
Policy-Gradient for Robust Planning
Olivier Buffet and Douglas Aberdeen1

Abstract. Real-world Decision-Theoretic Planning (DTP) is a very
challenging research field. A common approach is to model such
problems as Markov Decision Problems (MDP) and use dynamic
programming techniques. Yet, two major difficulties arise: 1- dy-
namic programming does not scale with the number of tasks, and
2- the probabilistic model may be uncertain, leading to the choice of
unsafe policies. We build here onPolicy Gradientalgorithms to ad-
dress the first difficulty and on robust decision-making to address the
second one through algorithms that train competing learning agents.
The first agent learns the plan while the second learns the model most
likely to upset the plan. It is known from gradient-based game theory
that at least one player may not converge, so we focus on conver-
gence of the robust plan only, using non-symmetric algorithms.

1 INTRODUCTION

Robust Decision-Theoretic Planning (DTP) looks at problems where
the stochastic model is uncertain, and searches for the plan achieving
the best performance whatever the true model. Since DTP problems
are often dealt with as Markov Decision Problems (MDPs), recent
robust algorithms for uncertain MDPs [4, 14, 8] seem to be promis-
ing approaches based on dynamic programming. Yet, they all rely
on a specific assumption (Assumption-1 described in Section 2.3)
that does not hold in many planning settings. Thus, a different ap-
proach to robust planning is required. We propose to avoid the MDP
formulation of a DTP problem, and to make use of policy-gradient
algorithms.

Without Assumption-1, the problem is a generic two-player zero-
sum Markov game with partial observability (as explained in Sec-
tion 2.3), where one player has to choose a plan and the other has to
choose a model. Our first idea was to simultaneously learn both plan
and model. Yet, there is no algorithm that guarantees convergence to-
wards an equilibrium of the game in our partially observable setting.
Here are some important related results:

• In [15], Singh et al. study the infinitesimal gradient ascent applied
to two-player two-action games. For zero-sum games, it leads to
an oscillatory behavior around the Nash equilibrium.

• In [7], Bowling and Veloso present the “Win or Learn Fast” prin-
ciple, making it possible to get convergence in these games. But
results do not extend to more than two actions, as in the game
rock-paper-scissors (Roshambo).[3]

• In [10], Chang and Kaelbling explain how a gradient-ascent
learner can be “tricked” by its opponent, using sudden changes
its policy.

• In [17], Zinkevich proposes to use no-regret algorithms to avoid
being tricked in such a way.

1 National ICT Australia & The Australian National University,
email: firstname.lastname@nicta.com.au

Unfortunately, ensuring no-regret does not necessarily lead to con-
vergence of the strategies in self-play. In Roshambo, it is common to
see both players cycling together through Rock-vs-Rock→ Paper-
vs-Paper→ Scissors-vs-Scissors. The value is always the value of
the Nash equilibrium (0), and there is no regret since each player is
not doing worse than the random strategy.

In this paper, we propose two algorithms to find the best plan
against the worst model, but not trying to find the model at the same
time. After introducing the problem in some detail in Section 2, Sec-
tion 3 presents both algorithms. Then, experiments illustrate their
respective behaviors before a discussion and conclusion.2

2 BACKGROUND

2.1 Partially Observable Markov Decision
Problems

A Partially Observable Markov Decision Problem (POMDP) [9] is
defined here as a tuple〈S, A, T, r, Ω, O〉. It describes a control prob-
lem whereS is the finite set ofstatesof the system considered and
A is the finite set of possibleactionsa. Actions control transitions
from one states to another states′ according to the system’s prob-
abilistic dynamics, described by thetransition function T defined
as T (s, a, s′) = Pr(st+1 = s′|st = s, at = a). The aim is
to optimise a performance measure based on thereward function
r : S×A×S → R.3 Only a partial observationo (∈ Ω: finite set of
possible observations) of the state is accessible, sampled according
to the probability distributionO(o, s) = Pr(o|s).
Note: in this paper, we always takeO(o, s) = 0 or 1, but this as-
sumption could be removed with no consequences.

We prefer not using short-term memory when making a decision.
Thus, the optimisation algorithm has to find apolicy mapping ob-
servations to probabilitydistributionsover actionsπ : Ω → Π(A)
so as to optimise the chosen performance measure, here the average
rewardR gained during a transition.

