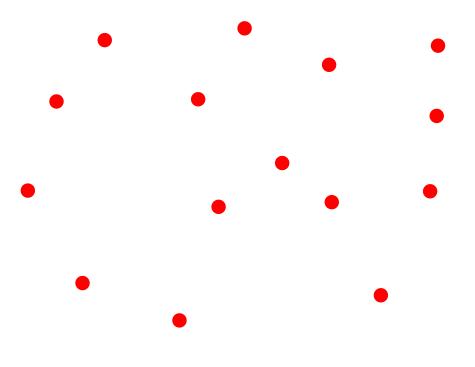
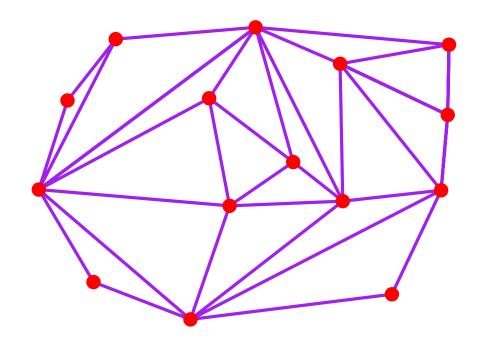
Modèles d'environnements & planification de trajectoire

Delaunay (2 séances)

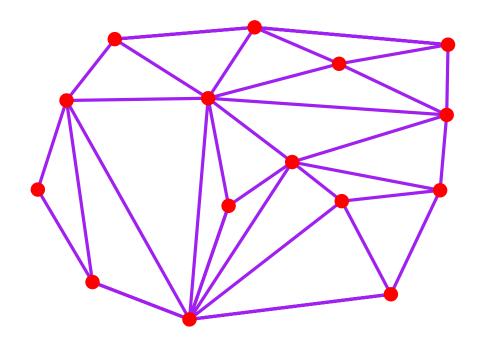
Triangulations...



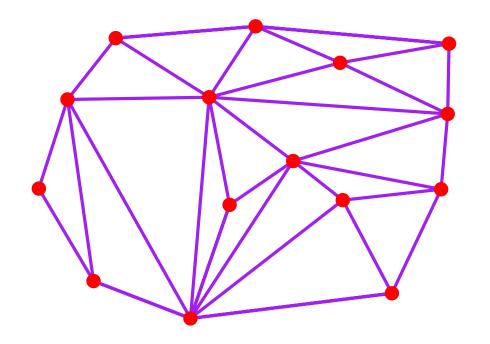
Maximal family of non-crossing segments with endpoints in the set.



Maximal family of **non-crossing** segments with endpoints in the set.

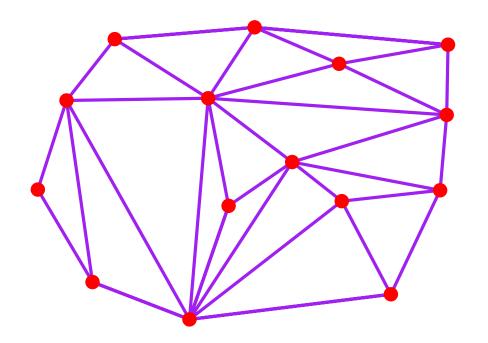


Maximal family of **non-crossing** segments with endpoints in the set.



Maximal family of **non-crossing** segments with endpoints in the set.

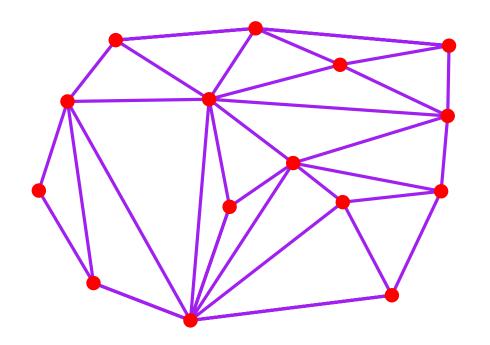
= covering of the convex hull
by (non-flat) triangles
with disjoint interiors.



Maximal family of **non-crossing** segments with endpoints in the set.

= covering of the convex hull by (non-flat) triangles with disjoint interiors.

A point set has many different triangulations.



Maximal family of **non-crossing** segments with endpoints in the set.

= covering of the convex hull by (non-flat) triangles with disjoint interiors.

A point set has many different triangulations.

They share some properties (e.g. size)...



Maximal family of **non-crossing** segments with endpoints in the set.

= covering of the convex hull by (non-flat) triangles with disjoint interiors.

A point set has many different triangulations.

They share some properties (e.g. size)...

... but some triangulations are better than others.

$$n - e + f = 2$$

$$n - e + f = 2$$

Vertices

$$n - e + f = 2$$

Vertices Edges

$$n - e + f = 2$$

n - e + f = 2 Vertices Edges Faces

$$n - e + f = 2$$

Vertices Edges Faces

Triangulations are planar (family of non-crossing segments)

$$n - e + f = 2$$

Vertices Edges Faces

$$n - e + f = 2$$

Vertices Edges Faces

$$n - e + (t+1) = 2$$

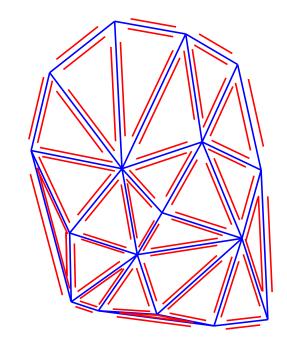
$$t = \#$$
 triangles

$$n - e + f = 2$$

Vertices Edges Faces

$$n - e + (t+1) = 2$$

$$t=\#$$
 triangles



$$n - e + f = 2$$

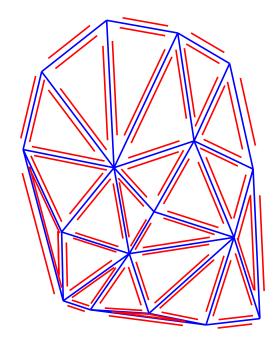
Vertices Edges Faces

$$n-e+(t+1)=2$$

$$k+3t=2e$$

$$t=\# \ {
m triangles}$$

$$k=\# \ {
m vertices} \ {
m on} \ {
m the} \ {
m convex} \ {
m hull}$$



$$n - e + f = 2$$

Vertices Edges Faces

$$n-e+(t+1)=2$$

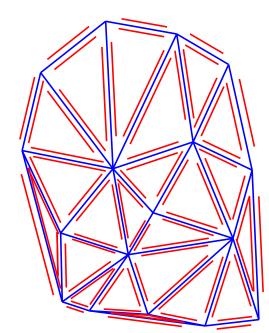
$$k+3t=2e$$

$$t=\# \ {
m triangles}$$

$$k=\# \ {
m vertices} \ {
m on} \ {
m the}$$

$$t = 2n - k - 2 < 2n$$

 $e = 3n - k - 3 < 3n$



$$n - e + f = 2$$

Vertic Egges Faces

$$\sum_{p \in S} d^{\circ}(p) = 2e = 6n - 2k - 6$$

$$\mathbb{E}(d^{\circ}(p)) = \frac{1}{n} \sum_{p \in S} d^{\circ}(p) < 6$$

average on the choice of point p in set of points S

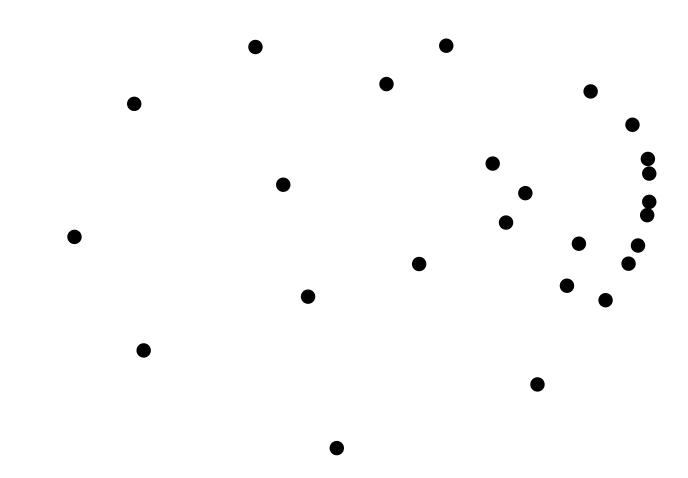
k=# vertices on the convex hull

$$t = 2n - k - 2 < 2n$$

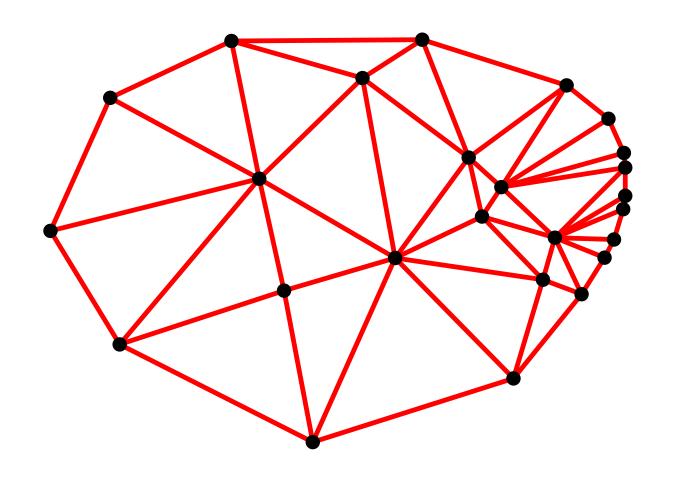
 $e = 3n - k - 3 < 3n$

Delaunay...

