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Abstract
A new reinforcement learning (RL) methodology is
proposed to design multi-agent systems. In the re-
alistic setting of situated agents with local percep-
tion, the task of automatically building a coordi-
nated system is of crucial importance. We use sim-
ple reactive agents which learn their own behavior
in a decentralized way. To cope with the difficulties
inherent to RL used in that framework, we have de-
veloped an incremental learning algorithm where
agents face more and more complex tasks. We il-
lustrate this general framework on a computer ex-
periment where agentshaveto coordinate to reach
a global goal.

1 Introduction
Multi-Agent Systems (MAS) - systems where autonomous
entities called agents interact with each other - are a growing
interest in the artificial intelligence community, both in terms
of research and applications (see[Ferber, 1999]). Whereas
MAS are usually build “by hand” using simulations to tune up
the system to reach a desired global behavior, this paper deals
with a key problem : the design of MAS in an automated
fashionthrough learning.

Learning in MAS can indeed take many forms[Stone and
Veloso, 2000]. We opted for Reinforcement Learning (RL)
methods[Sutton and Barto, 1998] as they do not require a
teacher knowing before hand a solution of the problem. An
evaluation of the current agents’ actions, using a scalar value
for example, is enough to learn.

Furthermore, we consider Multi-Agent Systems composed
of simple reactive situated agents with local perceptions.
Thus, the system is easier to build and can nevertheless solve
complex problems as, in thisdecentralizedframework, each
agent faces simpler tasks.

As RL suffers from combinatorial explosion, decentraliza-
tion of the learning process should bring the same benefits,
i.e. each agent learns its own behavior by itself which sim-
plifies the task to be learned. Besides, it is consistent with
the localized aspect of realistic situated agents. But, in this
context, two major difficulties burden RL :
• hidden global state.Usual situated agents can only rely

on an imperfect, local and partial perception of their

world. Then, the global state of the system stays un-
known, which prevents classical RL algorithms from
finding an optimal policy, as shown by[Singh et al.,
1994].

• credit assignment problem. When a positive reward
is given by the environment, it is not always evident to
credit positively the “good” actions that led to this re-
ward. With many agents, this problem is even more cru-
cial as we must also decide which agents to reward.

Our answer to these problems is a decentralizedincremen-
tal learning algorithm based on a classical RL technique to
find stochasticpolicies. Actually, agents with stochastic be-
haviors are more adapted to the problem of partial perception.
By incremental, we mean that agents are progressively pitted
against harder and harder tasks so as to progressively learn a
complex behavior. Another aspect of the incremental learning
is to begin learning with very few agents, so as to minimize
coordination and cross-work actions, and then export these
basic behaviors to tasks with more and more agents. Even-
tually, behaviors can be further refined by learning in these
more demanding environments. Thus, the originality of our
approach is twofold : learning is decentralized and incremen-
tal.

In this paper, we present our method for learning in a multi-
agent system and an experiment on which we tested our ideas.
Section 2 gives the details of our framework, then, Sections 3,
4 and 5 describe the experiments conducted to test the viabil-
ity of our approach. A discussion about our work follows in
Section 6, highlighted by some comparisons from other sim-
ilar works. Future directions and conclusive remarks end the
paper in Section 7.

2 Our Framework
In this part, we first present the kind of agents we consider.
Then we show the problems one faces when using reinforce-
ment learning in a multi-agent setting. Lastly, we explain
how incremental learning brings a partial solution to these
problems.

2.1 The agents
We are interested in designing Multi-Agent Systems (MAS)
by having each individual agent learn its behavior. As written
earlier, we have decided to work with very simple reactive



agents for complexity reasons. Besides, it allows us to con-
centrate on the learning aspect of the design. Among many
possible choices, our agents can be characterized as :

• situated with local perception : Local perceptions are
more thoroughly discussed in Section 2.4.

• possibly heterogeneous: through the learning process
where agents learn individually, each agent can acquire
a different behavior from the others.

• cooperative : all agents share the same goal and they
will have to coordinate to reach it.

We say nothing about other characteristics (for example com-
munications) as they are not important for our framework and
could be easily incorporated into the agents.

2.2 Limitations of classical RL

Reinforcement Learning (RL) methods are very appealing
ways of learning optimal memoryless behaviors for agents
as they only require a scalar feedback from the system to the
agents for them to learn. Besides, these techniques can be
used when there is uncertainty in the world’s evolution.