Policy-Search — In this work, we prefer using policy-gradient
algorithms rather than classical dynamic programming. Policies are
stochastic and depend on a vector of parameters~θ ∈ <n. The proba-
bility of choosing actiona given states is written asPr(a|o; ~θ). For
a given~θ, the probability of transitions→ s′ is therefore:

Pr(s′|s; ~θ) =
X
a∈A

Pr(a|o; ~θ)T (s, a, s′).

2 More details appear in an extended version [3].
3 As the model is not sufficiently known, we do not make the usual assump-

tion r(s, a) = Es′ [r(s, a, s′)]. The expectation depends on the (unknown)
true model.

If the resulting Markov chain is ergodic, it will evolve to a unique
stationary distribution over statesPS . The average reward per time
step is then given by:

R(~θ) =
X
s∈S

PS(s; ~θ)
X
a∈A

Pr(a|o; ~θ)
X
s′∈S

r(s, a, s′)T (s, a, s′).

We mainly use simulation-based policy-gradient algorithms as de-
scribed by Baxter et al. [5, 6]. As gradient-ascent algorithms, they
compute an estimate of the gradient of the average reward∇~θR and

follow its direction to update the vector~θ. To that end, at each step of
the simulation they update an eligibility tracee estimating the gradi-
ent of the log action probabilitylog Pr(a|o; ~θ).

Here, we mainly consider two algorithms:

• GPOMDP, which estimates the gradient using:

∇Rt+1 = ∇Rt +
1

t + 1
[rtet+1 −∇Rt], (1)

and has to be alternated with a gradient-following step to modify
the parameters; and

• OL-POMDP, which is continuously re-estimating an eligibility
trace while simultaneously reinforcing the parameters with:

~θt+1 = ~θt + αtrtet+1, (2)

whereαt is a learning rate.

2.2 Decision-Theoretic Planning

Our planning domains are described by: a set of state variablesV =
{v1 ∈ V1, . . . , v|V| ∈ V|V|}, and a set of tasksT = {T1, . . . , T|T |}.
The current state of the system is described by the values of the vari-
ables, by current time step and by currently active tasks.

In a given state, a taskT can be triggered (is eligible) if certain
conditions hold regarding the state variables (if some propositions are
true or some resources are sufficient). After the task’s duration, one
of several possible outcomesoutT (1), outT (2) . . . arise, depending
on a probability distributionPr(OutT). This outcome changes the
value of some state variables.

Tasks can run simultaneously and can be repeated if required, and
a reward is associated to each of a task’s outcomes.

A planning problem is specified by an initial states0, the reward
function and a set of goal states. These goal states can be specified
by conditions over state variables or with a maximal plan length (so
that a goal state is necessarily reached). The aim is then to reach a
goal state while maximising the average reward, which sets us in the
framework of Decision-Theoretic Planning. Similar problems have
been addressed with planners as Tempastic [16], a military opera-
tions’ planner [2], CPTP [13], Prottle [12], and FPG [1].

Note: for readability reasons, the above description is a simplified
version of the model used.

DTP with MDPs — A simple way of turning such a decision-
theoretic planning problem into an MDP is, as in [11], to define:

• States as instants when some tasks end, resulting in a new situation
where a decision can be made. A state is then again defined by:
current state variables and currently running tasks.

• Actions as the decision of triggering a subset of the eligible tasks.
Triggering no task is valid as it amounts to waiting for the next
decision point.

• Transition probabilities depend on each task’s probability distri-
bution over its possible outcomes.

• Rewards depend on rewards/costs associated with transitions and
goal states.

Figure 1 shows a running system represented as a planning prob-
lem and as an equivalent MDP wheres1 corresponds to the state at
time t, actiona2 triggers tasksT2 andT3 and leads tos5 when out-
comesoutT1(2) andoutT3(1) occur att + 18.

t−24 t t+18

PSfrag replacements

T1

T2

T3

T4

T5

outT1
(2)

outT3
(1)

(...)

PSfrag replacements

s1

s2 s3 s4 s5

a1 a2

P = .8
P ≤ .2

Figure 1. A running planning problem and a simple MDP

2.3 Robustness

Because they are often obtained using expert knowledge or statistics,
tasks’ models are prone to uncertainty. This section explains how we
model uncertainty and how it is taken into account in this planning
problem.