Delaunay Triangulation



Delaunay Triangulation



Delaunay Triangulation

- Tool: pencils of circles
- Definition: empty circle property
- Applications (practical and theoretical)
- Angle property, predicate
- AlgorithmS
- Lower bounds, 3D...

Faisceaux de cercles

Circle equation

$$x^2 + y^2 - 2ax - 2by + c = 0$$

Circle equation

$$x^2 + y^2 - 2ax - 2by + c = 0$$

Another circle equation

$$x^2 + y^2 - 2a'x - 2b'y + c' = 0$$

Circle equation

$$x^2 + y^2 - 2ax - 2by + c = 0$$

Another circle equation

$$x^2 + y^2 - 2a'x - 2b'y + c' = 0$$

Pencil of circles

$$\alpha \cdot (x^2 + y^2 - 2ax - 2by + c) + \beta \cdot (x^2 + y^2 - 2a'x - 2b'y + c') = 0$$

Circle equation

$$x^2 + y^2 - 2ax - 2by + c = 0$$

Another circle equation

$$x^2 + y^2 - 2a'x - 2b'y + c' = 0$$

Pencil of circles

$$\alpha \cdot (x^2 + y^2 - 2ax - 2by + c) + \beta \cdot (x^2 + y^2 - 2a'x - 2b'y + c') = 0$$

