
Robust Planning with (L)RTDP

Olivier Buffet and Douglas Aberdeen
National ICT Australia &

The Australian National University
{olivier.buffet,douglas.aberdeen }@nicta.com.au

Abstract

Stochastic Shortest Path problems (SSPs), a sub-
class of Markov Decision Problems (MDPs), can
be efficiently dealt with usingReal-Time Dynamic
Programming(RTDP). Yet, MDP models are often
uncertain (obtained through statistics or guessing).
The usual approach is robust planning: searching
for the best policy under the worst model. This
paper shows how RTDP can be made robust in
the common case where transition probabilities are
known to lie in a given interval.

1 Introduction
In decision-theoretic planning, Markov Decision Problems
[Bertsekas and Tsitsiklis, 1996] are of major interest when
a probabilistic model of the domain is available. A number of
algorithms make it possible to find plans (policies) optimiz-
ing the expected long-term utility. Yet, optimal policy con-
vergence results all depend on the assumption that the proba-
bilistic model of the domain is accurate.

Unfortunately, a large number of MDP models are based on
uncertain probabilities (and rewards). Many rely on statistical
models of physical or natural systems, such as plant control or
animal behavior analysis. These statistical models are some-
times based on simulations (themselves being mathematical
models), observations of a real system or human expertise.

Working with uncertain models first requires answering
two closely related questions: 1– how to model this uncer-
tainty, and 2– how to use the resulting model. Existing work
shows that uncertainty is sometimes represented as a set of
possible models, each assigned a model probability[Munos,
2001]. The simplest example is a set of possible mod-
els that are assumed equally probable[Bagnellet al., 2001;
Nilim and Ghaoui, 2004]. Rather than construct a possibly
infinite set of models we represent model uncertainty by al-
lowing each probability in a single model to lie in an interval
[Givanet al., 2000; Hosakaet al., 2001].

Uncertain probabilities have been investigated in resource
allocation problems[Munos, 2001] — investigating efficient
exploration[Strehl and Littman, 2004] and state aggregation
[Givanet al., 2000] — and policy robustness[Bagnellet al.,
2001; Hosakaet al., 2001; Nilim and Ghaoui, 2004]. We fo-
cus on the later, considering a two-player game where the op-

ponent chooses from the possible models to reduce the long-
term utility.

Our principal aim is to develop an efficient planner for
a common sub-class of MDPs for which some policies are
guaranteed to eventually terminate in a goal state: Stochastic
Shortest Path (SSP) problems. The greedyReal-Time Dy-
namic Programmingalgorithm (RTDP)[Bartoet al., 1995] is
particularly suitable for SSPs, as it finds good policies quickly
and does not require complete exploration of the state space.

This paper shows that RTDP can be made robust. In Sec-
tion 2, we present SSPs, RTDP and robustness. Then Sec.
3 explains how RTDP can be turned into a robust algorithm.
Finally, experiments are presented to analyse the behavior of
the algorithm, before a discussion and conclusion.1

2 Background
2.1 Stochastic Shortest Path Problems
A Stochastic Shortest Path problem[Bertsekas and Tsitsik-
lis, 1996] is defined here as a tuple〈S, s0, G,A, T, c〉. It de-
scribes a control problem whereS is the finite set ofstatesof
the system,s0 ∈ S is a starting state, andG ⊆ S is a set of
goal states.A is the finite set of possibleactionsa. Actions
control transitions from one states to another states′ accord-
ing to the system’s probabilistic dynamics, described by the
transition function T defined asT (s, a, s′) = Pr(st+1 =
s′|st = s, at = a). The aim is to optimize a performance
measure based on thecost function c : S ×A× S → R+.2

SSPs assume a goal state is reachable from any state inS,
at least for the optimal policy, so that one cannot get stuck in
a looping subset of states. An algorithm solving an SSP has
to find apolicy that maps states to probability distributions
over actionsπ : S → Π(A) which optimizes thelong-term
costJ defined as the expected sum ofcoststo a goal state.