But the convergence of RL algorithms (likeQ-Learning
or TD(λ)) has only been proven for Markov Decision Pro-
cesses (MDP). A MDP is defined as a< S,A, T, r > tuple,
S being a finite set of states andA a finite set of actions.
When the system is in given states, an actiona being chosen,
the probability for the system to end in states′ is given by
T (s, a, s′). After each transition, the environment generates
a reward given byr(s, a). The problem is then to find the
optimal mappingπ(s, a) between states and actions so as to
maximize the reward received over time, usually expressed
as a utility functionV (s) =

∑∞
t=0 γ

tE(rt|s0 = s). Such a
mapping is called a policy.

As pointed out by[Boutilier, 1996] the evolution of the
kind of MAS we are interested in is a MDP. As such, it could
be solved using classical reinforcement learning algorithms
where the state of the system is the composition of the states
of all agents and an action is a joint action composed of all in-
dividual actions of the agents. Thus, the number of states and
actions in a centralized view of the problem should quickly
prove to be too big for RL to be applied, as illustrated in Sec-
tion 3.1. Besides, solving our problem this way would mean
to solve it in a centralized way whereas we aim at a non-
centralized solution as each agent should learn by itself.

Unfortunately, as shown by[Bernsteinet al., 2000], solv-
ing the problem in a non-centralized way when the agents
only have a partial perception of the system’s state is NEXP-
complete, i.e. there is provably no polynomial algorithm to
solve the problem. We face two major difficulties :

1. Non-stationary transitions. Reactive agents with a lo-
cal view of the environment can not use joint actions to
solve the problem. In fact, other agents are unpredictable
elements of the environment. As a consequence, the
transitions from one state of the system to another, as
seen by an agent, are non-stationary : for example the
probability for an agent to move ahead depends greatly
on the actions of other adjacent agents.

2. Partial observability. As the agent’s perception is local
they can not know the global state of the problem. As
such, the problem at hand belongs to the class ofpar-
tially observedMarkov decision models (see[Littman
et al., 1995]).

Classical stationary Partially Observed Markov Decision
Processes are nearly impossible to solve when there are more
than a hundred states[Dutech, 2000]. The combination of
the two problems (i.e non-stationarity and partial observation)
makes the problem non-solvable without using approxima-
tions.

2.3 Incremental gradient reinforcement learning
We propose to find approximate solutions by using incre-
mental gradient RL. The main idea of this methodology is
to progressively scale up with the complexity of the problem.
Agents run their own local version of RL, here a gradient de-
scent described in[Baxter and Bartlett, 1999].

Stochastic behaviors
In the context of partially observed MDP, stochastic behaviors
perform better than deterministic policies (see[Singhet al.,
1994]). As previous experiments (see[Buffet et al., 2001])
with Q-Learning were not conclusive to this regard, we chose
to work with a gradient descent reinforcement learning algo-
rithm especially suited for stochastic policies. This algorithm,
designed by Baxter[Baxter and Bartlett, 1999] is detailed in
Section 3.2.

Incremental learning
To speed up learning and reduce the problems of complexity
and credit assignment, we propose a methodology for incre-
mental learning. The most obvious way is to use :

• growing number of agents: learning starts with a small
number of agents, each learning its own strategy. There
must be enough agents to solve the problem. Then, more
agents are added, with initial policies taken from the
original agents and refined through learning if needed.

Incremental learning is also possible along the complexity di-
mension of the problem. Agents are pitted against harder and
harder tasks. First tasks are “near” (in term of number of ac-
tions) positive reinforcement positions, then further and fur-
ther away. So, we use :

• progressive tasks: learning begins with a very simple
version of the task to be executed, or with the agent be-
ing heavily guided to solve the task. Then, as learning
progresses, the task is made harder usually by giving
more freedom of action to the agents

2.4 On local perception
We use situated agents with local perceptions to reduce the
complexity of the problem as, very often, centralized prob-
lems are often too huge to be solved (see Section 3.1). This
means that an agent does not know the global state of the
world, which makes RL difficult to use.

However, local perceptions are a prerequisite for incremen-
tal learning, as behaviors of the agents can be based on the



“nearby” world. Thus, they scale immediately with the num-
ber of agents, the dimension of the world or the complexity
of the task.