A special "circle: the radical axis

8 - 4
$$\qquad \qquad \alpha = -\beta$$

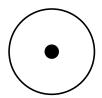
Imagine moving circles

Imagine moving circles

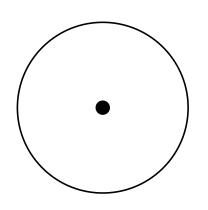
fixed center

Imagine moving circles

fixed center

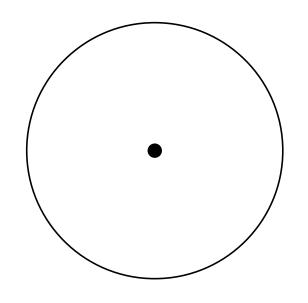


Imagine moving circles



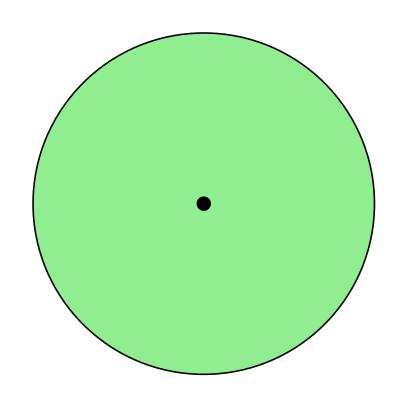
fixed center

Imagine moving circles



fixed center

Imagine moving circles



fixed center

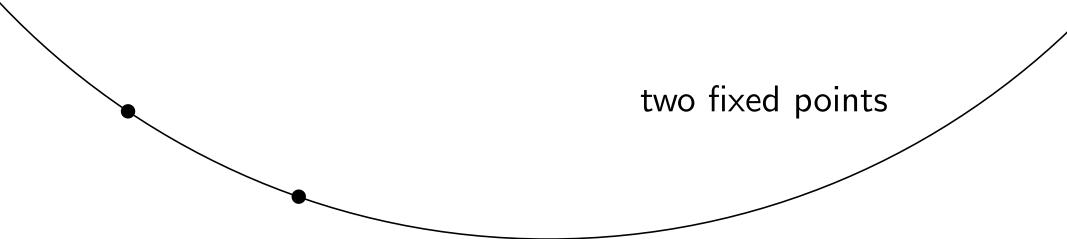
increasing radius

Cocentric pencil

Imagine moving circles

Imagine moving circles

