of a policy, the other player’s
action being the choice of a complete model, and their respective rewards being
based on the average payoff. In practice, it seems preferable to make use of new
experiences as soon as possible, i.e., to reinforce actions on-line while executing
both player’s policies.

Coming back to the two-teams view of our approach, we have used classical
direct policy search algorithm for each agent:

– For each member of the planning team, the on-line policy-gradient presented
in Sec. 2.1 is employed, using a simple parameterisation based on a per-
ceptron. Observations are a subset of the state’s description (conditions,
resources, running tasks). Actions consist of triggering a task or not.

– For each member of the model-manipulating team, we applied a modified
GIGA algorithm [26] (with eligibility traces). These agents are blind, to
ensure that final task models do not depend on the system’s state. Actions
consist in setting outcome probabilities within legal values (as in Fig. 2).

The original FPG planner is using a different policy-gradient algorithm al-
ternating between evaluating the gradient and performing a line-search. Having
two such distinct and long phases does not seem favorable to our simultaneous
game setting. The on-line algorithm we use (OLPOMDP) is probably more ap-
propriate in this non-stationary framework. This is because the line search tends
to drive to the extremes of policies, and it will reach the extreme for one player
before the other, preventing the extreme player from recovering quickly.

Concerning the opponents, it is easier to apply a GIGA-like algorithm, es-
pecially to implement the constraints. The eligibility traces are used to reward
decisions made in the past, remembering that these actions are performed when
a task’s outcome has to be decided, i.e., often when the task ends.

5 Experiments

5.1 Toy Domain

This first domain is here to illustrate why the usual independence assumption of
robust planning can be misleading. It consists of: 3 condition variables C1, C2, C3,
2 resources R1, R2, and 3 tasks T1, T2, T3. No two tasks can be run simultane-
ously, so that decision points (states) correspond to the end of a task running
alone. Thus, the initial state s0 can be described by the values of condition vari-
ables, and resources: C1 = true, C2 = false, C3 = false and R1 = 1, R2 = 1,
what will be noted:

s0 =
[

t f f
1 1

]
Using a ∗ to indicate conditions or resources which are not requirements to

start a task T or which are not changed by this task, the three tasks can be

defined as on Fig. 3-a. Then, Fig. 3-b shows possible evolutions of the system,
starting from s0. The goal is to get C2 = true and C3 = true. Only T3’s outcome
is probabilistic and uncertain, all probability distributions over its two outcomes
being allowed.

Task Requires Outcomes

T1

»
t ∗ ∗
1 ∗

– »
f t ∗
0 ∗

–
T2

»
t ∗ ∗
1 ∗

– »
f ∗ t
0 ∗

–
T3

»
∗ t ∨ t
∗ 1

– »
∗ t ∗
∗ 0

– »
∗ ∗ t
∗ 0

–

[

t f f

1 1

]

[

f t f

0 1

] [

f f t

0 1

]

[

f f f

0 0

] [

f t t

0 0

]

T1 T2

T3 T3

a) Description of tasks b) Possible evolutions of the system

Fig. 3. Toy problem showing why the assumption that the probability distribution
T (s, a, ·) is independent from one state-action pair to another can be dangerous in
PTP.

In this setting, the opponent’s optimal policy is to give equal probabilities to
each of T3’s outcomes. Otherwise the planner may benefit from the opponent’s
preference toward one outcome.

5.2 Building Domain

These preliminary experiments are based on the same domain used to validate
the FPG-planner in [4], where it is compared to an RTDP based planner for
military operations [15]. All three tools are based on the same code to simulate
the domain.

The problem consists of 15 tasks designed to represent the high level process
of building a sky-scraper. These tasks achieve a set of 10 state variables needed
for operation success. Four of the effects can be established independently by two
different tasks, however, resource constraints only allow one of the tasks to be
chosen. Furthermore, tasks are not repeatable, even if they fail. The probability
of failure of tasks ranges between 0 and 20% with an interval on either side of
20% (unless such an interval would result in failure probability below 0%).

This example is designed to demonstrate the effectiveness of robust planning.
Thus, for each effect that has two tasks that can achieve it we have selected one
task to have a higher probability of success than the other, but also a higher
uncertainty. Tab. 1 shows the results of using our FPG-Planner (based on OL-
POMDP) with different modes of optimisation: 1- No optimisation at all, the
plan is to start each eligible task with a probability of 50%; 2- Optimisation

based on a simulation of a pessimistic model; 3- Optimisation based on the
original human model (mean model); 4- Optimisation based on a simulation
of an optimistic model. Evaluations are repeated three times. The evaluations
assume that the true model is: 1- the pessimistic model, 2- the original human
specified model (mean model), 3- the optimistic model.