Modeling Uncertainty — Our model of uncertainty uses only
knowledge of whether a model is possible or not, without consid-
ering how probable a model is. For our initial planning problem, we
choose to model uncertain probability distributions using interval-
based uncertain probabilities:

Pr(outT (k)) ∈ [Prmin(outT (k)), P rmax(outT (k))]

knowing that they must sum to one:
P

k Pr(outT (k)) = 1. This
choice is originally motivated by the simplicity of this representation,
and the fact that expert knowledge or statistics easily lead to such
intervals. For a given state-action pair, the upper and lower bounds on
the probability of each outcome give constraints on possible models.

Fig. 2 illustrates these constraints for one task with three possible
outcomes. On this figure, the triangle is a probability simplex repre-
senting all possible probability distributions with three different out-
comes (Pr(outi) = 1 at theouti vertex). The horizontal trapezium
gives the interval constraint forout1. Possible models are defined by
the intersection of the three interval constraints.

An interesting characteristic of the resulting set of possible distri-
butions is its convexity (because of the conjunction of constraints),
which is helpful when searching for optimal solutions. The opponent
responsible for this task’s model has to find a worst point in this set.

Similarly, uncertain (PO)MDPs are often modelled by specifying
intervals for transition probabilities:

T (s, a, s′) ∈ [Prmin(s′|s, a), P rmax(s′|s, a)].

Note that there is no direct equivalence between uncertain MDP
and DTP models. Indeed, since a given task from the planning prob-
lem can be triggered in various situations, changing the probability

PSfrag replacements
pmin

out1

pmax

out1

out1

out2out3

Figure 2. The black triangle represents all possible probability
distributions for some task’s outcomes.

distribution over its outcomesPr(Outk) will effect several probabil-
ity distributionsT (s, a, ·). For an uncertain MDP to properly repre-
sent an uncertain DTP problem, one needs to add constraints linking
T (s, a, ·) distributions.

Problem — Finding a robust plan means finding a plan that
achieves the best possible performance whatever the true model. So,
to get a robust plan, we need to find the best plan against the worst
possible models. Denoting the set of possible models (either DTP or
MDP) asM , this requires solving:

arg max
π∈Π

min
m∈M

R(π, m). (3)

Uncertain MDPs make it possible to efficiently use dynamic pro-
gramming to solve this equation as long as the following assumption
holds:

Assumption-1: Probability distributionsT (s, a, ·) are indepen-
dent from one state-action pair to another.

Yet, we have just seen that a good translation of an uncertain plan-
ning problem as an uncertain MDP requires adding constraints which
precisely break this assumption. This hinders the interest for using
MDP models, and suggests looking for other optimisation techniques
with the specific difficulty that we are dealing with a game-theoretic
problem.

A good way to see that dynamic programming does not work is to
try it on the problem presented in Section 4.3.

Game Being Played — This game is a two-player zero-sum game,
with one player (the “planner”) looking for a policy maximising the
average reward and the second player (the “opponent”) looking for
a model minising the same average reward. The opponent has the
following constraints:

• If the outcomes of two different tasks are decided at the same time,
they should be sampled independently. So, we can factor this sin-
gle opponent in a team of opponents, one for each task.

• The probability distribution over a task’s outcomes should not de-
pend on current state. Each of these opponents should be blind (no
observation), which justifies the partial observability in our prob-
lem.

3 ALGORITHMS

As explained in Sec. 1 and 2, both the game-theoretic setting and par-
tial observability suggest using policy-search algorithms rather than
dynamic programming. This is also the direction taken by FPG [1]
to design a scalable planning algorithm, but with the difference that

factorisation happens on the side of the opponent in our approach,
not on the planner side.

Here, experience is gathered by simulating the domain. To that
end, we have a generic simulation loop for use by our robust pol-
icy gradient algorithms. As shown in Alg. 1, it takes as parameters
the functions that the planner agent and its opponents should use for
learning: OL-POMDP’sreinforcement (Eq. (2)), GPOMDP’s
gradientUpdate (Eq. (1)), ornothing .