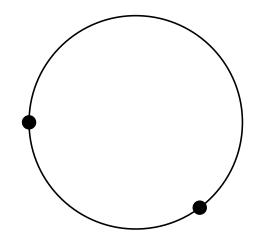
Imagine moving circles



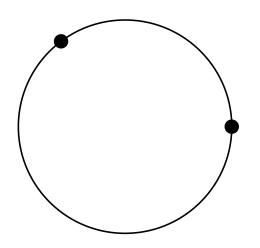
Imagine moving circles

Imagine moving circles

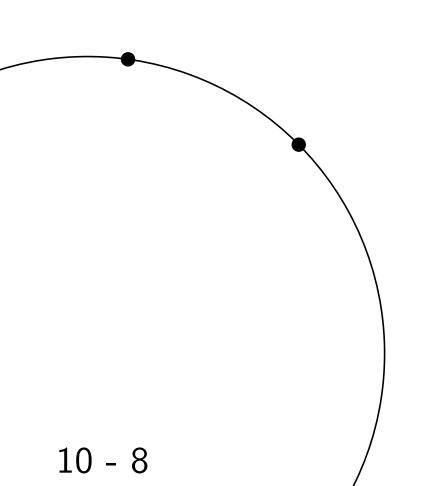
Imagine moving circles



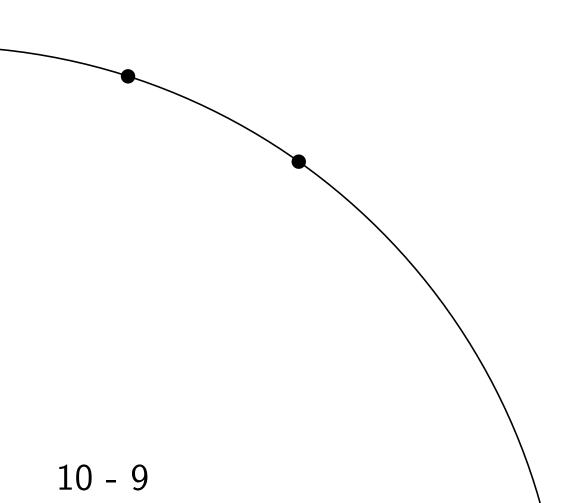
Imagine moving circles

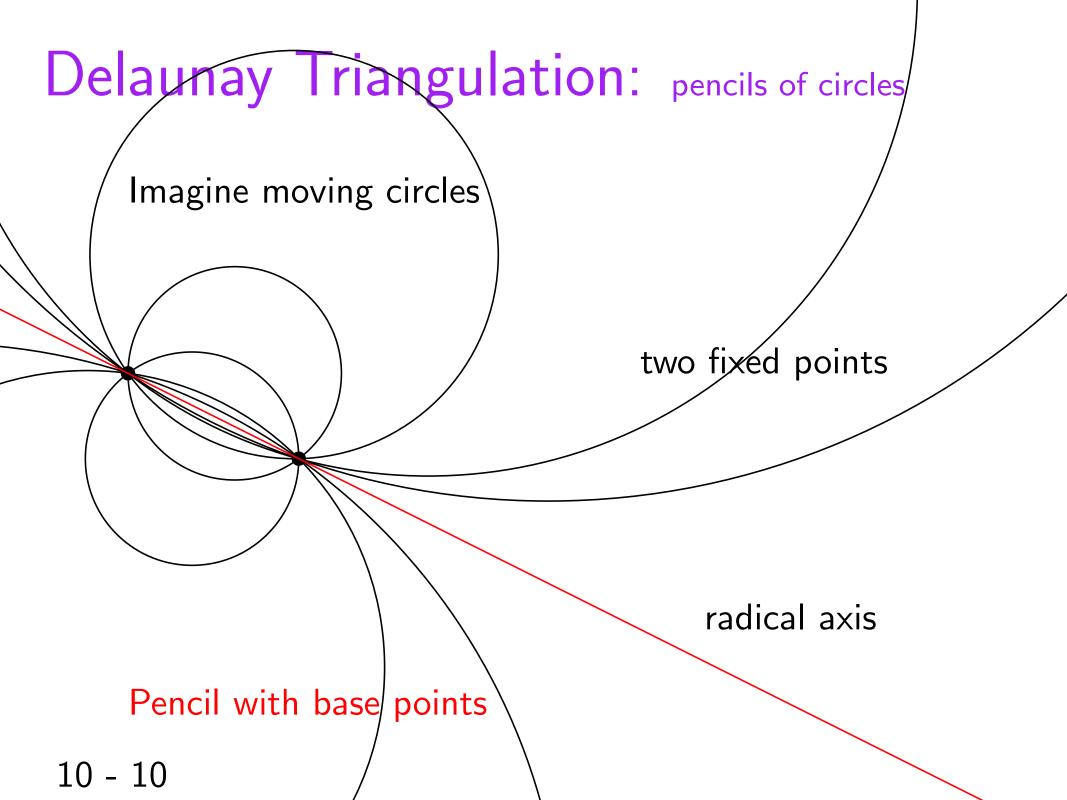


Imagine moving circles



Imagine moving circles





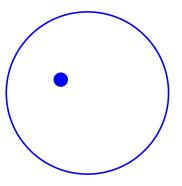
Imagine moving circles

Imagine moving circles

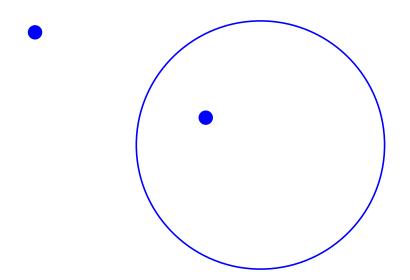
two fixed points

11 - 2

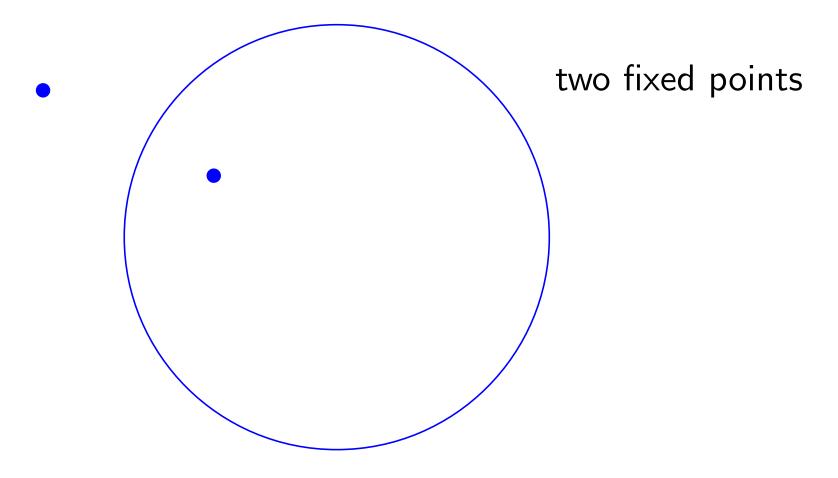
