
Simulation Methods for Uncertain Decision-Theoretic Planning

Douglas Aberdeenand Olivier Buffet
National ICT Australia

Australian National University
Canberra, Australia

{douglas.aberdeen,olivier.buffet }@nicta.com.au

Abstract

Experience based reinforcement learning (RL) sys-
tems are known to be useful for dealing with do-
mains that area priori unknown. We believe that
experience based methods may also be useful when
the model is uncertain (or even completely known).
In this case experience is gained bysimulatingthe
uncertain model. This paper explores a simple way
to allow experience based RL systems to cope with
uncertainty in a model. The particular form of RL
we consider is a policy-gradient method. The par-
ticular domains we attempt to optimise in are from
temporal decision-theoretic planning. Our previous
experience with military planning problems indi-
cates that a human specified model of the planning
problem is often inaccurate, especially when hu-
mans specify probabilities, thus planners that take
into account this uncertainty are very useful. De-
spite our focus on policy-gradient RL for planning,
our simple (but approximate) solution for dealing
with uncertainty in the model can be applied to any
simulation based RL method, such as Q-learning
or SARSA. Our attempt to solve decision-theoretic
planning problems with a policy-gradient approach
is novel in itself, making up another contribution of
this paper.

1 Introduction

If the true model of a Markov decision problem (MDP) is
hidden we must use algorithms that train agents byinteract-
ing with the MDP. This is done by experiencing trajectories
through the state space and forming either an explicit model
(transition matrix) or an implicit model (value function or
policy) of the system. These Monte-Carloesque methods can
be beneficial even when the true model is completely known,
especially if the model is too complex to work with directly.
E.g., the state space might be too large to enumerate, or it
might be continuous. In this case the model is only used in
simulating the system, generating state space trajectories that
the agent uses to optimise its behaviour. Another argument
for simulation based optimisation is the ease of creating a
simulator compared to a set of stochastic transition matrices.

This is especially true if aspects of the system are unknown
or approximated.

This paper explores the idea of using anuncertainmodel
to simulate trajectories, allowing an agent to directly optimise
its policy in a way that minimises the impact, or risk, associ-
ated with the uncertainty in the model. Moreover, this can be
achieved in highly complex domains.

The problems we consider come from temporal decision-
theoretic planning, where methods that enumerate any part
of the state space fail to scale to interesting problems. The
model is provided in the form of a set of tasks the planner
can choose from. Each task has a pre-defined duration and
has probabilistic outcomes that set multiple state variables to
true or false. The goal of the planner is to select actions, and
schedule them concurrently, to achieve the desiredgoal state
values of the state variables. Resources constrain which tasks
can be run in combination, and resources are consumed as
tasks end. This is a very general expression of the planning
problem and only a few probabilistic planners are emerging
that can operate in this setting. They can be used to optimise
plans in a wide variety of situations, such as Mars rover plan-
ning [Mausam and Weld, 2005], military operations planning
[Aberdeenet al., 2004], or building site planning. Probabili-
ties might arise from modelling variable battery strength, an
opponent’s actions, or weather. The outcome probabilities are
often estimated from finite data, or guessed by human experts.
Thus, the probabilities are subject to some uncertainty.

The contribution of this paper is two fold. Firstly, we de-
scribe the factored policy gradient (FPG) Planner: a novel
approach to temporal decision-theoretic planning that allows
very large domains to beapproximatelyoptimised. We
achieve this by: (1) factoring the policy into simple indepen-
dent policies for starting each task; (2) using a local optimi-
sation method instead of trying to find a globally optimal so-
lution; (3) using algorithms with memory use that scales lin-
early with the number of tasks, state variables, and resources,
not with the state space.

The second contribution is to demonstrate how uncertainty
over the probabilities described in a model can be incorpo-
rated into a simulation based optimisation. We assume that
probabilities of task outcomes lie in intervals between[0, 1].
The width of the interval can be computed based on the qual-
ity of the data used, or based on how confident the human
guess was. The goal is to find a policy that minimises the

risk, or variance, associated with enacting the policy over the
range of models implied by the uncertainty. I.e., the policy
that still performs relatively well even in the worst case sce-
nario. The key idea is simply to simulate state space trajecto-
ries using the mostpessimisticmodel. The most pessimistic
model might generally be as difficult to compute as the pol-
icy, however, we show empirically that a local approximation
to the pessimistic model might be sufficient. We can also
compute policies based on the mostoptimisticmodel, to ex-
amine the differences in policy or determine how much our
uncertainty could be effecting agent performance.

