
Fast Reachability Analysis for Uncertain SSPs

Olivier Buffet
National ICT Australia &

The Australian National University
firstname.lastname@nicta.com.au

Abstract

Stochastic Shortest Path problems (SSPs) can be ef-
ficiently dealt with by theReal-Time Dynamic Pro-
grammingalgorithm (RTDP). Yet, RTDP requires
that a goal state is always reachable, what can be
checked easily for a certain SSP, and with a more
complex algorithm for anuncertainSSP, i.e. where
only a possible interval is known for each transition
probability. This paper makes a simplified descrip-
tion of these two processes, and demonstrates how
the time consuming uncertain analysis can be dra-
matically speeded up. The main improvement still
needed is to turn to a symbolic analysis in order to
avoid a complete state-space enumeration.

1 Introduction
In decision-theoretic planning, Markov Decision Problems
[Bertsekas and Tsitsiklis, 1996] are of major interest when
a probabilistic model of the domain is available. A range of
algorithms make it possible to find plans (policies) optimiz-
ing the expected long-term utility. Yet, optimal policy con-
vergence results all depend on the assumption that the proba-
bilistic model of the domain is accurate.

Unfortunately, a large number of MDP models are based
on uncertain probabilities (and rewards). Many rely on statis-
tical models of physical or natural systems, may they be toy
problems such as the mountain-car or the inverted-pendulum,
or real problems such as plant control or animal behavior
analysis. These statistical models are based on simulations
(themselves being mathematical models), observations of a
real system or human expertise.

Working with uncertain models first requires answering
two closely related questions: 1- how to model this uncer-
tainty, and 2- how to use the resulting model. Existing work
shows that uncertainty is sometimes represented as a set of
possible models, each assigned a model probability[Munos,
2001]. The simplest example is sets of possible models
that are assumed equally probable[Bagnell et al., 2001;
Nilim and Ghaoui, 2004]. Rather than construct a possibly
infinite set of models we represent model uncertainty by al-
lowing each probability in a single model to lie in an interval
[Givanet al., 2000; Hosakaet al., 2001].

Uncertain probabilities have been investigated in resource
allocation problems[Munos, 2001] — investigating efficient
exploration[Strehl and Littman, 2004] and state aggregation
[Givanet al., 2000] — and policy robustness[Bagnellet al.,
2001; Hosakaet al., 2001; Nilim and Ghaoui, 2004]. We fo-
cus on the later, considering a two-player game where the op-
ponent chooses from the possible models to reduce the long-
term utility.

Our principal aim is to develop an efficient planner for a
common sub-class of MDPs for which optimal policies are
guaranteed to eventually terminate in a goal state: Stochas-
tic Shortest Path (SSP) problems. A greedy version ofReal-
Time Dynamic Programming algorithm(RTDP)[Bartoet al.,
1995] is particularly suitable for SSPs, as it finds good poli-
cies quickly and does not require complete exploration of the
state space. Yet, if it can be made robust[Buffet and Ab-
erdeen, 2004; 2005], it also requires that a goal state is reach-
able from any visited state, which can be checked through a
reachability analysis.

This paper makes a simple description of the reachability
analysis for certain and uncertain SSPs[Buffet, 2004], and
shows how the time consuming uncertain analysis can be dra-
matically speeded up. In Section 2 we present SSPs, RTDP
and robustness. We then explain the algorithms for reacha-
bility analysis in the certain and uncertain case. Finally, the
fast uncertain reachability analysis is depicted and practical
experiments are presented before a conclusion.

2 Background
2.1 Stochastic Shortest Path Problems
A Stochastic Shortest Path Markov Decision Problem[Bert-
sekas and Tsitsiklis, 1996] is defined here as a tuple
〈S, s0, G,A, T, c〉. It describes a control problem whereS
is the finite set ofstatesof the system considered,s0 ∈ S is
a starting state, andG ⊆ S is a set of goal states.A is the
finite set of possibleactions a. Actions control transitions
from one states to another states′ according to the system’s
probabilistic dynamics, described by thetransition function
T defined asT (s, a, s′) = Pr(st+1 = s′|st = s, at = a).
The aim is to optimize a performance measure based on the
cost function c : S ×A× S → R+.1

1As the model is not sufficiently known, we do not make the
usual assumptionc(s, a) = Es′ [c(s, a, s′)].