Imagine moving circles



Imagine moving circles



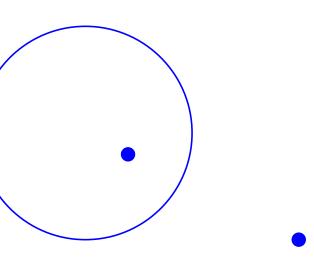
Imagine moving circles



Imagine moving circles

Imagine moving circles

Imagine moving circles



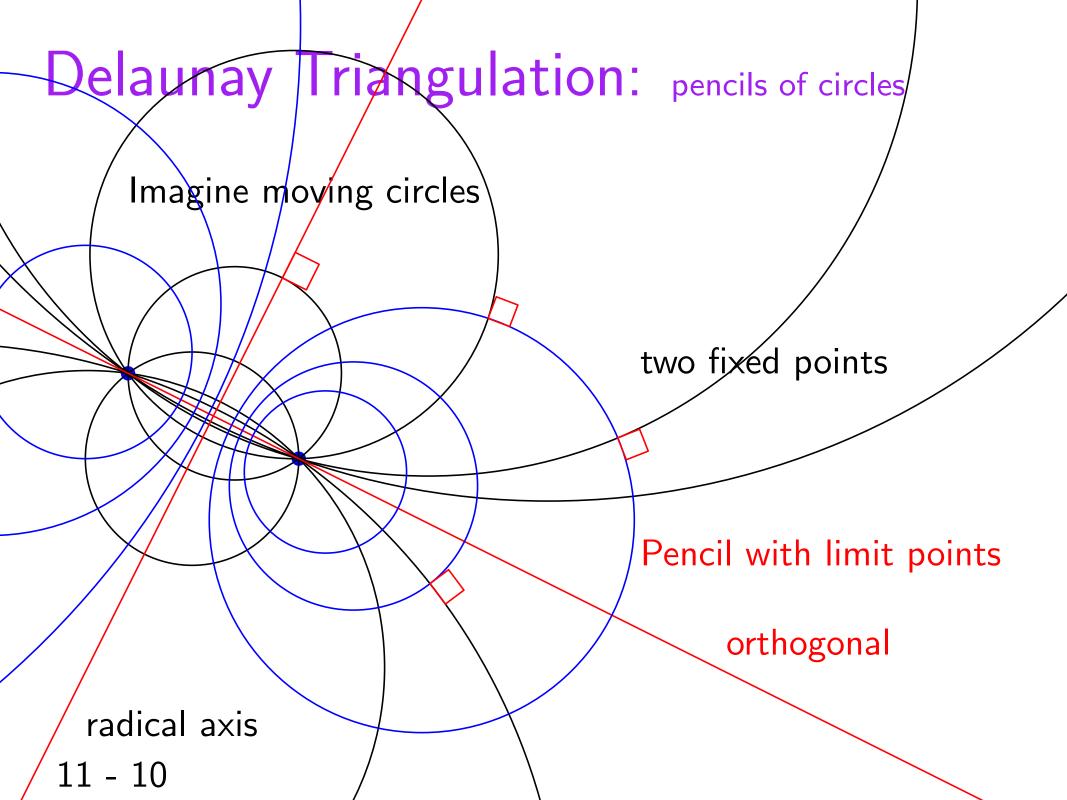
Imagine moving circles

two fixed points

Pencil with limit points

radical axis

11 - 9

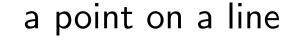


Imagine moving circles

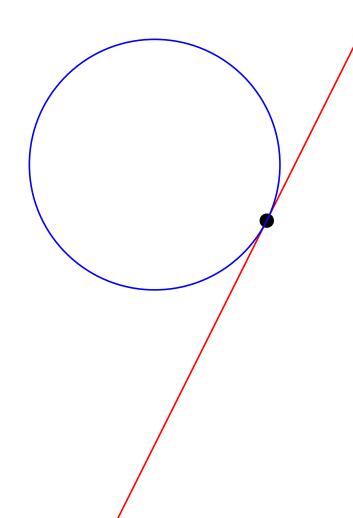
Imagine moving circles

Imagine moving circles

Imagine moving circles



Imagine moving circles



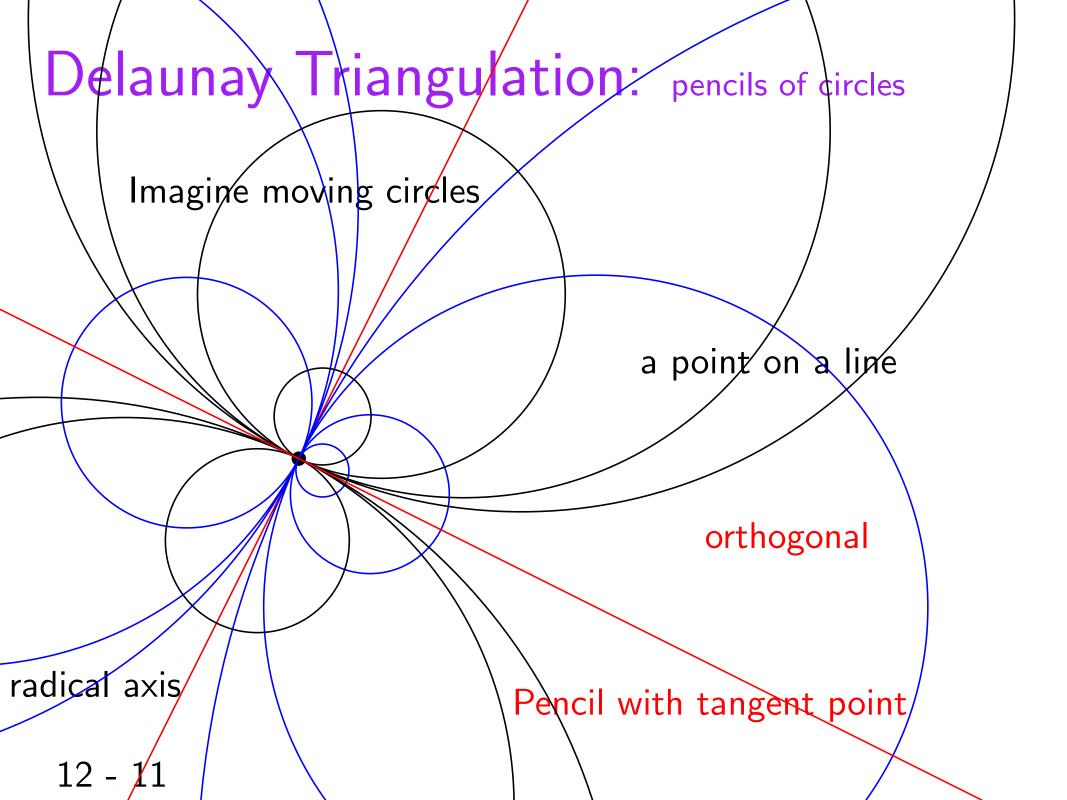