The results are very close to results in [4], whereas OL-POMDP was here
running at most 2 minutes while GPOMDP was initially limited to 5 minutes.
One must pay attention to the fact that the algorithm is optimising how often
a goal state is reached, i.e., a compromise between plan failure probability and
duration.

Table 1. Average failure probability and duration of the optimised Building domain.
Columns are different training conditions. Rows are different evaluation conditions.
Optimisation is performed with the FPG-planner, using OLPOMDP.

True model No train Pess. train Mean train Opt train
Fail% Dur. Fail% Dur. Fail% Dur. Fail% Dur.

Pessimistic 0.690 4.22±2.33 0.568 4.39±1.87 0.629 4.27±1.88 0.623 4.30±1.82
Mean 0.381 5.91±1.62 0.426 5.23±1.41 0.353 5.45±1.44 0.358 5.38±1.41
Optimistic 0.279 6.39±1.00 0.383 5.45±1.16 0.279 5.74±1.11 0.278 5.70±1.11

Tab. 2 shows results with TT-FPG, considering that the opponent could also
be a friend (looking for the best model). The trained (or not-trained) planner
is still evaluated against the same three models, but also against the second
team. As can be observed, the second team properly behaves like an opponent
or a friend. In this simple example, it usually finds the pessimistic and optimistic
models. The slightly degraded results of the planner in TT-FPG should be solved
with more learning time.

Table 2. Same results as Table 1 but with the optimisation performed with the TT-
FPG planner.

True model No Train vs Opp No Train vs Friend Train vs Opp Train vs Friend
Fail% Dur. Fail% Dur. Fail% Dur. Fail% Dur.

vs Player 0.700 4.18±2.32 0.285 6.38±1.01 0.618 4.29±1.84 0.273 5.71±1.09
Pessimistic 0.690 4.22±2.33 0.690 4.22±2.33 0.612 4.33±1.83 0.628 4.26±1.84
Mean 0.381 5.91±1.62 0.381 5.91±1.62 0.363 5.35±1.42 0.357 5.39±1.40
Optimistic 0.279 6.39±1.00 0.279 6.39±1.00 0.282 5.67±1.10 0.278 5.69±1.09

6 Conclusion

A first remark is that, even if these two teams are opponents, they have the
common objective of finding an equilibrium and should not try to exploit possible

defaults in the other team’s learning algorithm as described in [27]. This aspect
has not been particularly taken into account in our choice of the individual
learning algorithms. A main direction to look at is how to ensure convergence
and no-regret through the use of the “Win or Learn Fast” principle from [28]
and the ideas behind GIGA [26] for example (see also [29]).

An important point to keep in mind regarding TT-FPG is that, even if the
planning-team has complete observability, it is not facing a completely observable
MDP and its optimal policy is probably not deterministic. The team mates
would then benefit from the ability to synchronize their actions, but at the cost
of getting back to the complexity of the original non-factored approach.

To summarize, TT-FPG proves to be a good candidate for robust probabilis-
tic temporal planning. It is designed to be more scalable than dynamic program-
ming approaches, and does not depends on an independence assumption of most
robust approaches, assumption which does not hold in PTP. Future work should
mainly focus on ensuring convergence to a Nash equilibrium, as robustness puts
learning agents in a non-stationary environment.

Acknowledgments — This work was supported by National ICT Australia
(NICTA) and the Australian Defence Science and Technology Organisation
(DSTO) in the framework of the joint Dynamic Planning Optimisation and
Learning Project (DPOLP). NICTA is funded through the Australian Govern-
ment’s Backing Australia’s Ability initiative, in part through the Australian
Research Council.