SSPs assume a goal state is reachable from any state inS,
at least for the optimal policy, so that one cannot get stuck in
a looping subset of states. An algorithm solving an SSP has
to find apolicy that maps states to probability distributions
over actionsπ : S → Π(A) which optimizes the chosen per-
formance measure, here thevalue V defined as the expected
sum ofcoststo a goal state.

In this paper, we only consider SSPs for planning purposes,
with only inaccurate knowledge of the transition functionT .
In this framework, well-known stochastic dynamic program-
ming algorithms such asvalue iteration(VI) make it possible
to find a deterministic policy that corresponds to the minimal
expected long-term costV . Value iterationworks by comput-
ing the value functionV ∗(s) that gives the expected reward
of the optimal policies. It is the unique solution of the fixed
point equation[Bellman, 1957]:

V (s) = min
a∈A

∑
s′∈S

T (s, a, s′) [c(s, a, s′) + V (s′)] . (1)

Updating V with this formula leads to the optimal value
function. For convenience, we also introduce theQ-
value:Q(s, a) =

∑
s′∈S T (s, a, s′)[c(s, a, s′) + V (s′)].

This kind of problem can easily be viewed as a shortest
path problem where choosing a path only probabilistically
leads you to the expected destination. SSPs can represent a
useful subset of MDPs. They are essentially a finite-horizon
MDP with no discount factor.

2.2 RTDP
A first algorithm making use of the structure of SSPs is a
version of theReal-Time Dynamic Programmingalgorithm
(RTDP) [Barto et al., 1995]. It uses the fact that the SSP
cost function is positive and the additional assumption that
every trial will reach a goal state with probability 1. Thus,
with a zero initialization of theJ , both theJ andQ-values
monotonically increase during their iterative computation.

The idea behind RTDP (Algorithm 1) is to follow paths
from the start states0, always greedily choosing actions of
low value and updatingQ(s, a) as statess are encountered. In
other words, the action chosen is the one expected to lead to
the lowest future costs, until the iterative computations show
that another action may do better.

Algorithm 1 RTDP algorithm for SSPs
RTDP(s:state)// s = s0

repeat
RTDPTRIAL (s)

until // no termination condition
. .
RTDPTRIAL (s:state)
while ¬GOAL(s) do

a =GREEDYACTION(s)
J(s) =QVALUE (s, a)
s =PICKNEXTSTATE(s, a)

end while

RTDP has the advantage of quickly avoiding plans that lead
to high costs. Thus, the exploration looks mainly at a promis-
ing subset of the state space. Because it follows paths by

simulating the system’s dynamics, common transitions are fa-
vored, so that good policies are obtained early. Yet, the bad
update frequency of rare transitions slows the convergence.

2.3 Robust Value Iteration
We now turn to the problem of taking the model’s uncertainty
into account when looking for a “best” policy. The (possibly
infinite) set of alternative models is denotedM.

We follow the approach described in[Bagnellet al., 2001],
that consists of finding a policy that behaves well under the
worst possible model. This amounts to considering a two-
player zero-sum game where a player’s gain is its opponent’s
loss. The player chooses a policy while its “disturber” oppo-
nent simultaneously chooses a model. A simple process may
be used to compute the value function while looking simul-
taneously for the worst model. It requires the hypothesis that
state-distributionsT (s, a, ·) are independent from one state-
action pair(s, a) to another. Under this assumption, the worst
model can be chosen locally whenQ is updated for a given
state-action pair. If this assumption does not always actually
hold, it induces a larger set of possible models, what results
in a worst-case assumption in the pessimistic approach.

Problem — We are particularly interested in handling
uncertain SSPs(USSP), where only intervals of pos-
sible transition probabilities are known:T (s, a, s′) ∈
[Prmin(s′|s, a), P rmax(s′|s, a)]. Yet, to use (robust) RTDP,
this theorem is of major interest:

Theorem 1. [Bertsekas and Tsitsiklis, 1996] If the goal is
reachable with positive probability from every state, RTDP
unlike the greedy policy cannot be trapped into loops forever
and must eventually reach the goal in every trial. That is,
every RTDP trial terminates in a finite number of steps.