3 Experimenting with incremental learning
An application of this general notion of incremental learning
is given in the experiments described here. After a short de-
scription of the problem, we give the details of the incremen-
tal tasks we used : harder tasks first and then more agents.

3.1 Problem description

The task chosen involves agents (either yellow or blue) in a
grid world whose goal is to push yellow cubes against blue
ones1. When two agents coordinate their movements to attain
this goal -pushingtogethera pair of cubes- both cubes tem-
porarily disappear. Simultaneously, agents responsible for
this fusion receive a positive reward. The goal is to merge
as many cubes as possible in a given time.

Considering our agents’ abilities, they simply have four
possible actionscorresponding to moving North, East, South
and West (they always try to move). Agents can push other
agents and other cubes so the consequences of their actions
are stochastic, depending on which constraints will be con-
sidered first.

Agents’ perceptions, as shown on figure 3.1, are :

• dir(oa) : direction of nearest agent from opposite
color (N-E-S-W) ,

• dir(cy) : direction of nearest yellow cube
(N-NE-E-SE-S-SW-W-NW) ,

• dir(cb) : direction of nearest blue cube
(N-NE-E-SE-S-SW-W-NW) ,

• near(cy) : is there a yellow cube in one of the eight
nearest positions(true|false) ,

• near(cb) : is there a blue cube in one of the eight
nearest positions(true|false) .

Combining these, there exists a maximum of1024 obser-
vations (some combinations of perceptions are not possi-
ble). We reduce this number to256 by using symmetries
of the problem. This number is very small compared to the
15.249.024 states of the8 × 8 totally observed centralized
problem, and alsoindependent of the world’s size.

The rewardfunction we have chosen eases the credit-
assignment problem. Only the two agents identified as having
originated the fusion of two cubes get a reward (+5), whereas
in other cases the reward is zero for all agents. A “global”
reward would not be very coherent with agents having only
local informations.

We conclude by some remarks about the simulation itself.
To focus on the learning problem, we have implemented sim-
ple mechanisms to avoid some non-significant problems. For
example, cubes cannot go on border cells of the grid. Simi-
larly, when cubes reappear on the grid, they can only be put
on inner cells.

1Colors of agents and cubes are not related in this problem.

yellow

blue

agent dir(cy) dir(cb) dir(oa) near(cy) near(cb)
yellow S E SE no no
blue W NW NW no yes

cy : yellow cube - cb : blue cube - oa : other agent

Figure 1: perceptions’ examples(two agents in a simple world)

3.2 Learning algorithm used
As said earlier, each agent uses its own gradient descent algo-
rithm to learn its policy . We precisely use an on-line version
of the algorithm.

As proposed by Baxter[Baxter and Bartlett, 1999], a policy
π depends on a set of parametersΘ. This leads to an expected
utility V (πΘ) = V (Θ). The gradient descent permits2 to find
a locally optimal policy by findingΘ∗ that maximizesV (Θ).

The set of parameters we chose isΘ = {θ(s, a), s ∈ S, a ∈
A}, with θ(s, a) a real valued parameter. The policy is de-
fined by the probabilities of making actiona in states as :

πΘ(s, a) =
eθ(s,a)∑
b∈A e

θ(s,b)

4 The 2-agent and 2-cube case
4.1 Reduced problem
The first step in our incremental learning scheme is to use
small sized world with a minimal number of agents : one
agent and one cube of each color. Then, beginning with pos-
itive reinforcement situations, the agents will face harder and
harder problems.

4.2 Progressive task
For our problem, there is only one situation which leads to
a positive reward. This situation is thus the starting point of
incremental learning. Agents face a sequence of tasks to learn
before ending in a standard8 × 8 environment where they
keep learning.

To be more precise, we define atry as a sequence ofn
steps3 beginning in a given situation. Thistry must be re-
peated sufficiently (N times) to be useful. This succession
of tries will be called anexperimentfor our agents. The
trainer has to define a sequence of progressiveexperiments
to help learning. Following[Asadaet al., 1996], we designed
a training sequence where starting situations are more and

2It is true if V only depends on this agent’s policy, which is not
the case in a MAS.

3In astep, all agents make one move simultaneously.



Starting configuration n (moves) N (tries)

6 750

6 500

10 750

20 750

20 750

100 75

100 75

Table 1: The sequence of experiments we used for incremen-
tal learning.
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Figure 2: 2 agents, 2 cubes : incremental vs. raw learning

more “distant” from the goal, as Asada showed the efficiency
of such a method.