Algorithm 1 SimulationLoop(algoP lan, algoOpp)
1: s =initial state
2: while s.goal 6= truedo
3: o = getObservation(s)
4: a = plan.getAction(o)
5: s′ = findSuccessor(s, a)
6: r = getReward(s, a, s′)
7: plan.algoP lan(r)
8: for all a′ ∈ A do
9: opp(a′).algoOpp(r)

10: s← s′

The domain simulation mainly occurs in function
findSuccessor() (see Algorithm 2), based on the same
code as FPG. Given a states and actiona, it samples the next state
using the current model of the domain. To make the problem a bit
simpler, only one action can be triggered at a time (but there may
be several actions running concurrently). In this algorithm, the step
where an event’s outcome is sampled is where the corresponding
“opponent” is making a decision (and modifies its model).

Algorithm 2 findSuccessor(s:state,a:action)
1: s.addEvent(a, sample-outcome , s.time+a.duration)
2: for all f ∈ instantEffects(a) do
3: s.processEffect(f)
4: for all f ∈ delayedEffects(a) do
5: s.addEvent(f , task-effect , s.time+f .delay)
6: repeat
7: if s.time> maximum makespanthen
8: s.failure=true
9: return

10: if s.operationGoalsMet()then
11: s.goal=true
12: return
13: if ¬s.anyEligibleTasks() &s.noEvent()then
14: s.failure=true
15: return
16: event = s.nextEvent()
17: s.time =event.time
18: if type(event) = task-effect then
19: s.processEffect(event.effect)
20: else iftype(event) = sample-outcome then
21: out=sampleOutcome(event)
22: for all f ∈ instantEffects(out) do
23: s.processEffect(f)
24: for all f ∈ delayedEffects(out) do
25: s.addEvent(f , task-effect , s.time+f .delay)
26: until s.isDecisionPoint()

We now see how the simulation loop can be used by two robust
policy-gradient algorithms. The key idea is that the opponent’s un-
stability will make the planner’s policy stable.

3.1 Alternate learners

The first algorithm,Sequential Robust Policy-Gradient(seqRPG), is
a direct translation of Equation 3 into an algorithm based on policy
gradient algorithms. Its outter loop is performing a gradient ascent to
optimise the policyπ (i.e. to maximiseminm∈M R(π, m)) through
its vector of parameters~θ. At each iteration of this loop:

• line 2-3: a first inner loop finds the worst model for current policy
(that’s whereminm∈M R(π, m) is computed),

• line 4-6: a second inner loop estimates the gradient of the expected
reward with respect to~θ, and

• line 7: a single gradient-following step is accomplished to update
the policy’s parameters.

Algorithm 3 Sequential Robust Policy-Gradient

1: while ~θ not convergeddo
2: while model not convergeddo
3: SimulationLoop(nothing(), reinforcement())
4: ∇~θR = 0
5: while∇~θR not convergeddo
6: SimulationLoop(gradientUpdate(), nothing())
7: plan.followGradient()

It could be useful not to re-initialise the gradient’s estimate in early
stages of the algorithm, since it will probably evolve rather smoothly.
Yet, after some time, vector~θ will tend to oscillate around an equi-
librium, the gradient direction becoming very unstable.

An apparent drawback of this algorithm is that it relies on re-
optimising the model at each iteration, which suggests a huge in-
crease in computation time.

3.2 Simultaneous learners

The second algorithm,Simultaneous RPG(simRPG), is an attempt
to reduce time complexity. As presented in Alg. 4, it consists of all
agents simultaneously learning on-line. It mimicks Alg. 3 in that the
opponents try to always maintain the worst model for the current
policy. This is done by having the opponents learn much faster than
the planner.

Algorithm 4 Simultaneous Robust Policy-Gradient

1: while ~θpla and~θopp not convergeddo
2: SimulationLoop(reinforcement(), reinforcement())

The opponents learning faster than the planner ensures that the
planner is stabilised around an equilibrium point. As soon as the
planner moves away from such a position, the opponents quickly
adapt the model, inciting the planner to move back. With a fixed
ratio αpla(t)/αopp(t), this leads to periodic oscillations (see IGA
with two-action games in [15] or with Roshambo in [3]), even with
decreasing learning rates.