In this paper, we only consider SSPs for planning pur-
poses, with full knowledge of tuple defining the problem:
〈S, s0, G,A, T, c〉. In this framework, well-known stochas-
tic dynamic programming algorithms such asValue Iteration
(VI) make it possible to find a deterministic policy that cor-
responds to the minimal expected long-term costJ∗. Value
Iteration works by computing the functionJ∗(s) that gives

1Work presented in more details in[Buffet and Aberdeen, 2004].
2As the model is not certain, we do not make the usual assump-

tion c(s, a) = Es′ [c(s, a, s′)].

the expected sum of costs of the optimal policies. It is the
unique solution of the fixed point Bellman equation:

J(s) = min
a∈A

∑
s′∈S

T (s, a, s′) [c(s, a, s′) + J(s′)] . (1)

UpdatingJ with this formula leads to asymptotic conver-
gence toJ∗. For convenience, we also introduce theQ-value:
Q(s, a) =

∑
s′∈S T (s, a, s′)[c(s, a, s′) + V (s′)].

SSPs can easily be viewed as shortest path problems where
choosing a path only probabilistically leads you to the ex-
pected destination. They can represent a useful sub set of
MDPs, as they are essentially finite-horizon MDPs with no
discount factor.

2.2 RTDP
Trial based3 Real-Time Dynamic Programming(RTDP), in-
troduced in[Barto et al., 1995], uses the fact that the SSP
costs are positive and the additional assumption that every
trial will reach a goal state with probability 1. Thus, with
a zero initialization of the long-term cost functionJ , both
J andQ-values monotonically increase during their iterative
computation.

The idea behind RTDP (Algorithm 1) is to follow paths
from the start states0, always greedily choosing actions with
the lowest long-term cost and updatingQ(s, a) as statess are
encountered. In other words, the action chosen is the one
expected to lead to the lowest future costs, until the iterative
computations show that another action may do better.

Algorithm 1 RTDP algorithm for SSPs
RTDP(s:state)// s = s0

repeat
RTDPTRIAL (s)

until // no termination condition

RTDPTRIAL (s:state)
while ¬GOAL(s) do

a =GREEDYACTION(s)
J(s)=QVALUE (s, a)
s =PICKNEXTSTATE(s, a)

end while

RTDP has the advantage of quickly avoiding plans that lead
to high costs. Thus, the exploration looks mainly at a promis-
ing subset of the state space. Yet, because it follows paths by
simulating the system’s dynamics, rare transitions are only
rarely taken into account. The use of a simulation makes it
possible to get good policies early, but at the expense of a
slow convergence, because of the bad update frequency of
rare transitions.

2.3 Robust Value Iteration
Pessimism and Optimism — We now turn to the problem
of taking the model’s uncertainty into account when looking
for a “best” policy. The (possibly infinite) set of alternative
models is denotedM.

3We always assume a trial based RTDP implementation.

A simplistic approach computes the average model over
M, or the most probable model inM, then uses standard SSP
optimization methods. Such approaches guarantee nothing
about the long-term cost of the policy if the true model differs
from the one chosen for optimization.

We follow the approach described in[Bagnellet al., 2001],
that consists of finding a policy that behaves well under the
worst possible model. This amounts to considering a two-
player zero-sum game where a player’s gain is its opponent’s
loss. The player chooses a policy over actions while its “dis-
turber” opponent simultaneously chooses a policy over mod-
els (as this is a simultaneous game, optimal policies can be
stochastic). This results in a max-min-like algorithm:

max
πM∈ΠM

min
πA∈ΠA

JπM,πA
(s0).

In this SSP game, Value iteration does converge to a fixed
solution[Patek and Bertsekas, 1999].

It is also possible to be optimistic, considering that both
players collaborate (as they endure the same costs), which
turns themax into a min in previous formula. This second
case is equivalent to a classical SSP where a decision consists
of choosing an action and a local model.

Locality — Such a max-min algorithm would be particu-
larly expensive to implement. Even restricting the search to
a deterministic policy over models, it requires computing the
optimal long-term cost function for each model before pick-
ing the worst model found and the optimal policy associated
with it. However, a simpler process may be used to com-
puteJ while looking simultaneously for the worst model. It
requires the hypothesis that next-state distributionsT (s, a, ·)
are independent from one state-action pair(s, a) to another.
This assumption does not always hold. However, this makes
things easier for the opponent because it now has larger set of
models from which to choose. This consequence is conserva-
tive for producing robust policies.

Because we assume independence at the state-action level
(not only at the state level), it is equivalent to a situation
where the second player makes a decision depending on the
current state and the first player’s action. This situation
amounts to asequentialgame where the previous players
move is known to the next player: both players can act in a
deterministic way without loss of efficiency.

The result of this assumption is that the worst model can
be chosen locally whenQ is updated for a given state-action
pair. As can be seen from Algorithm 2, the worst local model
ma

s may change whileQ-values evolve. Previous updates of
reachable states’ long-term costs may change their relative or-
dering, changing which outcomes are considered to be worst.