The purpose of this paper is to determine from which states
a goal state is still reachable in SSPs. The uncertain case
could be brought back to the certain case by finding an ap-
propriate pessimistic model. To that end, our policy should
be fixed to one that chooses all actions with equal probabil-
ity and the opponent could then learn a model to prevent goal
states from being reached. Yet, the opponent’s problem is no
SSP, what would imply coming back from RTDP toValue It-
eration. Moreover, we prefer performing a graph analysis, as
it gives more practical information and would be a first step
toward a symbolic analysis avoiding the enumeration of the
complete state-space.

3 Reachability Analyses
When applying algorithms such as RTDP on an SSP hav-
ing no proper policy, the main problem is to detect if cur-
rent states still has a positive probability of reaching the goal
set, in which cases is said to be “reaching ”. If s is non-
reaching , RTDP should stop and a specific process be ap-
plied, such as associating this state to an infinite cost.

Non-reaching states constitute looping sub-sets of
states which we will refer to as “dead-ends”. The process
just described results in dead-ends avoidance. Yet some states
may bereaching but also have a positive probability to

lead to a dead-end whatever the policy. If non-reaching
states incur infinite costs, these “dangerous ” states will
necessarily have an infinite long-term cost to the goal. It
would thus be of interest to also identify thesedangerous
states.

Note that what to do when in a non-reaching state may
depend on the user’s preferences. But in all cases the first step
is to perform a “reachability analysis” through a graph traver-
sal beginning with goal states. Then, if required, a “danger
analysis” can be performed through another (simpler) graph
traversal beginning with non-reaching states. This paper
mainly focuses on the “reachability analysis”, as this process
is necessary and somewhat subtle in the case of USSPs.

3.1 Certain SSP
In a certain SSP, ifs′ is reaching , any states such that
T (s, a, s′) > 0 for some actiona is also reaching. This re-
sults in a straightforward analysis by making a graph traversal
starting with goal states.

Let Parents(s) be the set of statess′ for which there ex-
ists a transition(s′, a) → s: Parents(s) = {s′ ∈ S s.t.∃a ∈
APr(s|s′, a) > 0}. Alg. 2 uses this information to perform
the reachability analysis. Then states which have not been
marked asreaching are dead-ends, and a second graph
traversal starting with these states will identifydangerous
states (see Alg. 3).2

Algorithm 2 PROPAGATEREACHABILITY SSP (Parents)
PUSHALL(G, st) {st: stack of goal states}
while st 6= ∅ do

POP(s, st)
if ¬reaching(s) then

MARK(s, reaching)
PUSHALL(Parents(s), st)

end if
end while

Algorithm 3 PROPAGATEDANGER(Parents)
for all s ∈ S s.t.¬reaching(s) do

PUSH(s, st)
end for
while st 6= ∅ do

POP(s, st)
if ¬dangerous(s) and∀ a ∈ A :
∃ s′ ∈ S s.t.Pr(s′|s, a) > 0 & dangerous(s′) then

MARK(s, dangerous)
PUSHALL(Parents(s), st)

end if
end while

3.2 Uncertain SSP
In an uncertain SSP, the reachability analysis depends on the
fact that the opponent can forbid a transition(s, a) → s′ if

2Alg. 3 can be implemented efficiently by remembering which
state-action pairs are known to be dangerous.

Prmin(s′|s, a) = 0. A difficulty is that Prmin(s′1|s, a) = 0
andPrmin(s′2|s, a) = 0 are not sufficient to tell ifs′1 and
s′2 may be forbidden simultaneously in some possible model.
Fig. 1 shows an example where the 3 potentially reachable
states cannot be forbidden simultaneously (there is no possi-
ble model s.t.∀j ∈ {1, 2, 3} T (so, a0, s

′
j) = 0). With upper

probabilities of1, any 2 states could be forbidden.

(c=1) (c=1)
[0,.6] [0,.6]

(c=1)[0,.6]

s0 a0

s
′

1
s

′

2
s

′

3

Figure 1: USSP where only 1 of the 3 reachable states can be
forbidden (goal states in bold circles).