A decreasing ratioαpla(t)/αopp(t) is required to progressively
attenuate oscillations on the planner’s side. So, a necessary condi-
tion to get the plan to converge is that the planner’s learning rate
αpla should decrease faster than the opponents’ learning rateαopp:
αpla(t)/αopp(t) → 0. An important problem is to check whether
this condition is also sufficient.

A solution to have these two learning rates verifying the usual hy-
pothesis

P∞
t=0 α(t) > ∞ and

P∞
t=0 α(t)2 < ∞ is to define them

asαpla(t) = t−β andαopp(t) = t−β′
with 0 < β′ < β < 1.

4 EXPERIMENTS

These experiments, conducted on a 2.8 GHz Pentium IV, are mainly
intended to illustrate the behaviors of seqRPG and simRPG, as well
as some prototypical robust planning problems. The learner’s policy
is a linear network mapped to probabilities using a softmax, parame-
ters being its weights [1]. The opponents’ policies are look-up tables
with one parameter per probability.4 As FPG, the algorithm does not
enumerate the state-space, which leads to a low memory usage.

In seqRPG, the inner loops’ stopping criterion is a fixed deadline
of 1000 simulation loops (to learn the modelandto estimate the gra-
dient). In each experiment, measures are gathered everyT iterations
of the outer loop (of seqRPG or simRPG), and the algorithm runs for
a fixed timet (given in seconds). Finally, the learning ratesαpla and
αopp are constant. These four values are given below each plot.

4.1 Matching pennies & queueing problem

Matching pennies — We start with a first matrix game translated
into a planning problem. This is a non-symmetric version of match-
ing pennies using the following payoff matrix for one player (and the
opposite matrix for the other player):5»

−1 + 1
2

+1 − 1
2

–
,

where the planner is choosing the column. The game is chosen to
be non-symmetric in order to check that we get the non-symmetric
optimal strategy: play 2/3 head and 1/3 tail (1st and 2nd columns).

Figures 3 and 4 show the evolution of: the planner’s probability
of playing head or tail (planner1 andplanner2), the model’s
probability of playing head (opp) and the average reward (R).

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

ex
pe

ct
ed

 c
os

t /
 p

ro
ba

bi
lit

y

iterations

R
opp

planner 1
planner 2

Figure 3. A run of seqRPG on matching pennies
αpla = .1 αopp = .1 T = 10 t = 60s

Both cases show a first phase where the planner slowly moves to-
ward its equilibrium position (the strategy of the Nash equilibrium),
and a second phase where it slowly oscillates, being kept stable at this
position by the opponent’s stronger oscillation. The duration of the
first phase (about 30s for seqRPG and 5s for simRPG) illustrates the
fact that the simultaneous algorithm usually converges much faster
(confirmed in all other experiments).

4 For practical reasons (handling interval constraints easily), the opponents
use the GIGA algorithm [17] instead of OL-POMDP. GIGA is not used for
the planner because it does not allow the use of a function approximation.

5 All games considered are zero-sum games.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

ex
pe

ct
ed

 c
os

t /
 p

ro
ba

bi
lit

y

iterations

R
opp

planner 1
planner 2

Figure 4. A run of simRPG on matching pennies
αpla = .0001 αopp = .1 T = 1000 t = 20s

Note: if the opponent’s strategy were stationary, there could be two
situations:

• If this strategy is not that of the Nash equilibrium, it can be ex-
ploited and the planner would converge to a pure strategy (not the
one of the Nash equilibrium).

• Otherwise, the planner has no reason to converge to some partic-
ular strategy: all give the same average gain.

Similar results apply to the following problems.

Queueing problem — This second problem leads to a situation
rather similar to matching pennies, but shows a practical robust plan-
ning problem. It involves two queues of jobs:Q1 andQ2, each of
size 5 and initially empty. At each time step, the planner has to send
a job to one of these queues and a job is taken in one of the queues for
processing (Q1 with probabilityp), the chosen queue being eventu-
ally empty. The opponent controlsp. Nobody is aware of the queues’
contents.

The reward is+.1 for each job processed, and−1 for each job lost
due to a queue being full. A goal state is reached when a job is lost
or after 50 simulation steps, so that up to 10 jobs can be processed.

