2 Exercices 7 octobre 2020

2.1 Dessiner...

2.1 Correction:

2.2 Nearest neighbor graphs

S a set of n points. $q_0 \in S$. Let q_1 denote the nearest neighbor of q_0 in $S \setminus \{q_0\}$. Let q_2 denote the second nearest neighbor of q_0 in S, i.e., the nearest neighbor in $S \setminus \{q_0, q_1\}$. Similarly q_i the i^{th} nearest neighbor.

The directed nearest neighbor graph of S is the graph whose vertices are the points in S and pq is an edge of the graph if q is the nearest neighbor of p.

Fact: The degree of the nearest neighbor graph is ≤ 6. (proof optional).

2.2.1 Nearest neighbor

Prove that q_0q_1 is an edge of the Delaunay triangulation of S.

2.2.2 Second nearest neighbor

Prove that q_0q_2 or q_1q_2 is an edge of the Delaunay triangulation of S.

2.2.3 k^{th} nearest neighbor

Prove that $\forall k \exists i < k$ such that q_kq_i is an edge of the Delaunay triangulation of S.

2.2.4 Nearest neighbor graph

Write an algorithm that takes the Delaunay triangulation of S and output the directed nearest neighbor graph of S.

You can write things like:

for v enumerating all vertices of $DT(S)$,
for w enumerating the neighbor of v in $DT(S)$,
or output edge(v, w),
or $v.color = red$ to add some information in a vertex (or edge or...)

What is the complexity of this algorithm?

2.2.5 Nearest neighbor graph

Write an algorithm that takes the Delaunay triangulation of S and output the directed second nearest neighbor graph of S.

What is the complexity of this algorithm?
2.2 Correction:

2.2.1 Nearest neighbor

The disk centered at q_0 passing through q_1 contains only q_0, thus the disk of diameter q_0q_1, which is included in the previous one is empty. By the empty circle property, q_0q_1 is a Delaunay edge.

2.2.2 Second nearest neighbor

The disk D_2 centered at q_0 passing through q_2 contains only q_0 and q_1, thus we consider the two disks Z_0 and Z_1 passing through q_2 tangent in q_2 to D_2 and respectively passing through q_0 and q_1. We have to cases:

<table>
<thead>
<tr>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_0 \subset Z_1 \subset D_2$ and Z_0 is empty, by the empty circle property, q_0q_2 is a Delaunay edge.</td>
</tr>
<tr>
<td>$Z_1 \subset Z_0 \subset D_2$ and Z_1 is empty, by the empty circle property, q_1q_2 is a Delaunay edge.</td>
</tr>
</tbody>
</table>

2.2.3 k^{th} nearest neighbor

The disk of center q_0 through q_k verifies $D_k \cap S = \{q_0, q_1 \ldots q_{k-1}\}$. Consider the pencil of circles through q_k tangent to D_k The biggest empty circle of that pencil inside D_k pass through a point inside D_k that is some q_i with $i < k$ and by the empty circle property, q_iq_k is a Delaunay edge.

2.2.4 Nearest neighbor graph

for u enumerating all vertices of $DT(S)$

\[
\begin{align*}
& d = \infty; \\
& \text{for } w \text{ enumerating the neighbor of } u \text{ in } DT(S) \{ \\
& \quad \text{if } \|uw\| < d \text{ then } \{nn = w; \ d = \|uw\|; \} \\
& \} \\
& \text{output edge}(u, nn),
\end{align*}
\]

The inside loop costs $d^i(u)$, thus the total cost of the algorithm is $\sum_{u \in S} d^i(u) < 6n$.

2.2.5 Nearest neighbor graph

for u enumerating all vertices of $DT(S)$

\[
\begin{align*}
& d = \infty; \\
& \text{for } w \text{ enumerating the neighbor of } u \text{ in } DT(S) \{ \\
& \quad \text{if } \|uw\| < d \text{ then } \{nn = w; \ d = \|uw\|; \} \\
& \} \\
& \text{for } w \text{ enumerating the neighbor of } u, nn \text{ in } DT(S) \{ \\
& \quad \text{if } \|uw\| < d \text{ and } w \neq u \text{ then } \{sn = w; \ d = \|uw\|; \} \\
& \quad \text{output edge}(u, sn),
\end{align*}
\]

The cost is

\[
\begin{align*}
\sum_{u \in S} (d^i_{DT}(u) + d^i_{DT}(u, nn)) &= \sum_{u \in S} d^i_{DT}(u) + \sum_{u \in S} \sum_{v \in \{u, nn\}} d^i_{DT}(v) \\
&= \sum_{u \in S} d^i_{DT}(u) + \sum_{v \in S} \sum_{u \text{ such that } v = u, nn} d^i_{DT}(v) \\
&= \sum_{u \in S} d^i_{DT}(u) + \sum_{v \in S} d^i_{NN}(v) \cdot d^i_{DT}(v) \\
&= \sum_{u \in S} d^i_{DT}(u) + \sum_{v \in S} 6d^i_{DT}(v) \leq 42n
\end{align*}
\]