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Abstract

In [1], the authors point out an interesting open problem concerning the schedulability (with Fixed
Priorities) of uniprocessor probabilistic real-time systems with variable execution times: What is the
impact of dropping some jobs, in particular when they are doomed to fail? The present paper looks
at this problem—i.e., assuming that the scheduling criterion depends on the satisfaction of a success
rate—while restricting our study to deterministic tasks (no variable execution times or other kind of
uncertainty). After formally introducing the problem at hand, we discuss a simple job dropping rule
and properties that it satisfies.

Problem Description

Here we consider that execution times, deadlines, offsets and inter-arrival times are all fixed and determin-
istic. Each task is associated with a required percentage of success. A task τi is thus given by a four-tuple
(Ci, Ti, Di, pi) where

• Ci > 0 is its worst-case execution time;

• Ti ≥ Ci is its period;

• Di ∈ [Ci, Ti] is its deadline; and

• pi ∈ [0, 1] is the minimum success rate.

The problem is to schedule n such tasks on a processor so as to respect their respective minimum success
rates.
We consider fixed priority (FP) scheduling, i.e., tasks are ordered according to pre-defined priorities which
dictate which tasks should run in case of conflict. All tasks can be preempted by higher priority tasks.

Success Rate and Averages – One point that needs clarification is what it means to guarantee a
minimum success rate. How is this success rate precisely defined? It must be the average number of
successfully executed jobs, but which “average”? Here we consider the Simple Moving Average (SMA), an
average computed on a sliding window of width w > 0:

AT =
1

w

T∑
t=T−w

at

= AT−1 +
at − at−w−1

w
,

where At is the average at t and at is the instant data gathered at t. A small width allows for low memory
requirements and high “robustness” (if a success rate is guaranteed for w1, then it is also guaranteed for
any w2 > w1); conversely, the smaller the width, the harder it is to guarantee a success rate.
Note that the success rate of a task may be guaranteed only after an initial transient phase.
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Example – Let us consider a first example with two tasks defined as follow:

C T D p
τ1 1 3 1 1
τ2 1 1 1 2

3

By giving the highest (fixed) priority to task τ1, one gets a schedule with one job of τ1 and two jobs of τ2
executed every three time steps.
Let us now consider the success rate of τ2 with a sliding window of width w. The schedule is periodic and
repeats every three time steps so that, for each value of w, the observed success rate is also a periodic
sequence of period three (independently of whether the required success rates are rational numbers or not):
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Whatever w, the average success rate is always 1
3
. But the instant success rate varies more or less, and

the maximum difference between the minimum and maximum instant success rates for a given w tends
(progressively but not monotonically) towards zero:

lim
w→∞

(pmax(w)− pmin(w)) = 0.

What is Job Dropping – We are in fact interested in “augmenting/complementing” fixed-priority
scheduling with job dropping rules, i.e., simple rules deciding when to drop a job in a view to find a feasible
schedule. The next section presents a simple rule and discusses some of its properties.

Minimal Job Dropping

Rule – The job dropping rule mentioned in [1]—hereby called minimal Job Dropping (minJD)—is to
give up a job if it is doomed to fail. This seems to be the most obvious thing to do, and can lead to (i)
not starting a job if there is not enough time left for it, or (ii) stopping a job if some information tells us
that it won’t be able to finish on time.

When to Quit a Job? – One can verify more or less carefully whether a job is doomed to fail. Here
are two possible options:

Basic Test: The most obvious thing to do is look at the time remaining before its deadline without caring
about other jobs. Dropping a job because there is not enough time left for it is always a good rule
to apply.

Advanced Test: A thing is, if there is competition for CPU time with other jobs, one should try to take
this competition into account to detect more job dropping situations. To that end, let us first notice
that a job τi only has to care about other jobs with a higher priority. This means that one should
check for droppability starting with high priority jobs.

Plus, to completely check for the droppability of τi, one has to look at each remaining time step to
count how many of them are available. This may require looking at the droppability of jobs that
have not been started yet. The consequence is a chain reaction going from low priority jobs to high
priority ones and implying longer simulations for higher priority tasks.
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Compatibility with Fixed Priorities – As we will see now, minJD is a simple job dropping rule that
exhibits nice properties. One would in particular favor job dropping rules for which the next property
holds.

Proposition 1 (Soundness of FP+minJD). Let τ be a system of tasks scheduled using a (given) fixed
priorities policy. By applying minJD on τ we improve the observed success rates.

Proof (sketch). Because a fixed priorities policy is used, dropping a job of priority P gives way to lower-
priority jobs, but does not affect higher priority jobs. Thus, dropping a job for a given task can not degrade
the success rate of this task or tasks of higher priority, but allows lower priority tasks to run more jobs.

Proposition 2 (Periodicity of FP+minJD). When using fixed priorities, minJD produces a periodic sched-
ule that repeats every hyperperiod T h (after the first hyperperiod).

Proof (sketch). The proof is similar to the periodicity proof for FP scheduling alone (a proof by induction).
Starting with the highest priority task, τ1, its schedule repeats every T1 time steps, and thus every T h time
steps as well. Note that, for this first task, either Ci ≤ Di and all jobs can be run, or Ci > Di and no job
can be run.
Then, assuming that the schedule of τ1 to τi−1 repeats every T h time steps, this gives a periodic pattern of
free time steps in which τi can be scheduled, placing jobs iff the job dropping rule is satisfied. As the job
dropping rule only looks at the situation over at most Di < T h time steps (for both droppability tests),
this results in the same decisions in each hyperperiod.

Conclusion

The idea of dropping jobs early to avoid using CPU time for no reason was first raised in [1]. This
preliminary work presents a simple job dropping (minJD) rule, showing that (i) more or less effort can be
put in determining which jobs to drop, and (ii) minJD exhibits interesting properties such as the guarantee
that it can only improve the success rate of a task.
This work paves the way to develop more complex job dropping rules, pointing out the type of properties
that one could expect from them. Other directions are related to extending such work to real-time systems
with probabilistic dynamics or other properties like parallelism.

References

[1] O. Buffet and L. Cucu-Grosjean. Impact of job dropping on the schedulability of uniprocessor prob-
abilistic real-time systems with variable execution times. In Proceedings of the First International
Real-Time Scheduling Open Problems Seminar (RTSOPS 2010), joint workshop with the 22nd Euromi-
cro International Conference on Real-Time Systems (ECRTS 2010), July 2010.

 
3