We start by describing background work in temporal prob-
abilistic planning and interval methods for Markov decision
problems (MDPs). Section 3 describes MDPs for planning.
Section 4 describes the factored policy agents and the estima-
tor we use to compute the gradient of the objective function.
Section 5 describes preliminary experiments.

2 Background
Previous probabilistic temporal planners include CPTP
[Mausam and Weld, 2005], Prottle[Little, 2004], and a mil-
itary operations planner[Aberdeenet al., 2004]. All these
algorithms use some form of dynamic programming (either
RTDP [Barto et al., 1995] or AO*) to associate values with
each state/action pair. However, this requires that values be
stored for each encountered state. Even though these algo-
rithms do not enumerate the entire state space their ability
to scale is limited by memory size. Even problems with a
few tasks and state variables can produce millions of relevant
states. Another probabilistic temporal planner is Tempastic
[Younes and Simmons, 2004], which uses the generate, test,
and debug planning paradigm. This method may suffer in
domains that are highly non-deterministic.

Our FPG-Planner performs gradient ascent in the space of
parameters of the factored policies (or policy agents). The
policy agents can be any differentiable function approxima-
tor. We show that maximising a simple reward function natu-
rally minimises plan durations and maximises the probability
of reaching the goal. Gradients are estimated by simulating
trajectories through the planning state space and calculating
small contributions to the gradient at each step[Baxteret al.,
2001]. The FPG-Planner will be described in this paper, but
is covered in more detail in Aberdeen[2005].

The use of intervals to describe uncertainty in MDPs was
investigated by Givanet al. [2000], Hosakaet al. [2001], and
Strehl and Littman[2004]. Our approach is most closely re-
lated to the approach of Buffet and Aberdeen[2005], who use
uncertainty intervals to make RTDP robust. RTDP uses sim-
ulation to determine which state values should be updated,
thus is similar in its use of simulation to help cope with large
state spaces. The intervals are used to compute the most pes-
simistic transition probabilities given thecurrent value esti-
mates. Our work deliberately avoids storing values, thus can-
not use them to approximate the worst model. Instead, we
assume that the simulator can often select the probability in
each interval on a state by state basis that will result in a pes-
simistic model being simulated. Specifically, in our planning
domains we assume that each task has two outcomes: suc-

cess, which is helpful, and failure, which is harmful.
Actions in temporal planning consist of launching multiple

tasks concurrently. The number of candidate actions available
in a given state is the power set of the tasks that are eligible to
start under the current state variables. That is, withN eligible
tasks there are2N possible actions. With only 10 eligible
tasks we have 1,024 actions to choose from! Current planners
try to explore this action space systematically, pruning actions
that lead to low rewards (or equivalently, high costs).

A key contribution of the FPG-Planner is to deal with the
explosion of the action space by replacing the single agent
choosing from the power-set of tasks with a single simple
agent for each task. The policy learnt by each agent is
whether to start its associated task given its observation, inde-
pendent of the decisions made by the other agents. This idea
alone does not simplify the problem. Indeed, if the agents all
receive perfect state information they could presumably pre-
dict the decision of the other agents and still act optimally.
The significant reduction in complexity arises from two ad-
ditional factors: (1) the agents are only provided enough in-
formation to make an approximate decision, not an optimal
decision; (2) each agent is optimised locally.

3 POMDP Formulation of Planning
Our intention is to deliberately simplify the agents by restrict-
ing their access to state information. This requires us to ex-
plicitly consider partial observability. We now describe the
partially observable MDP framework (POMDP), define the
state space, our objective function, and the process for simu-
lating the state space.

Definition 1 A finite partially observable Markov decision
process consists of: a finite set of statess ∈ S; a finite set of
actionsa ∈ A; probabilitiesPr[s′|s,a] : S ×S ×A → [0, 1]
of making state transitions → s′ under actiona; a reward
for each stater(s) : S → R; a finite set of observation vec-
tors o ∈ O seen by the agent in place of the complete state
description; and probabilitiesPr[o|s] : R|o| × S → [0, 1] of
observing vectoro of dimension|o|, given current states.