Both algorithms learn the appropriate behavior balancing the use
of both queues. But, as can be observed on the plots of Fig. 5, the
learning is noticeably slowed down (compared to matching pennies).
This is due to the much longer duration of the plan, which makes
it more difficult for both the planner and the opponent to reinforce
decisions properly.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20 25 30 35

ex
pe

ct
ed

 c
os

t /
 p

ro
ba

bi
lit

y

iterations

R
opp

planner 1
planner 2

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

ex
pe

ct
ed

 c
os

t /
 p

ro
ba

bi
lit

y

iterations

R
opp

planner 1
planner 2

Figure 5. A run of seqRPG and simRPG on the queueing problem
αpla = 1.|.0001 αopp = .1|.1 T = 10|1000 t = 600|120s

4.2 Roshambo

Here, we consider the game rock-paper-scissors with the usual payoff
matrix: 24 0 +1 −1

−1 0 +1
+1 −1 0

35 .

Fig. 6 shows the trajectory of both players’ policies with differ-
ent learning rates for the opponents. The upper left triangle is the
probability simplex for the opponent, and the lower right triangle is
a mirroring probability simplex for the planner. The faster the oppo-
nents are, the more reactive they get to the planner’s policy, which in
turn gets more stable.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ro
ck

<-
>p

ap
er

rock<->paper

opponent
planner

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ro
ck

<-
>p

ap
er

rock<->paper

opponent
planner

Figure 6. Two runs of simRPG. Onlyαopp changes.
αpla = .0001 αopp = .01|.1 T = 1000 t = 90s

4.3 Problem with 2 maxima

This last problem illustrates the fact that there may be several local
optima for the opponent, even for a given policy for the planner. As
shown through an MDP formulation on Fig. 7, the planner has in-
deed no choice of action, and the model has only one parameterp.
Assuming thata0, a1 anda2 have respective costsc0, c1 and0, the
optimal cost-to-go is (as a function ofp):

Vs0(p) =
c0

p
+

c1

(1− p)
.

To turn to optimising average reward, we give a fixed horizon (50
simulation steps), so thatR ' Vs0(p)/50. Thus, local maxima are
obtained forp = 0 or p = 1. For practical reasons, we restrictp ∈
[.1, .9].

PSfrag replacements

s0 s1 s2a0 a1 a2

p

p 1− p

1− p 1

Figure 7. Problem with 2 deterministic optima

To check the behavior of simRPG, we gathered statistics on the
number of times it converges to each side of the interval. We made
three series of 500 runs lasting 20 seconds each, each ending with
p = .1± .005 or p = .9± .005. A different cost function was used in
each series. As the results show it (Table 1), the experiments properly
reflect the theoretical probability of converging towardsp = .1.

Table 1. Percentage of runs converging top = .1
(c0 = −.1 αpla = .0001 αopp = .1 T = 1000 t = 20s)

c1 = c0 c1 = 2c0 c1 = 3c0
Theory 50.0% 41.4% 36.6%

Experience 47.2% 39.0% 36.0%

5 DISCUSSION AND CONCLUSION

Experimental results confirm that both the sequential and the simul-
taneous robust policy gradient make it possible to get the plan to con-
verge to an equilibrium. And, as expected, the sequential algorithm
is noticeably more time-consuming than the simultaneous one.

The experiments have been conducted on problems chosen to il-
lustrate typical difficulties of robust planning, requiring stochastic
policies or with several optima. The algorithm should scale well if
we adopt FPG’s factored formulation [1]: the memory usage would
scale linearly with the number of tasks. But further experiments with
large uncertain problems are required to confirm this point.

A difficulty in our generic setting is that, as in Sec. 4.3, there may
be several local optima. This is different when Assumption-1 is veri-
fied, where there is only one class of equivalent worst models against
which all robust plans perform equally well.

Assuming that we have a global optimum, it is possible to con-
verge to a worst model. by exchanging roles between the planner and
its opponents in seqRPG or simRPG. The idea is, having found a vec-
tor ~θ∗ corresponding to a robust plan, to constrain~θ to remain in a
neighbourhood of~θ∗ and stabilise the model with an unstable policy
(so that the players are changing sides in seqRPG or simRPG).