Let us define the set of all lists of states which cannot be
forbidden simultaneously (from(s, a)):3

L�
(s,a) =


l ⊆ S s.t. s′ ∈ l ⇒ Prmax

(s′|s,a) > 0,

and
∃s′ ∈ l s.t.Prmin

(s′|s,a) > 0
or

∑
s′∈S\l Prmax

(s′|s,a) < 1

 .

To know if a given actiona can lead to a goal state from
current states, one has to find at least one such list where
all states arereaching . In this case, the opponent cannot
prevent the planner having some chance of terminating. The
reachability analysis only needs to work with the subset of
minimal lists:

Lmin�
(s,a) =

{
l ∈ L�

(s,a) s.t.∀l′ ∈ L�
(s,a) :

l ∩ l′ = l or (l ∩ l′) 6∈ L�
(s,a)

}
.

In other words, removing any state of such a list makes it
possible for the opponent to forbid all states in the list. On
Fig. 1: Lmin�

(so,ao) = {{s′1, s′2}, {s′1, s′3}, {s′2, s′3}}.
From this basic idea, two problems arise:

• How to perform the reachability analysis ?

• How to obtain these lists ?

We now just give a brief idea of the answers to these two
questions (details in Sections 3.2 and 3.3 of[Buffet, 2004]).

Performing the Reachability Analysis – The minimal lists
we have just described are defined with respect to a given
state-action pair(s, a). They are used to obtain a new set
Lmin�

(s) of minimal lists relative to the states, since the precise
action chosen is of no interest when just checking whether a
state could reach the goal or not.

From there, determining which states can reach a goal state
is again done through a propagation starting from these goal

3� ∼ “statescannotbe forbidden simultaneously”

states. This “back”-propagation takes place in anAND-OR
graph where nodes are states and their minimal lists, as il-
lustrated by Fig. 2. This is anAND-ORgraph because a
list is “reaching ” if all its children states arereaching
(AND), and a state isreaching if oneof its children lists is
reaching (OR).

...

......

s0

s1 s2

s3

l1

l2

Figure 2: Example ofAND-ORgraph in which the reachabil-
ity analysis is done (starting with goal states ass2 here). If
s3 is reaching , then so isl1 (the opponent cannot forbids2

ands3), and therefores1.

After this reachability analysis for uncertain SSPs, the dan-
ger analysis from Alg. 3 can be performed with no modifica-
tion, using the most probable model for example. Indeed in
this second phase the opponent has no need to prevent some
transitions from happening (by assigning them a zero proba-
bility mass). On the contrary, its aim should be to allow all
possible transitions in a view to give more ways of getting to
a dead-end.

How to Obtain the Lists — Previous section has shown
how to use minimal lists of states which cannot be forbidden
simultaneously so as to perform the reachability analysis. An
essential question that we still have to answer is how to obtain
these lists. This is an indirect process as it consists in 1- look-
ing for maximallists of states whichcanbe forbidden simul-
taneously, then in 2- adding a state to turn them intominimal
lists of states whichcannotbe forbidden simultaneously.

As we have defined the notion of “list of states whichcan-
notbe forbidden simultaneously”, we define the opposite no-
tion of “list of states whichcanbe forbidden simultaneously”:

L�
(s,a) =

{
l ⊆ S s.t.

∑
s′∈S\l Prmax

(s′|s,a) ≥ 1 and
s′ ∈ l ⇒ Prmin

(s′|s,a) = 0 & Prmax
(s′|s,a) > 0

}
.

But we only need to consider the subset of these lists which
are “maximal”:

Lmax�
(s,a) =

{
l ∈ L�

(s,a) s.t.∀l′ ∈ L�
(s,a) :

l ∪ l′ = l or l ∪ l′ 6∈ L�
(s,a)

}
.

Indeed, adding any reachable state to such a list turns it into a
list from L�

(s,a). Obtaining the minimal lists required for the
reachability analysis requires then two algorithms:
• one to createLmax�

(s,a) (∀(s, a) ∈ S ×A), and

• one to turn any setLmax�
(s,a) in the corresponding set

Lmin�
(s,a) .