The key contribution of this paper is to show that RTDP
can be maderobust, allowing for planning in very large and
uncertain domains, retaining worst (or best) case behaviour
guarantees.

3 Robust RTDP
From now on, we considerinterval-based uncertain
SSPs, whereT (s, a, s′) is known to be in an interval
[Prmin(s′|s, a), P rmax(s′|s, a)]. Figure 1 is an example. We

Algorithm 2 Robust Value Iteration (for an SSP)
1: Initialize J to 0.
2: repeat
3: for all s: statedo
4: for all a: actiondo
5: Qmax(s, a)← maxma

s∈Ma
s∑

s′∈S Tma
s
(s, a, s′)

[
J(s′) + cma

s
(s, a, s′)

]
6: end for
7: J(i)← mina∈A Qmax(s, a)
8: end for
9: until J converges

discuss the pessimistic approach, the optimistic one leading
to similar results.

s0

a1

s1

a0

[.7] [.7]

[.3][.3]

(c=1) (c=.87)

a) certain SSP

s0

a1

s1

a0

[.5,.9]

[.1,.5]

[.7,.7]

[.3,.3]

(c=1)

(c=1) (c=.8)

(c=.9)

b) uncertain SSP

Figure 1: Two views of one SSP, depending on whether
model uncertainty is taken into account (costs in parenthesis).
In the uncertain SSP, actiona0 will be prefered as it quickly
reaches the goals1.

For a given state-action pair(s, a), there is a listR =
(s′1, · · · , s′k) of reachable states. For each reachable state
T (s, a, s′i) ∈ Ii = [pmin

i , pmax
i]. Thus, possible models are

the ones that comply with these interval constraints while en-
suring

∑
i T (s, a, s′i) = 1. Fig. 2 illustrates this with three

reachable states.

s
′

1

s
′

2s
′

3

p
min

s
′

1

p
max

s
′

1

s
′

1

s
′

2
s

′

3

Figure 2: A triangle is a probability simplex representing
all possible probability distributions with three different out-
comes (Pr(s′i) = 1 at thes′i vertex). On the left triangle
is the trapezium showing the interval constraint fors′1. The
right triangle shows possible models at the intersection of the
three interval constraints.

Worst Local Models — The maximisation step to compute
Q(s, a) in Alg. 2 is done by giving the highest probability

to the worst outcome. This requires firstly sorting reachable
states in decreasing order of the values:c(s, a, s′1)+J(s′1) ≥
c(s, a, s′2)+J(s′2) ≥ · · · c(s, a, s′k)+J(s′k). Then, the worst
distribution is the one giving the highest probability to the
first states′1, then tos′2, and so on up tos′k. As pointed out in
[Givan et al., 2000], this is equivalent to finding the highest
indexr ∈ [1..k] such that

r−1∑
i=1

pmax
i +

k∑
i=r

pmin
i ≤ 1.

The resulting transition probabilities are

Pr(s′i) =
{

pmax
i if i < r

pmin
i if i > r

(2)

Pr(s′r) = 1−
k∑

i=1,i 6=r

Pr(s′i). (3)

Using the pre-computed boundBmin =
∑k

i=1 pmin
i , Alg. 3

gives a complete implementation. Theinsertion sortalgo-
rithm4 is chosen as the list will usually be ordered from pre-
viousJ updates.

Algorithm 3 Worst Model for State-Action Pair(s, a)
WORSTMODEL(s: state,a: action)
R = (s′1, · · · , s′k) = REACHABLESTATES(s,a)
SORT(R)
i = 1, bound = Bmin

while (bound− pmin
i + pmax

i < 1) do
bound← bound− pmin

i + pmax
i

Pr(s′i)← pmax
i

i← i + 1
end while
r = i
Pr(s′r)← 1− (bound− pmin

r)
for all i ∈ {r + 1, . . . , k} do

Pr(s′i)← pmin
i

end for
return(R,Pr(·))

To summarise, Robust VI on an interval-based SSP con-
sists of applying normal Value Iteration with the transition
probabilities updated through Alg. 3.

We need only a single worst model to compute the cor-
respondingQ-value. Yet, because several reachable statess′i
may have the same valuec(s, a, s′i)+J(s′i) ass′r (we call this
set of statesS′r), there may be an infinite number of equiva-
lent worst local models. Any model differing only in how the
probability mass is distributed among the equally bad states
of S′r is also a worst local model.