In addition, our specification of intervals around each task
outcome probability induces intervals around each state tran-
sition probabilityPr[s′|s,a]. As will be demonstrated later,
our use of simulation on the level of planning tasks, instead of
states, means we never need to explicitly computePr[s′|s,a]
probabilities or their intervals.

Goal statesare states where all the goal variables are sat-
isfied.Failure statesare states from which it is impossible to
reach a goal state (usually because time or resources have run
out). These two classes of state are combined to form the set
of resetstates that produce an immediate reset to the initial
states0. A single trajectory through the state space consists
of many individual trials that automatically reset tos0 each
time a goal state or failure state is reached.

Policies are possibly stochastic, mapping observation vec-
tors to a probability over each action. LetN be the number
of basic tasks available to the planner. In our setting an action
a is a binary vector of lengthN . An entry of 1 at indexn
means ‘Yes’ begin taskn, and a 0 entry means ‘No’ do not
start taskn. The probability of actions is writtenPr[a|o, θ],

where conditioning onθ reflects the fact that the policy is dic-
tated by a set ofp real valued parametersθ ∈ Rp. We show
later how real valued parameters can control probability dis-
tributions over actions given observations, thus determining
a policy. This paper assumes that all stochastic policies (i.e.,
all values forθ) reach reset states in finite time when executed
from s0. This is enforced by limiting the maximum duration
of a plan. Because all policies reach a reset state, and by
continuously resetting to the initial state, we ensure the un-
derlying MDP isergodic,1 which is necessary for producing
gradient estimates.

The aim of policy gradient algorithms is to find the set of
parametersθ that induce a policy to move from the initial
states0 to a reset state while maximising the long-term av-
erage reward. The long-term average reward is the average
of all instantaneous rewards received over an infinite sample
trajectory of the POMDP2

η(θ) = lim
T→∞

1
T

T−1∑
t=0

r(st).

In the context of planning, the instantaneous reward provides
the agent with a measure of progress toward the goal. A sim-
ple reward scheme is to setr(s) = 1 for all statess that rep-
resent the goal state, and 0 for all other states. To maximise
η(θ), goal states must be reached as frequently as possible.
This has the desired property of simultaneously minimising
plan duration, as well as maximising the probability of reach-
ing the goal (failure states achieve no reward). It is tempting
to provide a negative reward for failure end states, but in this
case an agent could partially maximise its reward by avoiding
progress altogether, never achieving end states, and therefore
never achieving negative (or positive) rewards.

We propose a reward scheme that provides a large reward
(1000 in this paper) for reaching the goal as described, plus a
reward at each step that heuristically awards progress toward
the goal. This additionalshapingreward provides a reward
of 1 for every goal condition achieved, and -1 for every goal
condition that becomes unset.

3.1 Planning State Space
For probabilistic temporal planning our state description con-
tains: the state’s absolute time, a queue of impending events,
the status of each task, the truth value of each state variable,
and the available resources. In a particular state, only a subset
of the eligible tasks will satisfy all preconditions for execu-
tion. This subset is called theeligible task list. When a deci-
sion to start a fixed duration task is made, an end-task event is
added to the time ordered event queue. The event queue holds
a list of events that the planner is committed to, although the
outcome of those events may be uncertain.

The generation of successor states is shown in Alg. 1. The
algorithm begins by starting the tasks given by each bit in
the action, implementing any immediate effects. An end-task

1Except for the aperiodic condition for ergodicity that is not im-
portant for this paper.

2Because the underlying MDP is ergodic,η(θ) is independent of
the starting state.

Algorithm 1 findSuccessor(States, Actiona)
1: for eachan =’Yes’ in a do
2: s.beginTask(n)
3: s.addEvent(n, s.time+taskDuration(n))
4: end for
5: repeat
6: if s.time> maximum makespanthen
7: s.failureLeaf=true
8: return
9: end if

10: if s.operationGoalsMet()then
11: s.goalLeaf=true
12: return
13: end if
14: if s.noEvents() &¬s.anyEligibleTasks()then
15: s.failureLeaf=true
16: return
17: end if
18: e = s.nextEvent()
19: s.time =e.time
20: selectModel(e.PrSuccessLower,e.PrSuccessUpper)
21: samplesucess Pr = p, failurePr = 1− p
22: s.implementEffects(outcome)
23: until s.anyEligibleTasks()

Algorithm 2 selectModel(lowerBound, upperBound)
1: if pessimisticthen
2: return (e.lowerBound)
3: else
4: if optimisticthen
5: return (e.upperBound)
6: else
7: return(lowerBound+upperBound)/2
8: end if
9: end if

event is added at an appropriate time in the queue. The state
update then processes events until there is at least one task
that is eligible to begin. Lines 6–17 check for reset states
before the next event for the current states is processed.