Table 1 shows a sequence of experiments we used to help
our agents in their training. The firststarting configuration,
on a6×3 world, needs only one move to reach the goal, each
agent pushing toward the cubes. However, they have up to
6 steps to reach it (so they can explore different moves), and
they can try this 750 times.

Figure 2 shows the evolutions in the pair of agents’ effi-
ciency whether using or not progressive learning. The curve
showing the efficiency of learning after a period of assisted
training only begins after the 60000 steps of this training.
Once this delay elapsed, notably better performances are
reached with the assistance provided by our method.

cubes agents
↓ 2 4 8 16 20
2 40.4 30.0 20.0 12.7 11.0
4 7.6 17.1 17.5 13.9 12.9
6 3.4 11.2 14.7 15.7 16.5
8 1.9 8.6 13.5 15.9 18.0
10 1.6 6.7 11.0 17.7 20.6

Table 2: Average efficiencies
Number of merges for 1000 steps

5 More agents and more cubes

5.1 The next step in incremental learning

Until now, only two agents were used. More could be neces-
sary to reach our goal in a world with more cubes.

In this section, we first have a look at the efficiency of a
policy learned with2a2c and used with more agents and more
cubes, and then we let agents’ policies evolve in this more
populated worlds.

Note : Here, we use agents that have either already learned
a policy through the2a2ccase with help or have never learned
anything at all.

5.2 Influence of the number of agents and cubes

In this part of our work, the first interest was to check the
efficiency of different numbers of agents having to deal with
different numbers of cubes (taking the same number of agents
(or cubes) of each color). In this experiment, we use agents
whose fixed behaviors have been learned in the2a2c case,
which is not supposed to be very efficient with more cubes.
Nevertheless it gives them enough good reactions to have
some good results.

Several tests were carried out with 2, 4, 6, 8 or 10 cubes and
2, 4, 8, 16 or 20 agents (always in a world of size10×10). We
used series of 1000 consecutive steps, these series beginning
in random configurations. But as blocking situations could
sometime occur, 100 such series were made in each case.

Table 2 gives the average efficiency in each of the twenty-
five cases (the efficiency is the number of merges made in
1000 steps). It quickly shows that there seems to be an opti-
mal number of agents for a given number of cubes as denoted
by bold numbers in Table 2.

A growing number of agents improves the results, until
they cramp each other and bring too many coordination prob-
lems. With a growing number of cubes, the results are im-
proved only up to an optimal number beyond which agents
hesitate on which cubes to work with and fall easily into os-
cillatory sequences of moves.

After another set of tries, in the same conditions but with
policy-less agents, it appears that agents with a random be-
havior have always bad results, whatever their number.

5.3 Incremental learning along number of agents

With agents whose fixed behaviors have been learned in the 2
agents and 2 cubes case (2a2c-policies), we have seen that a
growing number of cubes induces problems that can be solved
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Figure 3: evolution while learning from scratch
(The(4a4c) and(2a2c) curves are practically confounded with

abscissa axis.)
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Figure 4: evolution while learning from2a2c behaviors

with a sufficient number of agents. The incremental learn-
ing solution is to improve the policies by keeping on learning
with more agents.

Figures 3 and 4 show the efficiencies evolving with time
in different learning cases : different number of objects,
and agents learning from scratch or not. As shown on fig-
ure 3, agents learning from scratch have a slow evolution
if there are only a few objects (agents and cubes) in the
grid-world. But their learning speed rises with the rate
nobjects/sizegrid−world. When a group of agents seems to
have reached a maximum efficiency, their results are better
than the results obtained in Section 5.2 with the same situa-
tion but fixed policies. This confirms the interest of adapta-
tion through learning.

One can notice that the optimal efficiency reached by
agents using incremental learning is by far better than the per-
formances reached using learning from scratch. As forecast,
agents using2a2c behaviorscome with some useful knowl-
edge that allows them to find a better local optimum.

6 Discussion and similar works
6.1 On explicit coordination
Our experiments show that our work can benefit from ad-
dressing explicitly coordination problems. In particular, it is
often the case that two agents, when placed in a world with
more than two cubes, are not able to coordinate so as to push
the “same pair of cubes”. Moreover, when too many agents
are present, they easily work at cross-purpose.