Imagine moving circles

a point on a line

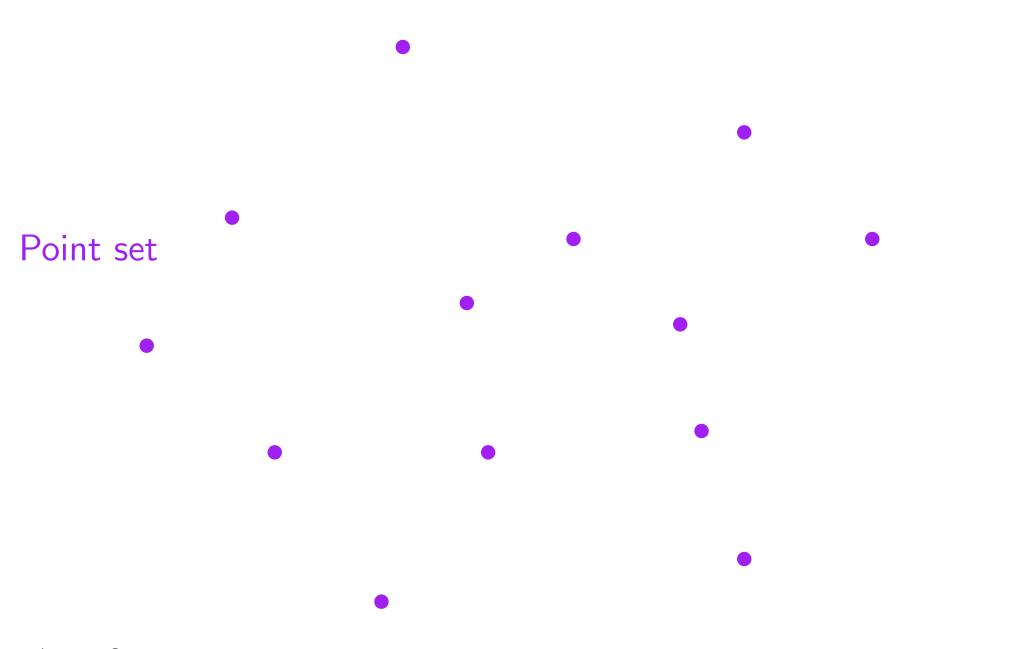
radical axis/

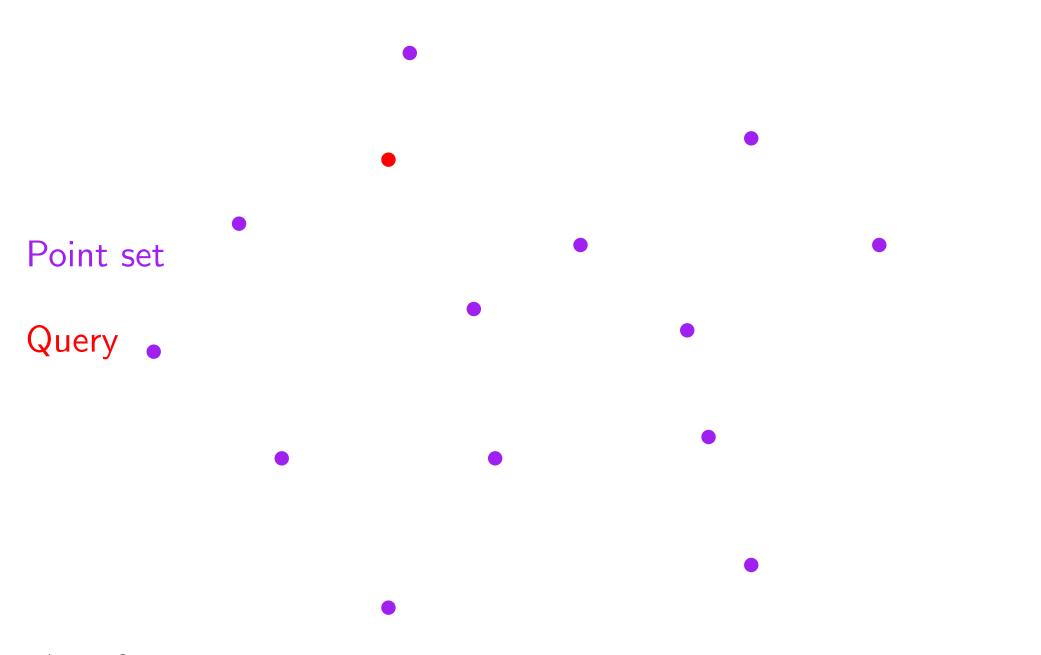
12 - 10

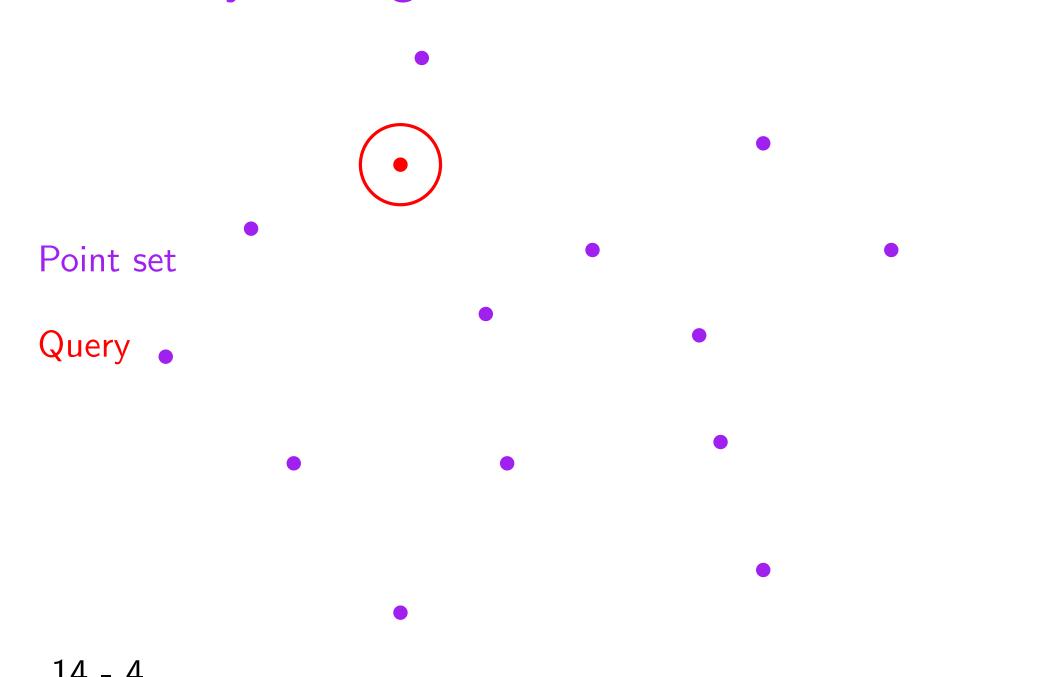
Pencil with tangent point,

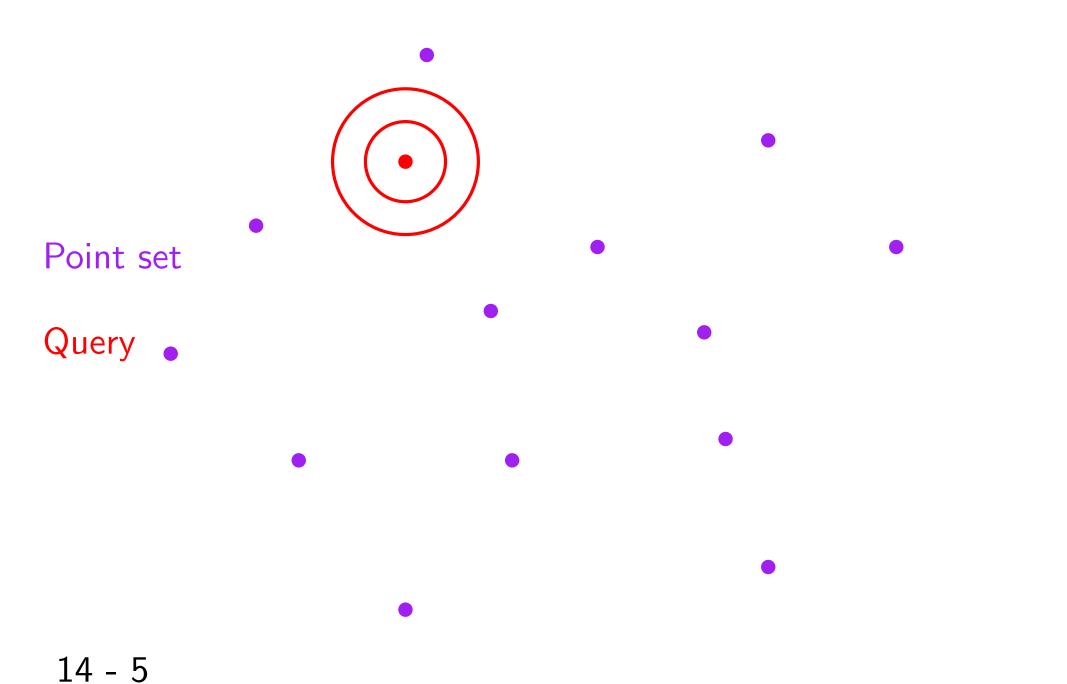


Définition de Delaunay par la propriété du cercle vide

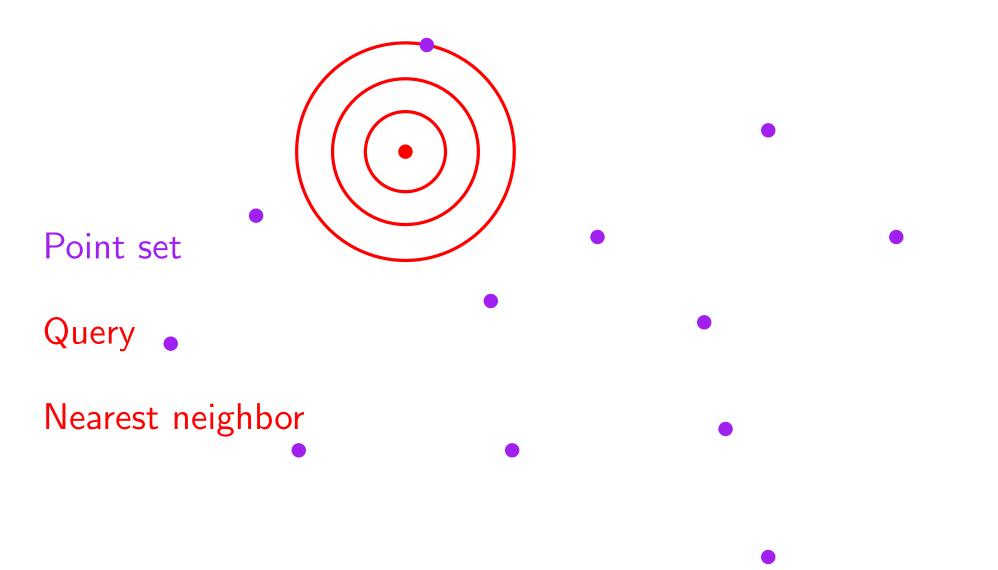


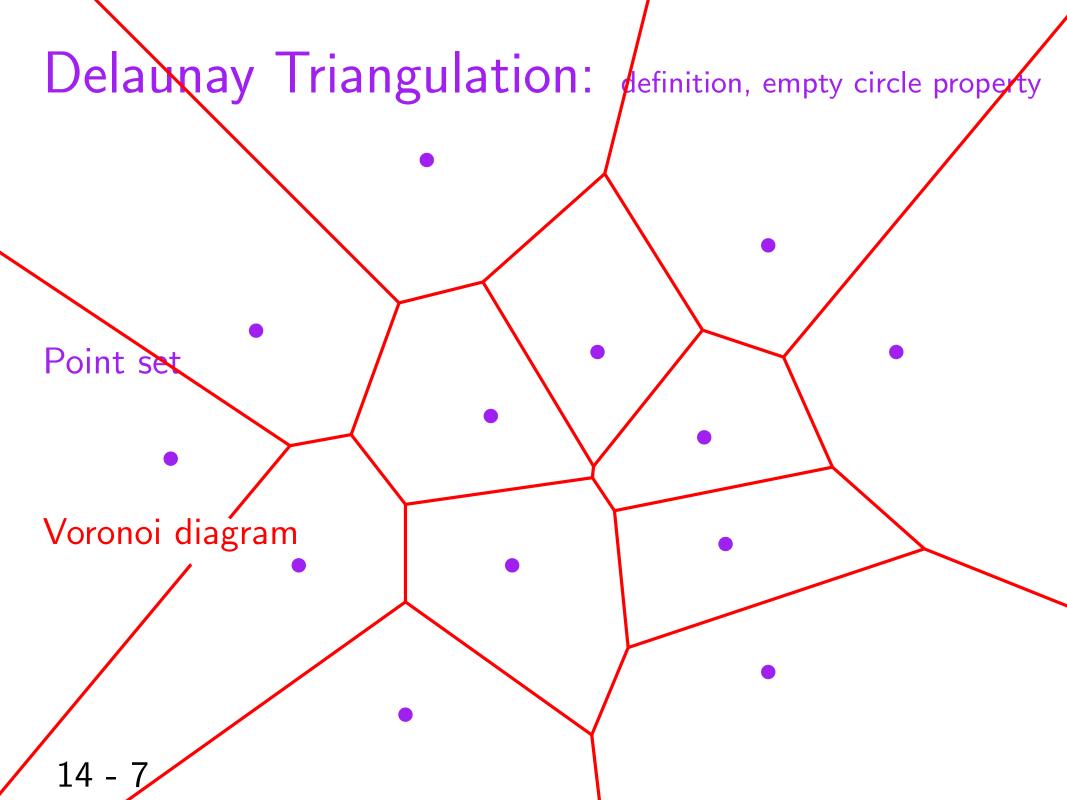


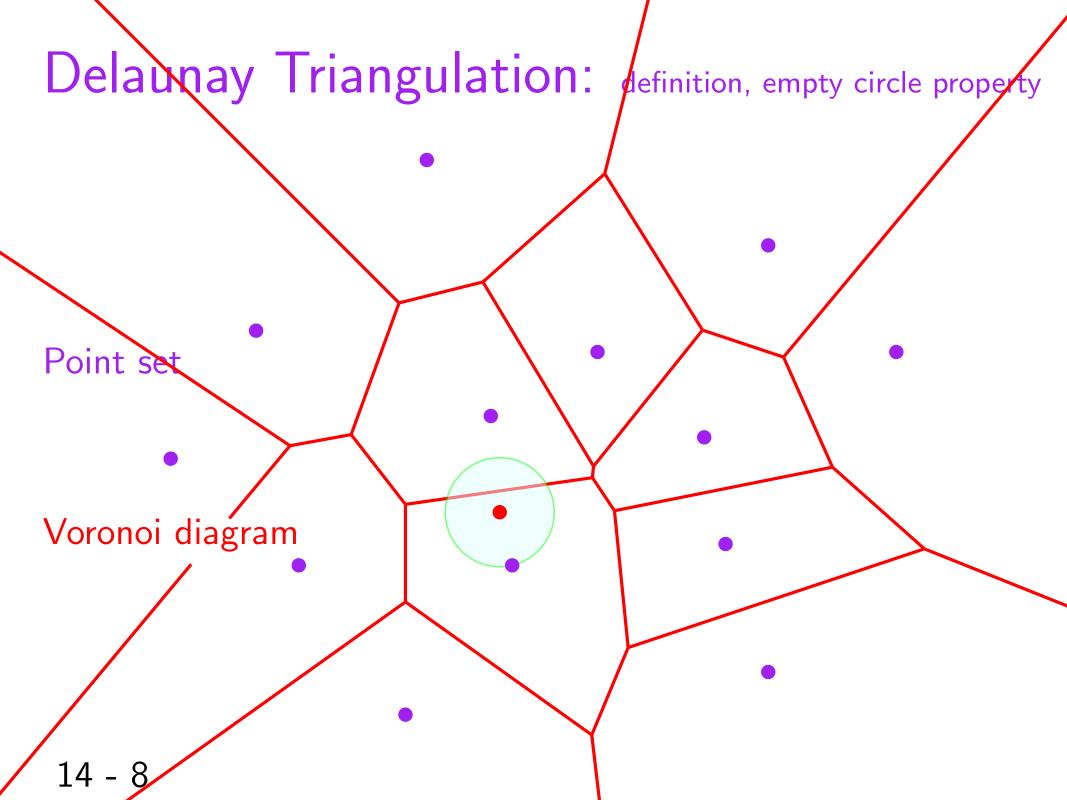


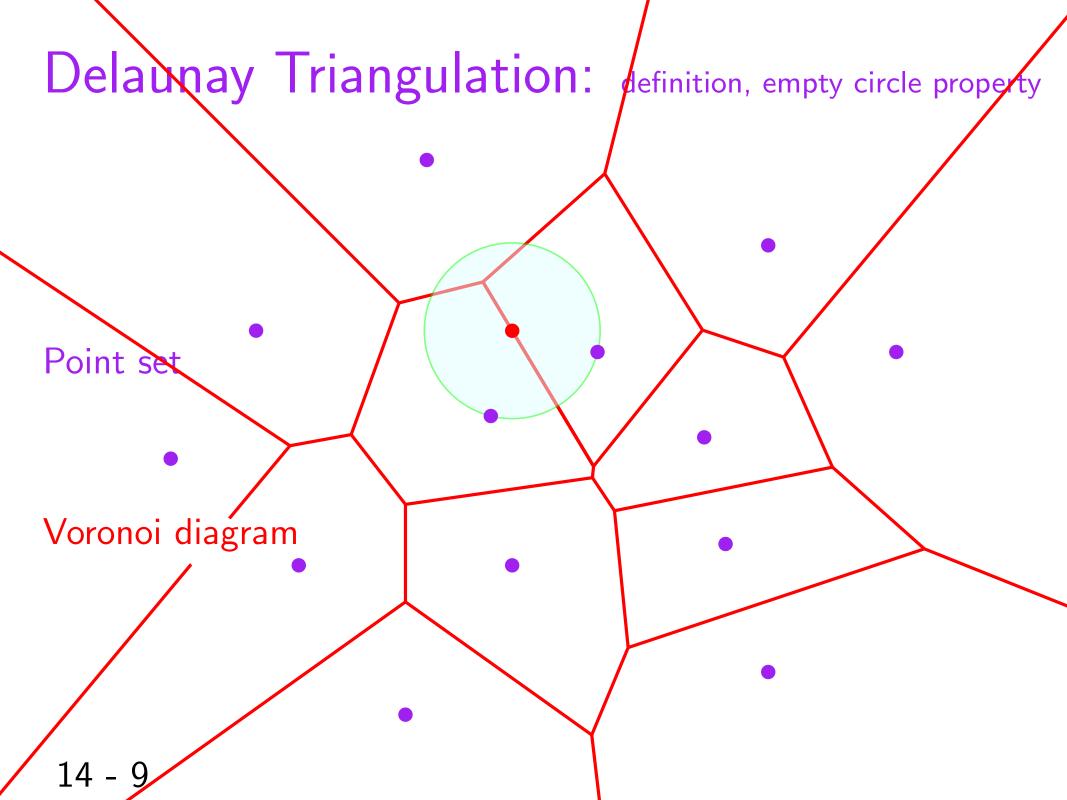


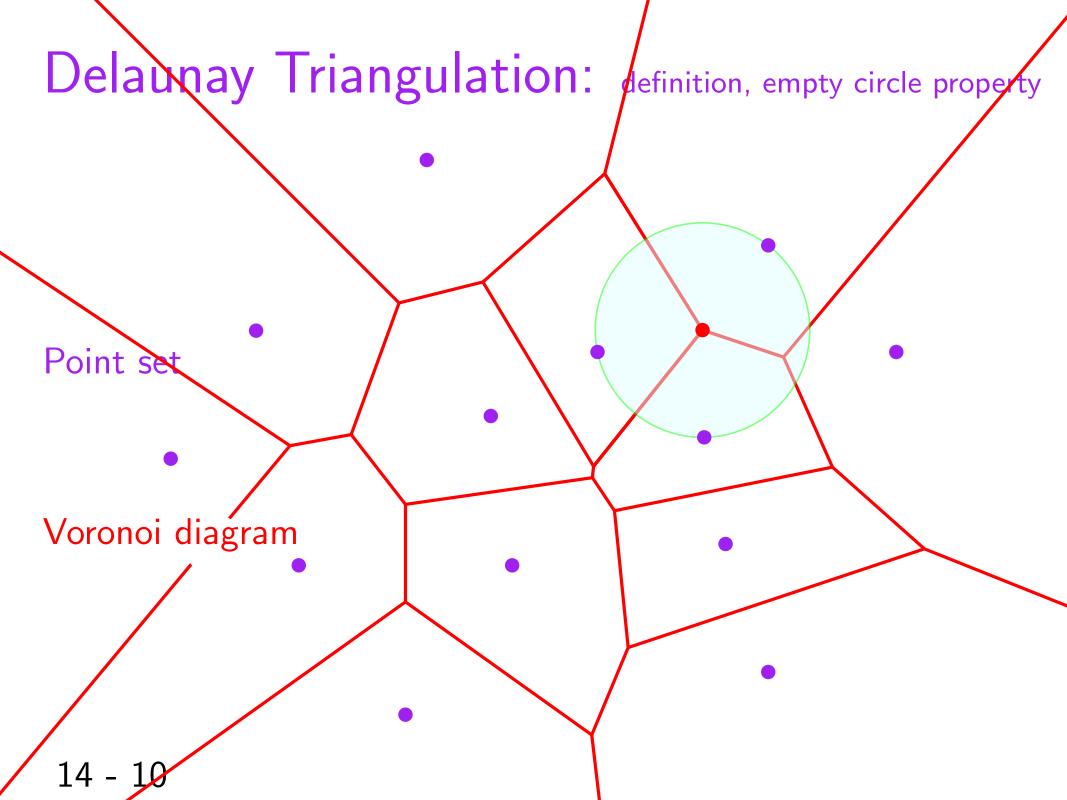
Delaunay Triangulation: definition, empty circle property