Worst Global Models — Contrary to VI, RTDP does not
necessarily visit the complete state-space. This is why[Barto
et al., 1995] introduces the notion ofrelevantstates, which
we extend to the uncertain case: a states is relevantforM if

4http://en.wikipedia.org/wiki/Insertion sort

there exists a start states0, a modelm ∈ M and an optimal
policy π under that model such thats can be reached from
states0 when the controller usesπ underm.

This notion is important because two equally worst lo-
cal models on a given state-action pair may forbid different
states, so that for two modelsm1 andm2, a state may be rel-
evant inm1 but not inm2. Yet, RTDP should not find an
optimal policy just for the relevant states of only one worst
global model. Neither does the policy have to apply to all
possible states. It should apply to allreachablestates under
anymodel (for optimal policies) i.e., for relevant states. But
covering all relevant states in the worst model used for up-
datingQ-values does not necessarily cover all relevant states
inM: it depends on the model used to choose the next state,
i.e., to simulate the system’s dynamics.

To avoid missing relevant states, each local model used for
the simulation should ensure that all reachable states can be
visited. As can be seen in Fig. 2, the set of possible local mod-
els for a state-action pair is ann-dimensional convex poly-
tope. Any modelinsidethis polytope, excluding the bound-
ary, is therefore adequate because, for alls′i, it ensures that
P (s′i|s, a) > 0.

So there exists a global modelmd that can be used to ef-
fectively simulate the system’s dynamics without missing any
potentially reachable state.

3.1 Robust (Trial-Based) RTDP
RobustRTDP differs from the original RTDP in that:

• Each time the algorithm is updating a state’s evaluation,
an opponent is looking for a worst local model which
serves to compute theQ-values.

• For exploration purposes, the algorithm follows dynam-
ics of the system that consider all possible transitions
(using modelmd).

• “Relevant” states are now the states reachable by follow-
ing any optimal policy under any possible model.

From this, we adapt to our context convergence Theorem
3 from [Bartoet al., 1995] and the corresponding proof, dis-
cussing mainly its changes.

Proposition 1. In uncertain undiscounted stochastic short-
est path problems,robust Trial-Based RTDP with the initial
state of each trial restricted to a set of start states, converges
(with probability one) toJ∗ on the set of relevant states, and
the controller’s policy converges to an optimal policy (pos-
sibly nonstationary) on the set of relevant states, under the
same conditions as Theorem 3 in[Bartoet al., 1995] .

Proof. The proof outline is:

1. As shown in Sec. 2.3, robustness is achieved by consid-
ering a Stochastic Shortest PathGame(SSPG). In par-
ticular, this one is asequentialSSPG, for which Bert-
sekas and Tsitsiklis[1996] establish value iteration and
Q-learning algorithms. Provided all states are visited in-
finitely often, asynchronousvalue iteration can also be
used to solve sequential SSPGs (AVI-SSPG).

2. We adapt the proof of Bartoet al. [1995] to transform
AVI-SSPG to an RTDP algorithm (RTDP-SSPG). The

transformation ensures: 1- the additionalmaxm∈M in
the update formula (Alg. 2, Line 5) does not break the re-
quirement thatJt is increasing and non-overestimating;
and 2-relevantstates are visited infinitely often, guaran-
teeing a complete and optimal policy.

3. RTDP-SSPG and robust RTDP differ because RTDP-
SSPG assumes an optimal opponent. In the robust case
we wish to plan for opponents that may choose the
wrong model. Thus robust RTDP is RTDP-SSPG fol-
lowing modelmd — for simulation only — that allows
states to be visited that RTDP-SSPG optimal opponents
would forbid. Undermd (described in Sec. 3), no state
reachable under any model inM is excluded from the
search. Thus we have redefined an expanded set of rel-
evant states for added robustness. All relevant states are
still visited infinitely often.

Our use of the modelmd for simulation ensures that the
policy will cover all statesanyopponent could lead us to, but
assumes the worst model will apply afterwards.

4 Experiments
LabelledRTDP[Bonet and Geffner, 2003] is a modified ver-
sion of RTDP which can be made robust in a similar way.
The experiments conducted illustrate the behavior ofrobust
LRTDP. To that end, it is compared to Bagnellet al.’s Robust
Value Iteration, as well asLRTDP. In all cases, the conver-
gence criteria isε = 10−3 for LRTDP, and for VI we stop
when the maximum change in a state long-term cost over one
iteration is less than10−3.