Experiments — The various algorithms developped to per-
form the reachability and danger analyses have been devel-
opped and tested on several problems (see[Buffet, 2004]).
The three main remarks coming from these experiments are
the following:

1. In some problems,Pr(s′|s, a) = ε can be sufficient to
consider that transition(s, a) → s′ can be forbidden
(because of “attracting” parts of the state space which
nearly behave like dead-ends).

2. The analyses require enumerating the whole state-space,
whereas this is often not feasible. This is all the more
unfortunate that one of (L)RTDP’s main advantage is to
avoid visiting the complete state-space.

3. The reachability analysis for uncertain SSPs can be very
time consuming.

The second point is a major subject for future work, with
the idea that we should turn our algorithms into a symbolic
analysis. Next section shows how to easily address the third
point through a simple preprocessing phase.

4 Improved Reachability Analysis
The improved algorithm we propose here is based on the idea
that, if the reachability analysis for uncertain SSPs is time
consuming, in many cases only a small part of the model re-
quires a special treatment. A lot of information can already be
obtained through analyses performed on chosen certain SSPs.

More precisely, we apply the certain reachability and dan-
ger analyses on an optimistic and a pessimistic model first,
to quickly classify most states. Then, the uncertain algo-
rithms only need to be run on states which remain unclassi-
fied. As detailed below, this process can be viewed as lower-
and upper-bouding a solution with simple technics before us-
ing an exact –but costly– computation.

4.1 Upper- and Lower-Bounding Reachability
Graphs

The precomputation phases work on two reachability graphs
obtained from the original uncertain SSP:

• the lower-bounding reachability graph Glo: in which
s′ is reachable froms if and only if there exists an action
a such thatPrmin(s′|s, a) > 0, and

• the upper-bounding reachability graph Gup: in
which s′ is reachable froms if and only if there exists
an actiona such thatPrmax(s′|s, a) > 0.

Glo represents all transitions which are certainly valid, and
Gup represents all transitions which could be valid. Yet,
these graphs should not be seen as an “optimistic” and a “pes-
simistic” graph, as the point of view may differ depending on
which analysis is being performed.

4.2 Principle
The optimistic, pessimistic and exact-computation phases are
the following:

1. optimistic:

(a) useGup to perform a certain reachability analysis
and get states whichmay bereaching (and sub-
sequently those certainly not-reaching), and

(b) useGlo to perform a danger analysis and get states
whichare certainlydangerous .

2. pessimistic:

(a) useGlo to perform a certain reachability analysis
and get states whichare certainlyreaching , and

(b) useGup to performadangeranalysisandgetstates
whichmay bedangerous . (useless step)

3. exact-computation: To complete the analyses, two
graphs must be designed which embed states not yet
certainlyreaching (or dangerous) and their direct
children. Then can be performed:

(a) the construction of the required AND-OR graph,
(b) the reachability analysis (starting with states known

to potentially reach a goal), and
(c) the danger analysis (starting with states known to

be trapped).

Here, one could say that the planner is optimistic when the
opponent is pessimistic (and conversely), what explains the
inverted use ofGlo andGup with the reachability and danger
analyses. The former tells whether the planner has some hope
to reach a goal state, and the later tells if the opponent has
some hope to definitely avoid a goal state.

A useful implementation detail is that this complete pro-
cess requires a three-state logic telling if aproperty is true,
false or unknown.

4.3 Algorithms’ Complexities
Here is a list of the most important parameters with respect to
the algorithmic complexities of the various algorithms:

• |S|: number of states,

• |A|: maximum number of actions (maxs∈S |A(s)|),
• ba: maximum branching-factor for a state-action pair,

• bp: maximum “reverse” branching-factor for a state (i.e.
maximum number of parents for a state).

With this, we have the following worst-case complexities:

• constructing Parents(·) for a certain SSP:
O(|S|.|A|.ba),

• certain reachability analysis (Alg. 2):O(|S|.bp), and

• danger analysis (Alg. 3):O(|S|.bp).
While these three algorithms remain reasonable, the un-

certain reachability analysis creates many lists of states (of-
ten singletons) and performs various manipulations on them.
This easily leads to a high increase in complexity. Due to
the number of independent steps in the uncertain reachability
analysis, it is a difficult task to give its algorithmic complex-
ity through a formula. A good intuition can be obtained by
computing the complexity of the various steps of this com-
plex algorithm, as done in[Buffet, 2004], Appendix A.