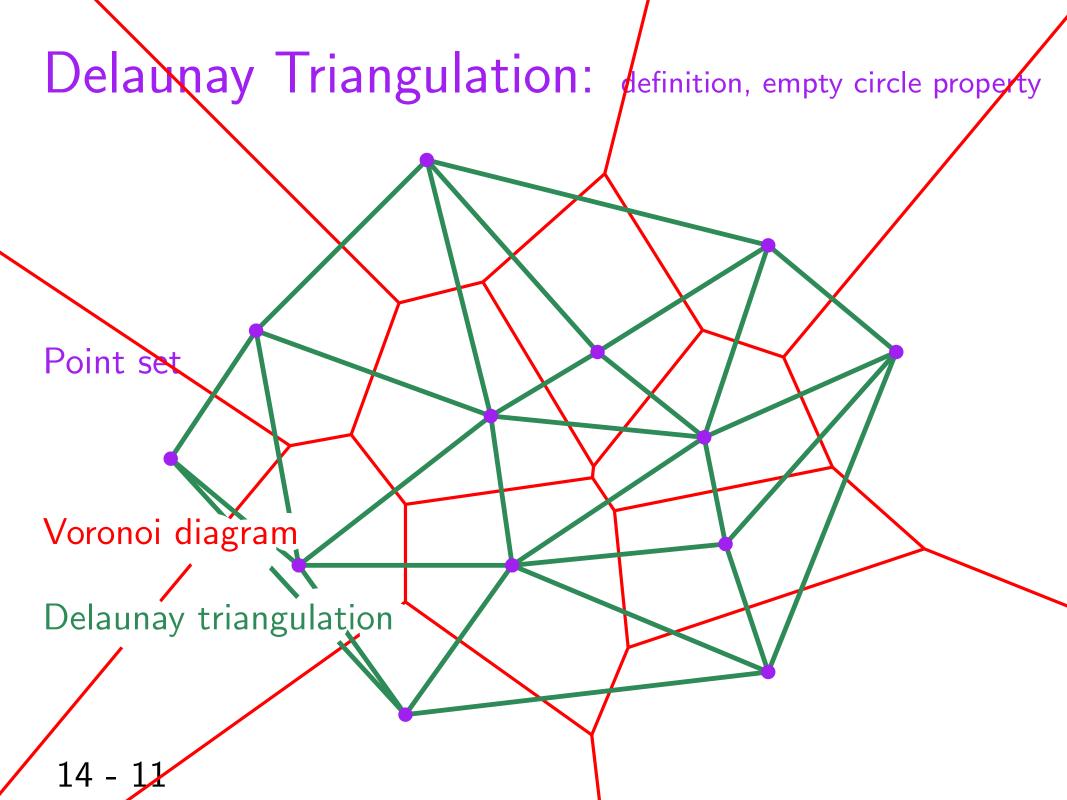




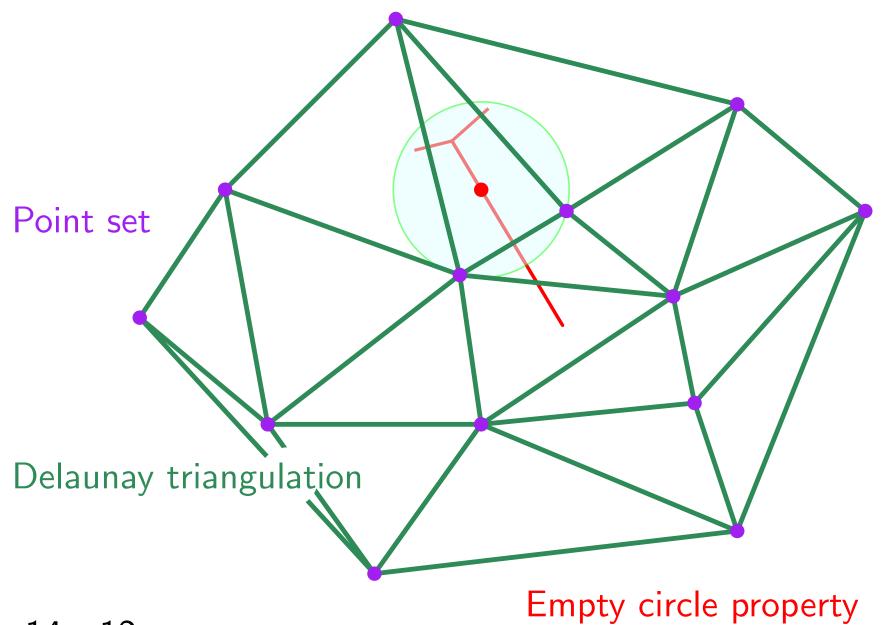




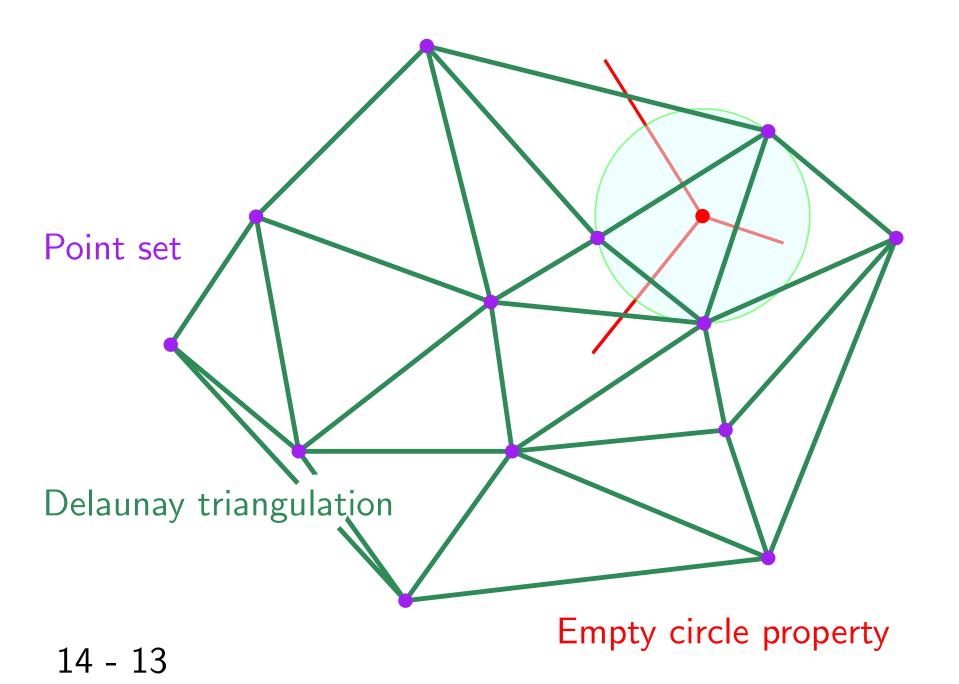




Delaunay Triangulation: definition, empty circle property

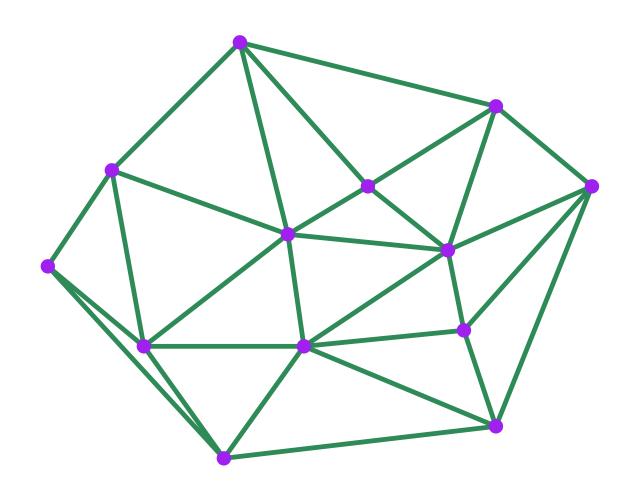


Delaunay Triangulation: definition, empty circle property



The Delaunay triangulation of a planar point set P in general position is defined by (pick your favorite):

- ▷ every pair with the empty circle property forms an edge
- ▷ every triple with the empty circle property forms a triangle



Un petit exercice...

Quelques applications (pratiques)

Teaser reconstruction lecture

Input: a set of points on an unknown curve

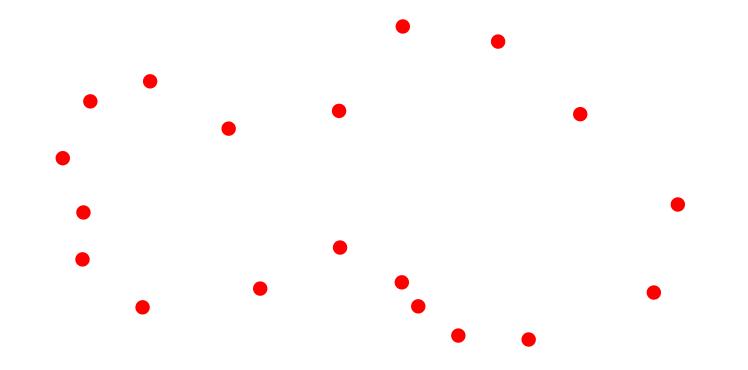
Teaser reconstruction lecture

Input: a set of points on an unknown curve

Output: the curve (the points in order along the curve)

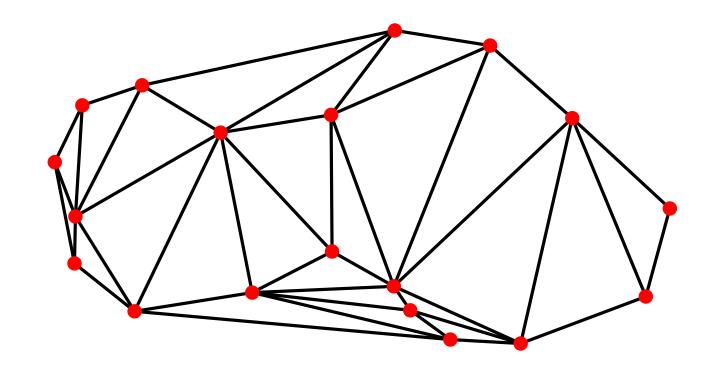
Input: a set of points on an unknown curve

Output: the curve (the points in order along the curve)



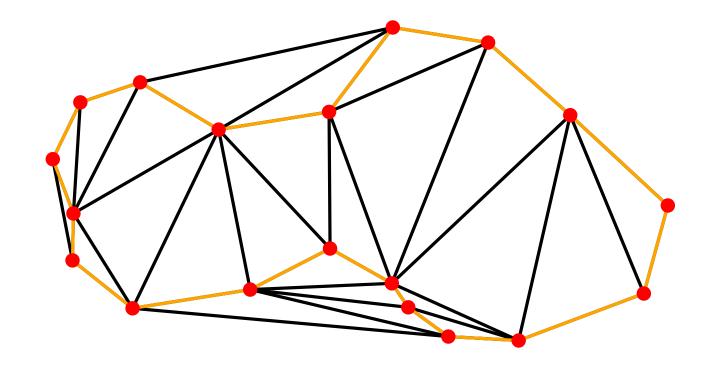
Input: a set of points on an unknown curve

Output: the curve (the points in order along the curve)



Input: a set of points on an unknown curve

Output: the curve (the points in order along the curve)



If good sampling, ouput ∈ Delaunay

Input: a set of points on an unknown surface

Output: the surface (a triangulation of the points approximating the surface)