4.1 Heart
In this first experiment, we compare a non-robust optimal pol-
icy with a robust one on the small example of Fig. 1-b. Ta-
ble 1 shows the theoretical expected long-term costs of each
policy on the normal (most probable) model, as well as the
pessimistic and optimistic ones. The robust policy is largely
better in the pessimistic case.

Table 1: Theoretical evaluation of robust and non-robust poli-
cies on various models, which match empirical evaluation.

Normal Pessimistic Optimistic
Non-robust 2.90 8.90 1.70

Robust 3.33 3.33 3.33

4.2 Mountain-Car
We use here the mountain-car problem as defined in[Sutton
and Barto, 1998]: starting from the bottom of a valley, a car
has to get enough momentum to reach the top of a mountain
(see Fig. 3). The same dynamics as described in the moun-
tain car software5 have been employed. The objective is to
minimize the number of time steps to reach goal.

5http://www.cs.ualberta.ca/˜sutton/ · · ·
MountainCar/MountainCar.html

−1.2 0.6position

acceleration
road reaction

gravity

goal

Figure 3: The mountain-car problem.

The continuous state-space is discretized (32 × 32 grid)
and the corresponding uncertain model of transitions is ob-
tained by sampling1000 transitions from each state-action
pair (s, a). For each transition, we computed intervals in
which the true model lies with95% confidence.

Results — Preliminary remark: simulating a path generally
shows a car oscillating several times before leaving the valley.
This has two main explanations: 1- the speed gathering is
just sufficient to reach the summit, but not over it; and 2- the
discretized model is not accurate enough and applying the
policy obtained on the true mathematical model (instead of
the discretized one) should be much better.

Fig. 4 shows the long-term cost function obtained by using
value iteration, LRTDP, and their robust counterparts on the
mountain-car problem. Thex andy axes are the car’s position
and speed. Thez axis is the expected cost to the goal. On the
surface is an example path from the start state to a goal state:
it follows the greedy policy under the average model.

The general shape of the surface obtained is always the
same, with some unexplored parts of the state-space in
LRTDP and Robust LRTDP (as expected). The vertical scales
are much larger in robust cases. This reflects the fact that
reaching the goal is much more time-consuming under a pes-
simistic model. BecauseJ can here be interpreted as the av-
erage time to the goal, these graphs show how a small uncer-
tainty can lead to longer policies. Here the times are multi-
plied by more than2.5.

While executing the four different algorithms, an eval-
uation of the current greedy policy was made every10 ∗
nStates = 10 240 Q-value updates. The result appears in
Fig. 5, they axis being the expected cost to the goal from
the start state. On both sub-figures, LRTDP-based algo-
rithms obtain good policies quickly, but have slow conver-
gence times of VI=2.83× 106 updates, LRTDP=6.76× 106,
rVI=8.31× 106, rLRTDP=11.06× 106.

Other experiments[Buffet and Aberdeen, 2004] also con-
firm these results, with one example showing that LRTDP can
have a faster convergence than VI, and another one illustrat-
ing this approach on a temporal planning problem.

5 Discussion and Conclusion
A simple extension to this work, suggested by Hosakaet al.
[2001], is to find the set of worst models as we do in this

Long-Term Cost Function
Example Path

-0.07

-0.035

 0

 0.035

 0.07

v

-0.85
-0.425

 0
 0.425

x

 0

 100

 200

 300

 400

 500

 600

V(x,v)

a) Value Iteration

Long-Term Cost Function
Example Path

-0.07

-0.035

 0

 0.035

 0.07

v

-0.85
-0.425

 0
 0.425

x

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

V(x,v)

b) Robust Value Iteration

Long-Term Cost Function
Example Path

-0.07

-0.035

 0

 0.035

 0.07

v

-0.85
-0.425

 0
 0.425

x

 0

 100

 200

 300

 400

 500

 600

V(x,v)

c) LRTDP

Long-Term Cost Function
Example Path

-0.07

-0.035

 0

 0.035

 0.07

v

-0.85
-0.425

 0
 0.425

x

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

V(x,v)

d) Robust LRTDP

Figure 4: Long-term cost functions for the mountain-car
problem. In each case, an example path is generated based
on the most likely model.