Events have probabilistic outcomes. Uncertain models pro-
vide intervals of probabilities for outcomes. The intervals are
defined as part of the problem specification. Before sam-
pling we must choose a point in this interval to base the
sample on. We assume that maximising the probability of
failure also minimises the long-term average reward for the
current policy. Thus, to train the agent to operate well un-
der the pessimistic model we always choose the lower bound
on the probability of success as the true probability of the
event (Alg. 2), and sample the outcome accordingly. Simi-
larly, if we wish the agent to perform well if the optimistic
model turns out to be correct, we select the upper bound on
the probability of success. If there are more than two out-
comes we could put intervals on the probability mass asso-
ciated with each outcome. We then distribute the probability
mass as constrained by the intervals. The worst outcomes gets
the maximum probability mass, the next worst outcome gets

the maximum allowed remaining mass, and so on.
This scheme is not guaranteed to select probabilities from

the intervals that correspond to the worst overall model. A
pessimistic choice at the current state could lead to future
states with very little uncertainty in the model, whereas an
optimistic choice could lead to future states with massive un-
certainty and hence larger scope for poor models. We assume
there is a way to approximately measure which outcomes will
lead to high or low rewards. Section 6 outlines how we might
learn the worst (or best) overall model in the same setting.

Line 21 of Alg. 1 samples one possible outcome from the
distributions permitted by the intervals in the problem defini-
tion. Alg. 2 is the only point in the algorithm where intervals
are considered. The remainder of the algorithm description is
independent of our use of uncertain models.

Future states are only generated at points when tasks can
be started. If an event outcome is processed and no tasks are
enabled, the search recurses to the next event in the queue.

4 Policy Gradient Ascent
In this section we describe policy-gradient algorithms for re-
inforcement learning and how we use this approach for the
FPG-Planner. We assume the presence of policy agents,
parameterised with independent sets of parameters for each
agentθ = {θ1, . . . , θN}. There arep parameters in total. We
seek to adjust the parameters of the policy to maximise the
long-term average rewardη(θ).

Baxteret al. [2001] describe the GPOMDP algorithm that
estimates the gradient∇η(θ) of the long-term average reward
with respect to the current set of policy parameters. Once
an estimatê∇η(θ) is computed, we maximise the long-term
average reward with a gradient ascent step:θ ← θ+α∇̂η(θ),
whereα is a small step size. Maximisingη(θ) produces better
policies, both in terms of duration and probability of failure.
Repeating the process of estimating the gradient, followed by
a gradient ascent step, optimises the policy until a maxima in
the long-term average reward is found.

4.1 Estimating Gradients
The GPOMDP gradient estimate algorithm works by sam-
pling a single long trajectory through the state space. The
state transitions are generated with Alg. 1 after each task
agent has chosen whether to start or not. All agents receive
the same reward for the new state and update their gradient
estimates independently.

The parameterised policy maps observations to probability
distributions over action vectors. The action vector at each
step isat, a combination of independent ‘Yes’ or ‘No’ ac-
tions made by the agents. Each agent is parameterised by
an independent set of parameters that make upθ ∈ Rp:
θ1, θ2, . . . , θN . If atn represents the binary decision made
by agentn at timet about whether to start its corresponding
task then the stochastic policy factors into

Pr[at|ot, θ] = Pr[at1, . . . , atN |ot, θ1, . . . , θN]
= Pr[at1|ot, θ1]× · · · × Pr[atN |ot, θN].

It is not necessary for all agents to receive the same obser-
vation, and it may be advantageous to show different agents

different parts of the state, leading to a decentralised planning
algorithm. Introducing partial observability in similar multi-
agent policy-gradient approaches[Peshkinet al., 2000] has
been shown to increase the number of local minima. Choos-
ing a good observation vector allows the problem to remain
tractable while hopefully avoiding the introduction of severe
local maxima.

After some experimentation[Aberdeen, 2005], we chose
an observation vector that is a binary description of the eligi-
ble tasks (15 bits) and the condition truth values (10 bits) plus
a constant 1 bit to provide bias to the agents’ linear networks.