The preprocessing quickly determines for most states if
they arereaching or dangerous . This results in largely

reducing the number of unidentified states which require an
uncertain reachability analysis, therefore cutting down the
complexity of this last algorithm.

5 Experiments
Problems — Experiments have been conducted on two dif-
ferent problems:
•One is themountain-car problem as defined in[Sutton and
Barto, 1998]: starting from the bottom of a valley, a car has
to get enough momentum to reach the top of a mountain (see
Fig. 3). The same dynamics as described in the mountain car
software4 have been employed, with the only difference that
the left boundary has been moved from−1.2 to−2.0, creat-
ing a valley in which the car can be trapped. The objective is
to minimize the number of time steps to reach goal.

−1.2 0.6position

acceleration
road reaction

gravity

dead−end

−2.0

goal

Figure 3: The mountain-car problem with a dead-end.

The continuous state-space is discretized (32 × 32 grid)
and the corresponding uncertain model of transitions is ob-
tained by sampling1000 transitions from each state-action
pair (s, a). For each transition, we computed intervals in
which the true model lies with95% confidence (cf.[Buffet
and Aberdeen, 2004] Appendix B.1).
• The other is asailing problem sharing some similarities
with the mountain-car task. It’s complete description can be
found in [Vanderbei, 1996]. Here, the space is discretized
to a10× 10 grid,×8 wind angles and×8 possible headings.
The system’s stochasticity is due to the random changes in the
wind’s direction. If there is here no true dead-end, rLRTDP is
easily trapped in some parts of the state-space, forcing us to
consider that a transition with probabilityPrmin(s′|s, a) <
0.01 can be forbidden. The uncertain model is also learned
by drawing1000 samples for each state-action pair, using the
sameα = 0.05.

Results — As we have just seen, branching factors play a
noticeable role. This, and the important number of available
actions, may explain the dramatic increase in observed com-
putation time in the sailing problem, as shown on Table 1, col-
umn “sailing”-“raw”. Yet, the preprocessing obviously helps
quickly determining for most states if they arereaching or
not, hence the huge speed-up observed for each problem’s
reachability analysis (columns “help”). In both problems,

4http://www.cs.ualberta.ca/˜sutton/ · · ·
MountainCar/MountainCar.html

most of the state space is effectively handled through the cer-
tain analyses, only a small part depending on “uncertain” dy-
namics.

mountain-car sailing
|S| 1024 6400
|A| 2 8

raw help raw help
Init 0.7780 0.7801 5.8647 5.8670

Reachability 0.2810 0.0277 167.7658 0.4468
rLRTDP 10.6862 10.6447 1.4320 0.5442

Table 1: Average performance (duration in seconds) ob-
tained with 100 executions for the 3 phases: 1- model
Init ialization (including the statistical modeling), 2-
Reachability analysis and 3-rLRTDP itself.
(“raw”= “no preprocessing”, “help”= “with preprocessing”)

A surprising observation is that rLRTDP is much faster on
the sailing problem when a preprocessing phase is used. This
may be linked to the fact that the computer has no problem
handling memory in this case, what may slow down rLRTDP
if used after the expensive reachability analysis on a complete
uncertain graph. The same experiment on a lake of4 × 4
instead of10×10 shows little difference between both cases:
without (0.0161s) and with (0.0197s) preprocessing.

6 Conclusion
The goal reachability checked through the algorithm pre-
sented here is an essential tool for robust RTDP[Buffet and
Aberdeen, 2004; 2005]. This paper briefly describes how
to perform reachability and danger analyses in certain and
uncertain SSPs, and explains how the analyses for uncer-
tain SSPs can be speeded up through a simple preprocessing
phase.

An open question is how to use the information obtained
through the reachability analysis. If one does not want to for-
bid states which arereaching anddangerous , the cost
function is not sufficient for decision-making and a new (non-
classical ?) preference criterion has to be introduced.

