2 Delaunay triangulation: definitions, motivations, properties, classical algorithms.

2.1 Drawing
Draw the Delaunay triangulation of the attached point set.

2.1 Correction:

2.2 Nearest neighbor graphs

\(S \) a set of \(n \) points. \(q_1 \in S \). Let \(q_1 \) denote the nearest neighbor of \(q_0 \) in \(S \setminus \{q_0\} \). Let \(q_2 \) denote the second nearest neighbor of \(q_0 \) in \(S \), i.e., the nearest neighbor in \(S \setminus \{q_0, q_1\} \). Similarly \(q_i \) the \(i^{th} \) nearest neighbor.

The directed nearest neighbor graph of \(S \) is the graph whose vertices are the points in \(S \) and \(pq \) is an edge of the graph if \(q \) is the nearest neighbor of \(p \).
Fact: The degree of the nearest neighbor graph is \(\leq 6 \). (proof optional).

2.2.1 Nearest neighbor
Prove that \(q_0q_1 \) is an edge of the Delaunay triangulation of \(S \).

2.2.2 Second nearest neighbor
Prove that \(q_0q_2 \) or \(q_1q_2 \) is an edge of the Delaunay triangulation of \(S \).

2.2.3 \(k^{th} \) nearest neighbor
Prove that \(\forall k \exists i < k \) such that \(q_kq_i \) is an edge of the Delaunay triangulation of \(S \).

2.2.4 Nearest neighbor graph
Write an algorithm that takes the Delaunay triangulation of \(S \) and output the directed nearest neighbor graph of \(S \).

You can write things like:

\begin{verbatim}
for v enumerating all vertices of DT(S),
 for w enumerating the neighbor of v in DT(S),
 or output edge(v, w),
 or v.color = red to add some information in a vertex (or edge or...)
\end{verbatim}

What is the complexity of this algorithm?

2.2.5 Nearest neighbor graph
Write an algorithm that takes the Delaunay triangulation of \(S \) and output the directed second nearest neighbor graph of \(S \).

What is the complexity of this algorithm?
2.2 Correction:

2.2.1 Nearest neighbor

The disk centered at \(q_0 \) passing through \(q_1 \) contains only \(q_0 \), thus the disk of diameter \(q_0 q_1 \), which is included in the previous one is empty. By the empty circle property, \(q_0 q_1 \) is a Delaunay edge.

2.2.2 Second nearest neighbor

The disk \(D_2 \) centered at \(q_0 \) passing through \(q_2 \) contains only \(q_0 \) and \(q_1 \), thus we consider the two disks \(Z_0 \) and \(Z_1 \) passing through \(q_2 \) tangent in \(q_0 \) to \(D_2 \) and respectively passing through \(q_0 \) and \(q_1 \). We have to cases:

- \(Z_0 \subset Z_1 \subset D_2 \) and \(Z_0 \) is empty, by the empty circle property, \(q_0 q_2 \) is a Delaunay edge.
- \(Z_1 \subset Z_0 \subset D_2 \) and \(Z_1 \) is empty, by the empty circle property, \(q_1 q_2 \) is a Delaunay edge.

2.2.3 \(k^{th} \) nearest neighbor

The disk of center \(q_0 \) through \(q_k \) verifies \(D_k \cap S = \{q_0,q_1 \ldots q_{k-1}\} \). Consider the pencil of circles through \(q_k \) tangent to \(D_k \). The biggest empty circle of that pencil inside \(D_k \) pass through a point inside \(D_k \) that is some \(q_i \) with \(i < k \) and by the empty circle property, \(q_i q_k \) is a Delaunay edge.

2.2.4 Nearest neighbor graph

for \(u \) enumerating all vertices of \(DT(S) \) {
 \(d = \infty \);
 for \(w \) enumerating the neighbor of \(u \) in \(DT(S) \) {
 if \(\|uw\| < d \) then \{ \(nn = w; \ \ d = \|uw\|; \} \)
 }
 output edge\((u,nn)\),
}

The inside loop costs \(d^i(u) \), thus the total cost of the algorithm is \(\sum_{u \in S} d^i(u) < 6n \).

2.2.5 Nearest neighbor graph

for \(u \) enumerating all vertices of \(DT(S) \) {
 \(u.d = \infty \);
 for \(w \) enumerating the neighbor of \(u \) in \(DT(S) \) {
 if \(\|uw\| < d \) then \{ \(nn = w; \ \ d = \|uw\|; \} \)
 }
}
for \(u \) enumerating all vertices of \(DT(S) \) {
 \(d = \infty \);
 for \(w \) enumerating the neighbor of \(u \) in \(DT(S) \) {
 if \(\|uw\| < d \) and \(w \neq u.nn \) then \{ \(sn = w; \ \ d = \|uw\|; \} \)
 for \(w \) enumerating the neighbor of \(u.nn \) in \(DT(S) \) {
 if \(\|uw\| < d \) and \(w \neq u \) then \{ \(sn = w; \ \ d = \|uw\|; \} \)
 output edge\((u,sn)\),
 }
 }
}

The cost is

\[
\sum_{u \in S} (d^i_{DT}(u) + d^i_{DT}(u.nn)) = \sum_{u \in S} d^i_{DT}(u) + \sum_{u \in S} \sum_{v \in \{u.nn\}} d^i_{DT}(v)
= \sum_{u \in S} d^i_{DT}(u) + \sum_{v \in S} \sum_{u \text{ such that } v = u.nn} d^i_{DT}(v)
= \sum_{u \in S} d^i_{DT}(u) + \sum_{v \in S} d^i_{NN}(v) \cdot d^i_{DT}(v)
= \sum_{u \in S} d^i_{DT}(u) + \sum_{v \in S} 6d^i_{DT}(v) \leq 42n
\]