The main requirement for each policy-agent is that
Pr[atn|ot, θn] be differentiable with respect to the parameters
for each choice task startatn =‘Yes’ or ‘No’. We choose to
represent each agent with a two output linear network mapped
into probabilities using a soft-max function:

Pr[atn = Y es|ot, θn] =
exp(o>t θn,Y es)

exp(o>t θn,Y es) + exp(o>t θn,No)

Pr[atn = No|ot, θn] =
exp(o>t θn,No)

exp(o>t θn,Y es) + exp(o>t θn,No)
.

This can be thought of as a two output linear network where
the outputs are subsequently normalised to produce a well be-
haved probability distribution. If the dimension of the obser-
vation vector is|o| then eachθn can be thought of as an|o|×2
matrix where the columns represent the network weights for
the ‘Yes’ decision output and the ‘No’ decision output respec-
tively. This expression is a form of logistic regression. The
log derivatives, necessary for Alg. 3, are given in Baxteret
al. [2001]. Initially the parameters are set to small random
values: a near uniform random policy. This encourages ex-
ploration of the action space. Each gradient step typically
moves the parameters closer to a deterministic policy.

Figure 1 shows the selection of actions graphically. Alg. 3
describes the algorithm for computinĝ∇η(θ). The gradient
estimate provably converges to a biased estimate of∇η(θ)
as T → ∞. The quantityβ ∈ [0, 1) controls the degree
of bias in the estimate. Asβ approaches 1, the bias of the
estimates drop to 0. However ifβ = 1, estimates exhibit
infinite variance asT → ∞. Thus the parameterβ achieves
a bias/variance tradeoff in the stochastic gradient estimates.

Line 8 computes the log gradient of the sampled action
probability and adds the gradient for then’th agent’s param-
eters into aneligibility trace. The gradient for parameters not
relating to agentn is 0. We do not computePr[atn|ot, θn]
or gradients for tasks with unsatisfied preconditions. If all
eligible agents decidenot to start their tasks, we issue a null-
action. If the state event queue is not empty, we process the
next event, otherwise time is incremented by 1 to ensure all
possible policies will eventually reach a reset state.

5 Experiments
This section provides some preliminary experiments that vali-
date the ideas in this paper. We compare the present algorithm
with that of our earlier RTDP based planner for military oper-
ations[Aberdeenet al., 2004]. Both the current tools and our
previous tool use the same code to generate states, represent-
ing exactly the same domains, providing a fair comparison.

Conditions
Eligible tasks
Task status
Resources
Event queue

Time

Current State

Conditions
Eligible tasks
Task status
Resources
Event queue

Time

Not Eligible

Task N

Task 1

Task 2

Next State

Choice disabled

ot

ot

Pr[Y es|ot, θ1] = 0.1

Pr[No|ot, θ1] = 0.9

Pr[No|ot, θ2] = 1.0

Pr[Y es|ot, θN] = 0.5

Pr[No|ot, θN] = 0.5

findSuccessor(st, at)

at

Figure 1: Task-policies receive an observation of the current
state and individually choose whether to start or not. The
combined decision is fed into the state simulator that proba-
bilistically generates the next state. In this example, the joint
action probability isPr[No, No, . . . , Y es|ot, θ] = 0.45.

The problem3 consists of 15 tasks designed to represent
the high level process of building a sky-scraper. These tasks
achieve a set of 10 state variables needed for operation suc-
cess. Four of the effects can be established independently by
two different tasks, however, resource constraints only allow
one of the tasks to be chosen. Furthermore, tasks are not re-
peatable, even if they fail. The probability of failure of tasks
ranges between 0 and 20% with an interval on either side of
20% (unless such an interval would result in a probability of
failure of less than 0%).

We have constructed this example to demonstrate the effec-
tiveness of planning with intervals. Thus, for each effect that
has two tasks that can achieve it we have selected one task
to have a high probability of success, but also a high uncer-
tainty. The second task has a lower probability of success, but
an interval of 0 (perfect knowledge of the model). The second
(lower) probability of success is chosen to be higher than the
lower boundon the first tasks success probability. The robust
plan should (and does) choose tasks with the lower proba-
bility of success, but zero interval. Table 1 shows that the
results of using the FPG-Planner with different modes of op-
timisation: 1- No optimisation at all, the plan is to start each
eligible task with a probability of 50%; 2- Optimisation based
on a simulation of a pessimistic model; 3- Optimisation based
on the original human model (mean model); 4- Optimisation
based on a simulation of an optimistic model. Evaluations
are repeated three times. The evaluations assume that the true
model is: 1- pessimistic, 2- the original model (mean model),
3- optimistic.