References

1. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kauffmann Publishers (2004)

2. Bertsekas, D., Tsitsiklis, J.: Neurodynamic Programming. Athena Scientific (1996)
3. Barto, A., Bradtke, S., Singh, S.: Learning to act using real-time dynamic pro-

gramming. Artificial Intelligence 72 (1995)
4. Aberdeen, D., Buffet, O.: Simulation methods for uncertain decision-theoretic

planning. In: Proc. of the IJCAI 2005 Workshop on Planning and Learning in A
Priori Unknown or Dynamic Domains. (2005)

5. Aberdeen, D.: Policy-gradient methods for planning. In: Advances in Neural
Information Processing Systems 19 (NIPS’05). (2005)

6. Bagnell, J., Ng, A.Y., Schneider, J.: Solving uncertain Markov decision prob-
lems. Technical Report CMU-RI-TR-01-25, Robotics Institute, Carnegie Mellon
U. (2001)

7. Buffet, O., Aberdeen, D.: Robust planning with (l)rtdp. In: Proc. of the 19th Int.
Joint Conf. on Artificial Intelligence (IJCAI’05). (2005)

8. Bellman, R.: Dynamic Programming. Princeton U. Press, Princeton, New-Jersey
(1957)

9. Williams, R.: Simple statistical gradient-following algorithms for connectionnist
reinforcement learning. Machine Learning 8 (1992) 229–256

10. Baxter, J., Bartlett, P.: Infinite-horizon policy-gradient estimation. Journal of
Artificial Intelligence Research 15 (2001) 319–350

11. Baxter, J., Bartlett, P., Weaver, L.: Experiments with infinite-horizon, policy-
gradient estimation. Journal of Artificial Intelligence Research 15 (2001) 351–381

12. Mausam, Weld, D.: Concurrent probabilistic temporal planning. In: Proc. of the
15th Int. Conf. on Planning and Scheduling (ICAPS’05). (2005)

13. Little, I., Aberdeen, D., Thiébaux, S.: Prottle: A probabilistic temporal planner.
In: Proc. of the 20th American Nat. Conf. on Artificial Intelligence (AAAI’05).
(2005)

14. Younes, H., Simmons, R.: Policy generation for continuous-time stochastic domains
with concurrency. In: Proc. of the 14th Int. Conf. on Automated Planning and
Scheduling (ICAPS’04). (2004)

15. Aberdeen, D., Thiébaux, S., Zhang, L.: Decision-theoretic military operations
planning. In: Proc. of the 14th Int. Conf. on Automated Planning and Scheduling
(ICAPS’04). (2004)

16. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14 (2001) 253–302

17. Buffet, O.: Fast reachability analysis for uncertain ssps. In: Proc. of the IJCAI 2005
Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains.
(2005)

18. Peshkin, L., Kim, K., Meuleau, N., Kaelbling, L.: Learning to cooperate via pol-
icy search. In: Proc. of the 16th Conf. on Uncertainty in Artificial Intelligence
(UAI’00). (2000)

19. Dutech, A., Buffet, O., Charpillet, F.: Multi-agent systems by incremental gra-
dient reinforcement learning. In: Proc. of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI’01). (2001)

20. Tao, N., Baxter, J., Weaver, L.: A multi-agent, policy-gradient approach to network
routing. In: Proc. of the 18th Int. Conf. on Machine Learning (ICML’01). (2001)

21. Munos, R.: Efficient resources allocation for Markov decision processes. In: Ad-
vances in Neural Information Processing Systems 13 (NIPS’01). (2001)

22. Nilim, A., Ghaoui, L.E.: Robustness in Markov decision problems with uncertain
transition matrices. In: Advances in Neural Information Processing Systems 16
(NIPS’03). (2004)

23. Givan, R., Leach, S., Dean, T.: Bounded parameter Markov decision processes.
Artificial Intelligence 122 (2000) 71–109

24. Hosaka, M., Horiguchi, M., Kurano, M.: Controlled Markov set-chains under av-
erage criteria. Applied Mathematics and Computation 120 (2001) 195–209

25. Strehl, A.L., Littman, M.L.: An empirical evaluation of interval estimation for
Markov decision processes. In: Proc. of the 16th Int. Conf. on Tools with Artificial
Intelligence (ICTAI’04). (2004)

26. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient
ascent. In: Proc. of the 20th Int. Conf. on Machine Learning (ICML’03). (2003)

27. Chang, Y.H., Kaelbling, L.: Playing is believing: the role of beliefs in multi-agent
learning. In: Advances in Neural Information Processing Systems 14 (NIPS’01).
(2001)

28. Bowling, M., Veloso, M.: Multiagent learning using a variable learning rate. Arti-
ficial Intelligence (2002) 215–250

29. Bowling, M.: Convergence and no-regret in multiagent learning. In: Advances in
Neural Information Processing Systems 17 (NIPS’04). (2004) 209–216