 0

 2000

 4000

 6000

 8000

 10000

 0 200 400 600 800 1000 1200 1400

av
er

ag
e

co
st

 to
 g

oa
l

t (unit=10*nStates)

LRTDP
VI

a) Non-Robust Algorithms

 0

 2000

 4000

 6000

 8000

 10000

 0 200 400 600 800 1000 1200 1400

av
er

ag
e

co
st

 to
 g

oa
l

t (unit=10*nStates)

LRTDP
VI

b) Robust Algorithms

Figure 5: Average cost to goal for the mountain-car problem,
measured every10 ∗ nStates updates ofQ-values.

paper, but then to choose from these the model that has the
lowest cost under anoptimistic model. This improvement is
presented in[Buffet and Aberdeen, 2004].

The approach to robustness adopted in this paper considers
the knowledge of a set of possible models. An open question
is whether it is possible to use more information from our
uncertain model, by taking the probability distribution over
possible models into account.

Model uncertainty has similarly been considered in model
learning while planning[Strehl and Littman, 2004]. The al-
gorithm proposed is optimistic, but does not seem to adapt
well to our framework as an evolving model can break the
“no-overestimation” assumption:∀s ∈ S, t ≥ 0, Jt(s) ≤
J∗(s). It is still important to notice thatrobustRTDP would
not suffer on-line, as the real dynamics can be employed to
pick a next state (the worst model appearing only in the long-
term cost update formula).

Finally, a crucial assumption in RTDP is that a goal state
must be reachable from any state. We present an algorithm
tackling this problem in[Buffet, 2004].

Conclusion — Recent works show that model uncertainty
is a major issue in decision-theoretic planning. We have
proposed a modification of the RTDP algorithm enabling it
to compute robust policies efficiently in large and uncertain
domains. Model uncertainty is represented through confi-
dence intervals on transition probabilities. The convergence

of the resulting algorithm is sketched. We demonstrate robust
LRTDP on a domain where statistics are used to estimate ap-
propriate intervals.

Acknowledgments
National ICT Australia is funded by the Australian Govern-
ment. This work was also supported by the Australian De-
fence Science and Technology Organisation.

References
[Bagnellet al., 2001] J.A. Bagnell, A. Y. Ng, and J. Schnei-

der. Solving uncertain markov decision problems.
Technical Report CMU-RI-TR-01-25, Robotics Institute,
Carnegie Mellon U., 2001.

[Bartoet al., 1995] A.G. Barto, S. Bradtke, and S. Singh.
Learning to act using real-time dynamic programming.Ar-
tificial Intelligence, 72, 1995.

[Bertsekas and Tsitsiklis, 1996] D.P. Bertsekas and J.N.
Tsitsiklis. Neurodynamic Programming. Athena Scien-
tific, 1996.

[Bonet and Geffner, 2003] B. Bonet and H. Geffner. Labeled
rtdp: Improving the convergence of real time dynamic pro-
gramming. InProc. of the 13th Int. Conf. on Automated
Planning and Scheduling (ICAPS’03), 2003.

[Buffet and Aberdeen, 2004] O. Buffet and D. Aberdeen.
Planning with robust (l)rtdp. Technical report, National
ICT Australia, 2004.

[Buffet, 2004] O. Buffet. Robust (l)rtdp: Reachability anal-
ysis. Technical report, National ICT Australia, 2004.

[Givanet al., 2000] R. Givan, S. Leach, and T. Dean.
Bounded parameter markov decision processes.Artificial
Intelligence, 122(1-2):71–109, 2000.

[Hosakaet al., 2001] M. Hosaka, M. Horiguchi, and M. Ku-
rano. Controlled markov set-chains under average cri-
teria. Applied Mathematics and Computation, 120(1-
3):195–209, 2001.

[Munos, 2001] R. Munos. Efficient resources allocation for
markov decision processes. InAdvances in Neural Infor-
mation Processing Systems 13 (NIPS’01), 2001.

[Nilim and Ghaoui, 2004] A. Nilim and L. El Ghaoui. Ro-
bustness in markov decision problems with uncertain tran-
sition matrices. InAdvances in Neural Information Pro-
cessing Systems 16 (NIPS’03), 2004.

[Patek and Bertsekas, 1999] S. D. Patek and D. P. Bertsekas.
Stochastic shortest path games.SIAM J. on Control and
Optimization, 36:804–824, 1999.

[Strehl and Littman, 2004] A. L. Strehl and M. L. Littman.
An empirical evaluation of interval estimation for markov
decision processes. InProc. of the 16th Int. Conf. on Tools
with Artificial Intelligence (ICTAI’04), 2004.

[Sutton and Barto, 1998] R. Sutton and G. Barto.Reinforce-
ment Learning: an introduction. Bradford Book, MIT
Press, Cambridge, MA, 1998.