3The problem definition can be found onhttp://rsise.
anu.edu.au/˜daa , written using an XML version of the PDDL
language).

Algorithm 3 Factored Planning Gradient Estimator

1: Sets0 to initial state,t = 0, et = [0]
2: while t < T do
3: et = βet−1

4: Generate observationot of st

5: for Each eligible taskn do
6: ComputePr[Y es|ot, θn] andPr[No|ot, θn]
7: Sampleatn =Yes oratn =No
8: Computeet = et +∇ log Pr[atn|o, θn]
9: end for

10: Try actionat = {at1, at2, . . . , atN}
11: while mutex or resource prohibitsat do
12: randomly turn off one task start inat

13: end while
14: st+1 = findSuccessor(st,at)
15: ∇̂tη(θ) = ∇̂t−1η(θ)− 1

t+1 (r(st+1)et − ∇̂t−1η(θ))
16: t← t + 1
17: end while
18: Return∇̂T η(θ)

The parameters of the GPOMDP algorithm are:T =
50, 000 gradient estimation steps andβ = 0.9. Optimisa-
tion time was limited to 5 minutes wall clock time on a sin-
gle user 3GHz Pentium IV with 1GB ram. All optimisations
ran to the complete 5 minutes. After 5 minutes optimisation
was terminated and the current policy evaluated. The FPG-
Planner has the ‘any time’ property that returns better policies
the longer optimisation is allowed to run, thus it is possible
we might have gotten improved results with more patience.
Results quote the average duration (± the variance), and the
percentage of plans that terminate in a failure state. Plans that
fail often have short average durations because they fail early
in the execution of the plan due to resource limitations or a
lack of alternative courses of action. Because optimisation
has a stochastic component the results are the average over
100 training runs and 10,000 evaluation runs of the plan.

Unsurprisingly we see that plans formed under pessimistic
training perform much better than other training modes when
the true (evaluation) model turns out to follow the pessimistic
model. Less obviously, the plan formed under a pessimistic
model has a more uniform failure probability and durations
over the possible true models. This is highly desirable be-
cause it means we have less variance in the outcome of plans
despite operating over a wide range of models. We emphasise
that this result is largely dependent on the particular domain
and is a result of a true assumption that experiencing a less
pessimistic true model can only benefit the policy. We have
seen similar effects on other domains using the RTDP planner
[Buffet and Aberdeen, 2005].

The RTDP results are quite similar to the FPG-Planner re-
sults. The FPG-Planner is performing somewhat better than
RTDP if the true model turns out to be pessimistic, but train-
ing assumed a mean or optimistic model. RTDP gets the best
overall result when the true model is optimistic and training
assumed a mean or optimistic model. In this case RTDP is
finding a global maxima in long-term average reward, but
FPG gets stuck in local maxima.

Table 1: Average failure prob and duration of the optimised Building plan. The columns are different training conditions. The
rows are different evaluation conditions. Optimisation is performed with the FPG-Planner

True model No train Pess. train Mean train Opt train
Fail% Dur. Fail% Dur. Fail% Dur. Fail% Dur.

Pessimistic 0.657 4.80±2.22 0.549 4.42±1.78 0.688 3.35±2.89 0.694 3.42±2.37
Mean 0.403 5.97±1.69 0.420 5.16±1.34 0.378 4.98±1.64 0.381 5.03±1.67
Optimistic 0.325 6.30±1.36 0.386 5.35±1.12 0.278 5.46±1.03 0.277 5.51±1.05

Table 2: Same results as Table 1, but this time optimised with an RTDP based planner.
True model No train Pess. train Mean train Opt train

Fail% Dur. Fail% Dur. Fail% Dur. Fail% Dur.
Pessimistic 0.657 4.80±2.22 0.541 4.62±3.12 0.729 5.32±1.46 0.724 5.40±1.76
Mean 0.403 5.97±1.69 0.428 5.09±1.80 0.272 6.49±1.12 0.272 6.54±1.19
Optimistic 0.325 6.30±1.36 0.386 5.18±1.65 0.099 6.90±0.451 0.100 6.90±0.452

For problems of this size RTDP can enumerate the state
space in memory, giving it a significant advantage because
it can compute the optimal global policy. Thus, we do not
expect to be able to generally perform better RTDP on this
problem. The fact that we outperform RTDP at all is due
to the fact that we use the labelled variant of RTDP[Bonet
and Geffner, 2003], with a non-zero labelling threshold that
results in some degree of approximation in the policy. How-
ever, as Aberdeen[2005] demonstrates, when problems are
too large to fit into main memory, the FPG-Planner can per-
form significantly better than RTDP based planners.