In [Boutilier, 1996], Boutilier has studied this problem
from a theoretical point of view, using Multi-agent Markov
Decision Processes. In his framework, each agent can com-
pute a globally optimal policy where only coordination prob-
lems are to be solved, i.e. when the optimal joint action is not
unique. Such coordination can be reached using social laws,
communication or a learning mechanism. However, this cen-
tralized planning framework can not be used for decentralized
RL. Other works, like[Hu and Wellman, 1998], more ori-
ented towards reinforcement learning, settle on game-theory
and Nash equilibria to solve coordination problems. Once
again, these theoretical works are difficult to implement, es-
pecially with more than two agents.

Another field of research deals with explicitly taking into
account other agents when learning, or planning, in a MAS
(see[Carmel and Markovitch, 1996] or [Vidal and Durfee,
1997]). Usually, an agent builds a model of the other agents,
so as to estimate their next actions. But, in the general case,
it seems that not modeling the others is better than having a
bad model and modelization leads to more complex agents.

Communication could also be used to solve the problem of
explicit coordination. But attention must be paid to the fact
that communication in itself has a cost[Xuanet al., 2000]. Is
it worthwhile to pay this cost whereas, simply putting more
agents seems enough to increase the performances, even if
the coordination problem of two particular agents is not re-
ally and explicitly solved ? This is one of the questions we
would like to study in the near future. On the same subject,
we would like to investigate the use of short term memory to
provide our agent with attention mechanisms and help them
to coordinate.

6.2 Reward
Mataríc, in her work with multi-robots systems (see[Mataríc,
1997]), took the option of adapting the reward function and
the agents’ actions and perceptions to use a simple reinforce-
ment algorithm. The reward is not the kind of boolean process
we have (no reward / big reward at goal) but rather a smoother
reward adapted to give very frequent hints to each individual
agent. By using behaviors, that can be seen as macro-actions,
the size of state and action space is greatly reduced and learn-
ing is easier. On the other hand, this kind of specialization
is very task-dependent whereas our agents could be made to
learn another task without changing very much the agents or
the learning process.

The COIN framework[Wolpert et al., 1999] (COllec-
tive INtelligence) is similar to our framework : designing
MAS through learning. The main ideas behind their work
is to adapt reward functions and clusters of agents to build
a subworld-factored system. Dealing with our problem , it



would mean creating only one sub-group sharing the same
reward, and other experiments we conducted show that learn-
ing becomes difficult and slow. Whereas this framework is
useful for finding “independent” sub-groups of agents, our
ideas seem better adapted for in-group learning.

6.3 Automatic incremental learning
As explained in 2.3, we need to decompose the problem at
hand in more and more complex tasks. The starting points
of this decomposition are positive reward situations. The de-
composition process could be automatically performed on-
line by the learning agents. In addition to classical methods,
the agents could randomly explore their environment, mark
“interesting situations” and then work around them. Knowl-
edge thus learned could then be transfered to other agents.

7 Conclusion
In this paper we have addressed the problem of automatically
designing large Multi-Agent Systems. Our framework is
based on each individual agent using a Reinforcement Learn-
ing algorithm to adapt its behavior to the desired global task.
This learning problem is generally unsolvable because of its
decentralized aspect and more classical limitations like par-
tial observability of state, credit assignment and combinato-
rial explosion. To that effect, we have emphasized the use of
an incremental learning scheme where more and more agents
are faced with harder and harder problems. This method is
very generic as it can be adapted to any task without adapting
the agents to the particular problem at hand.

We have tested our approach on a simulated environment
where agents have to coordinate in order to reach a shared
goal : the fusion of different colored cubes. The experiments
give credit to our framework as they show the efficiency of
incremental learning. Incremental learning leads to better
learning rates than raw unassisted learning. Furthermore, it
is more efficient to learn a more complex task after an initial
stage of incremental learning than learning directly this more
complex task from scratch. As a whole, our framework led us
to conclude that “the more the better”.

Still, there is room for improvement. We have discussed
several ways to overcome these limitations, like using com-
munication for addressing explicit coordination, short-term
memory and intentions to deal with oscillatory behaviors and
policy-search reinforcement learning as a possibly more ade-
quate learning algorithm. We have also considered modeling
the behavior of the other agents as a mean to predict their
actions and thus improve the behavior of agents.
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