The main remaining issue is then how to avoid enumerat-
ing the complete state-space. In a structured domain, as in
temporal planning, it would be of great interest to conduct a
symbolic analysis, as it has been done for other purposes for
Finite State Automata[Coudertet al., 1990] by using BDDs
[Bryant, 1985]. The major problem should be the algorithm
producing the minimal lists inLmin�

(s,a) , what would enable a
symbolic characterization of the AND-OR graph.

Finally, it is important to notice that the core of the algo-
rithms presented in this document is not specific to decision-
making, but rather to certain and uncertain Markov chains
(with end states). It would be simple to rewrite the various
procedures to that end, as Markov chains could be described
as SSPs with no costs and a single available action per state.

Acknowledgments
National ICT Australia is funded by the Australian Govern-
ment. This work was also supported by the Australian De-
fence Science and Technology Organisation.

References
[Bagnellet al., 2001] J.A. Bagnell, A. Y. Ng, and J. Schnei-

der. Solving uncertain markov decision problems.
Technical Report CMU-RI-TR-01-25, Robotics Institute,
Carnegie Mellon U., 2001.

[Bartoet al., 1995] A.G. Barto, S. Bradtke, and S. Singh.
Learning to act using real-time dynamic programming.Ar-
tificial Intelligence, 72, 1995.

[Bellman, 1957] R. Bellman. Dynamic Programming.
Princeton U. Press, Princeton, New-Jersey, 1957.

[Bertsekas and Tsitsiklis, 1996] D.P. Bertsekas and J.N.
Tsitsiklis. Neurodynamic Programming. Athena Scien-
tific, 1996.

[Bryant, 1985] R.E. Bryant. Symbolic manipulation of
boolean functions using a graphical representation. In
ACM/IEEE Design Automation, pages 688–694, 1985.

[Buffet and Aberdeen, 2004] O. Buffet and D. Aberdeen.
Planning with robust (l)rtdp. Technical report, National
ICT Australia, 2004.

[Buffet and Aberdeen, 2005] O. Buffet and D. Aberdeen.
Robust planning with (l)rtdp. InProc. of the 19th Int. Joint
Conf. on Artificial Intelligence (IJCAI’05), 2005.

[Buffet, 2004] O. Buffet. Robust (l)rtdp: Reachability anal-
ysis. Technical report, National ICT Australia, 2004.

[Coudertet al., 1990] O. Coudert, J.-C. Madre, and
C. Berthet. Verifying temporal properties of sequential
machines without building their state diagrams. InProc.
of the Workshop on Computer-Aided Verification, 1990.

[Givanet al., 2000] R. Givan, S. Leach, and T. Dean.
Bounded parameter markov decision processes.Artificial
Intelligence, 122(1-2):71–109, 2000.

[Hosakaet al., 2001] M. Hosaka, M. Horiguchi, and M. Ku-
rano. Controlled markov set-chains under average cri-
teria. Applied Mathematics and Computation, 120(1-
3):195–209, 2001.

[Munos, 2001] R. Munos. Efficient resources allocation for
markov decision processes. InAdvances in Neural Infor-
mation Processing Systems 13 (NIPS’01), 2001.

[Nilim and Ghaoui, 2004] A. Nilim and L. El Ghaoui. Ro-
bustness in markov decision problems with uncertain tran-
sition matrices. InAdvances in Neural Information Pro-
cessing Systems 16 (NIPS’03), 2004.

[Strehl and Littman, 2004] A. L. Strehl and M. L. Littman.
An empirical evaluation of interval estimation for markov
decision processes. InProc. of the 16th Int. Conf. on Tools
with Artificial Intelligence (ICTAI’04), 2004.

[Sutton and Barto, 1998] R. Sutton and G. Barto.Reinforce-
ment Learning: an introduction. Bradford Book, MIT
Press, Cambridge, MA, 1998.

[Vanderbei, 1996] Robert J. Vanderbei. Opti-
mal sailing strategies, statistics and operations
research program, 1996. U. of Princeton,
http://www.sor.princeton.edu/˜rvdb/sail/sail.html.