6 Discussion
The main requirement for learning with policy-gradient
POMDP methods is that a trajectory of state observations is
available. Even if we haveno modelof the planning problem
we can still use FPG-Planning provided we can interact with
the real-world to generate trajectories.

The greatest drawback of our work is the assumption that
the poorest (or best) global model can be approximated by al-
ways trying to simulate the extremes of the intervals in each
state. We can avoid this assumption by simultaneously learn-
ing the worst model at the same time as learning the best
policy. This can be achieved with a second agent assigned
to each planning task. The second agent learns, again using
a gradient method, the most pessimistic point in the interval
that should be used to simulate trajectories. We plan to try this
approach soon, borrowing on the work of Bowling[2005].

To summarise, we have demonstrated an algorithm with
great potential to produce policies that are robust to a de-
gree of ‘guesswork’ in constructing the model. It is critical
that real-world planning tools are tolerant of errors in the de-
scription of the model. Human beings are bad at estimating
probabilities, and it is rare that we have sufficient data to per-
fectly estimate all parameters of a system. Further work will
attempt to justify our claim that the simulation approach to
dealing with uncertainty has merit in very large domains.

Acknowledgements
National ICT Australia is funded by the Australian Govern-
mnent’s Backing Australia’s Ability program and the Centre

of Excellence program. This project was also funded by the
Australian Defence Science and Technology Organisation.

References
[Aberdeenet al., 2004] D. Aberdeen, S. Thiébaux, and L. Zhang.

Decision-theoretic military operations planning. InProc.
ICAPS’04, 2004.

[Aberdeen, 2005] D. Aberdeen. Probabilistic temporal planning by
factored policy gradient. Technical report, NICTA, 2005.

[Bartoet al., 1995] A.G. Barto, S. Bradtke, and S. Singh. Learning
to act using real-time dynamic programming.Artificial Intelli-
gence, 72, 1995.

[Baxteret al., 2001] J. Baxter, P. Bartlett, and L. Weaver. Exper-
iments with infinite-horizon, policy-gradient estimation.JAIR,
15:351–381, 2001.

[Bonet and Geffner, 2003] Blai Bonet and Hector Geffner. Labeled
RTDP: Improving the convergence of real-time dynamic pro-
gramming. InProceedings of ICAPS-03, 2003.

[Bowling, 2005] Michael Bowling. Convergence and no-regret in
multiagent learning. InProc. of NIPS’04, volume 17, 2005.

[Buffet and Aberdeen, 2005] O. Buffet and D. Aberdeen. Planning
with robust (l)rtdp. InProc. of IJCAI’05, 2005.

[Givanet al., 2000] R. Givan, S. Leach, and T. Dean. Bounded pa-
rameter markov decision processes.Artificial Intelligence, 122(1-
2):71–109, 2000.

[Hosakaet al., 2001] M. Hosaka, M. Horiguchi, and M. Kurano.
Controlled markov set-chains under average criteria.Applied
Mathematics and Computation, 120(1-3):195–209, 2001.

[Little, 2004] I. Little. Probabilistic temporal planning. Honours
thesis, Australian National University, 2004.

[Mausam and Weld, 2005] Mausam and Daniel S. Weld. Concur-
rent probabilistic temporal planning. InProc. ICAPS’05, 2005.

[Peshkinet al., 2000] L. Peshkin, N. Meuleau K.-E. Kim, and L. P.
Kaelbling. Learning to cooperate via policy search. InUAI, 2000.

[Strehl and Littman, 2004] A. Strehl and M. Littman. An empirical
evaluation of interval estimation for markov decision processes.
In Proc. of ICTAI’04, 2004.

[Younes and Simmons, 2004] Hakan L. S. Younes and Reid G.
Simmons. Policy generation for continuous-time stochastic do-
mains with concurrency. InProc. of ICAPS’04, volume 14, 2004.