Finally, this approach does not appear to be specific to robust plan-
ning with uncertain models and could be used for adversarial plan-
ning as well. This leads to another direction to explore: the exten-
sion of this approach for general-sum games when several agents are
planning with different objectives.

Conclusion — Recent works show that model uncertainty is a
major issue in decision-theoretic planning, yet most approaches are
based on an assumption not verified in many realistic frameworks.
We have proposed two algorithms finding robust plans, while usual
policy-gradient algorithms can lead to oscillating behaviors in self-
play. We demonstrate seqRPG and simRPG on prototypical uncertain
problems in a view to provide a better understanding of these prob-
lems as well as the algorithms.

ACKNOWLEDGEMENTS

National ICT Australia is funded by the Australian Government. This
work was also supported by the Australian Defence Science and
Technology Organisation.

REFERENCES
[1] D. Aberdeen, ‘Policy-gradient methods for planning’, inAdvances in

Neural Information Processing Systems 19 (NIPS’05), (2005).
[2] D. Aberdeen, S. Thiébaux, and L. Zhang, ‘Decision-theoretic military

operations planning’, inProc. of the 14th Int. Conf. on Automated Plan-
ning and Scheduling (ICAPS’04), (2004).

[3] Anonymous, ‘Policy-Gradient for Robust Planning’, Technical report,
(2006). http://totor54.free.fr/ecai06-ext.pdf .

[4] J.A. Bagnell, A. Y. Ng, and J. Schneider, ‘Solving uncertain Markov
decision problems’, Technical Report CMU-RI-TR-01-25, Robotics In-
stitute, Carnegie Mellon U., (2001).

[5] J. Baxter and P. Bartlett, ‘Infinite-horizon policy-gradient estimation’,
Journal of Artificial Intelligence Research, 15, 319–350, (2001).

[6] J. Baxter, P. Bartlett, and Lex Weaver, ‘Experiments with infinite-
horizon, policy-gradient estimation’,Journal of Artificial Intelligence
Research, 15, 351–381, (2001).

[7] M. Bowling and M. Veloso, ‘Multiagent learning using a variable learn-
ing rate’,Artificial Intelligence, 136, 215–250, (2002).

[8] O. Buffet and D. Aberdeen, ‘Robust planning with (L)RTDP’, inProc.
of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05), (2005).

[9] A. R. Cassandra,Exact and Approximate Algorithms for Partially Ob-
servable Markov Decision Processes, Ph.D. dissertation, Brown U.,
Dept. of Computer Science, Providence, RI, 1998.

[10] Y.-H. Chang and L.P. Kaelbling, ‘Playing is believing: the role of be-
liefs in multi-agent learning’, inAdvances in Neural Information Pro-
cessing Systems 14 (NIPS’01), (2001).

[11] J. Hoffmann and B. Nebel, ‘The FF planning system: Fast plan gen-
eration through heuristic search’,Journal of Artificial Intelligence Re-
search, 14, 253–302, (2001).

[12] Iain Little, Douglas Aberdeen, and Sylvie Thiébaux, ‘Prottle: A proba-
bilistic temporal planner’, inProc. of the 20th American Nat. Conf. on
Artificial Intelligence (AAAI’05), (2005).

[13] Mausam and D.S. Weld, ‘Concurrent probabilistic temporal planning’,
in Proc. of the 15th Int. Conf. on Planning and Scheduling (ICAPS’05),
(2005).

[14] A. Nilim and L. El Ghaoui, ‘Robustness in Markov decision problems
with uncertain transition matrices’, inAdvances in Neural Information
Processing Systems 16 (NIPS’03), (2004).

[15] S. Singh, M. Kearns, and Y. Mansour, ‘Nash convergence of gradient
dynamics in general-sum games’, inProc. of the 16th Annual Conf. on
Uncertainty in Artificial Intelligence (UAI’00), pp. 541–548, (2000).

[16] H. L. S. Younes and R.G. Simmons, ‘Policy generation for continuous-
time stochastic domains with concurrency’, inProc. of the 14th Int.
Conf. on Automated Planning and Scheduling (ICAPS’04), (2004).

[17] M. Zinkevich, ‘Online convex programming and generalized infinitesi-
mal gradient ascent’, inProc. of the 20th Int. Conf. on Machine Learn-
ing (ICML’03), (2003).