Input: a set of points on an unknown surface

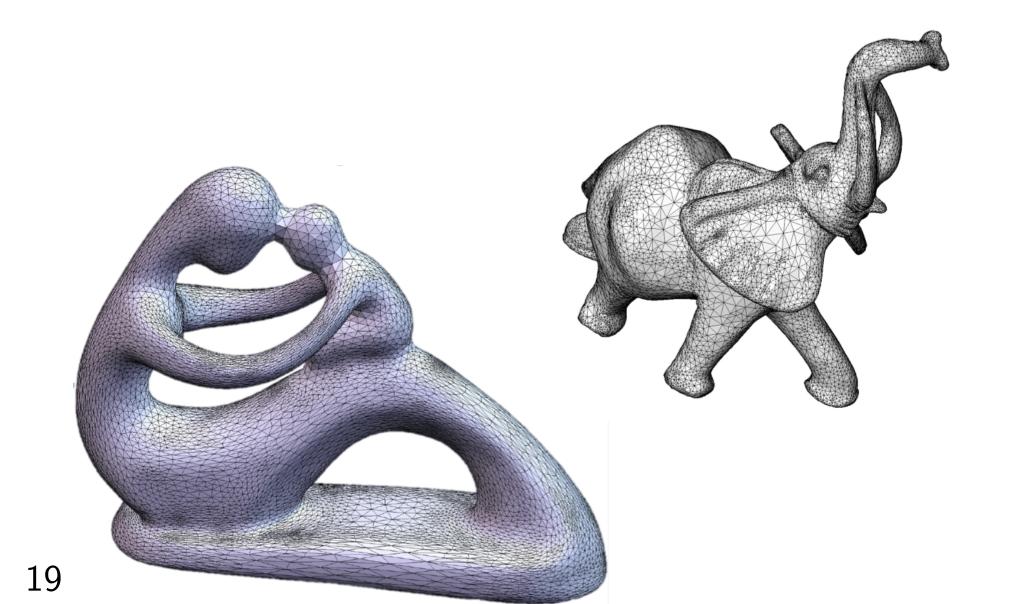
Output: the surface (a triangulation of the points approximating the surface)

Input: a set of points on an unknown surface

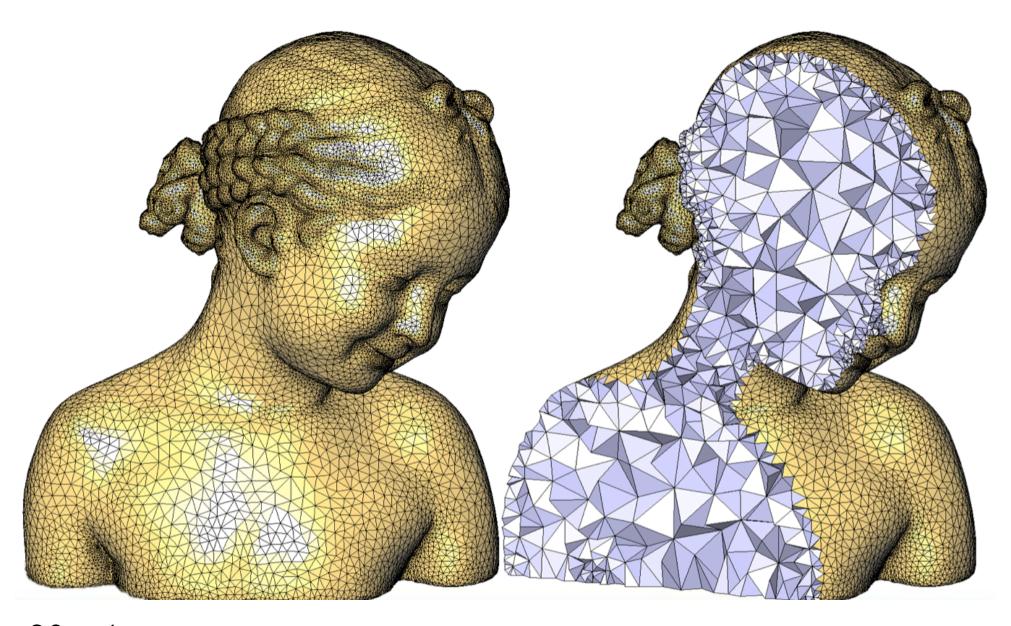
Output: the surface (a triangulation of the points approximating the surface)

If good sampling, ouput ∈ Delaunay

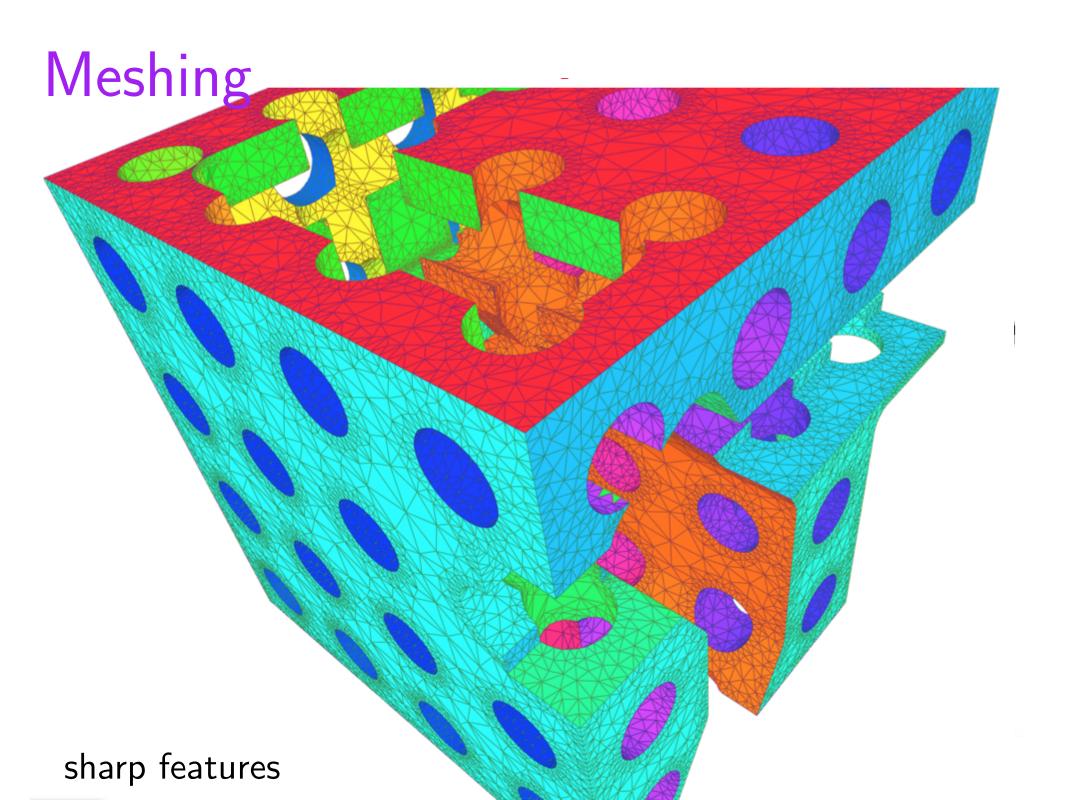
Teaser reconstruction lecture



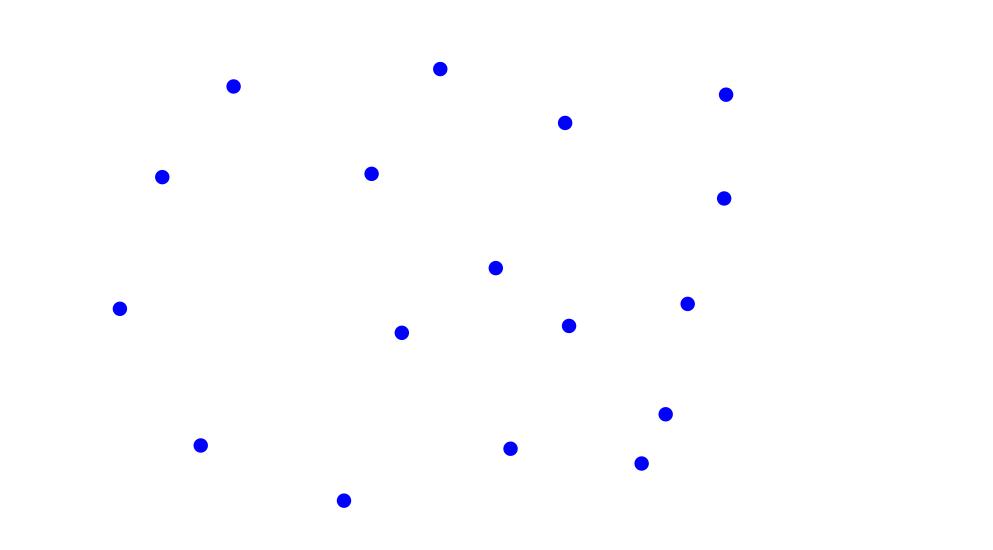
Meshing

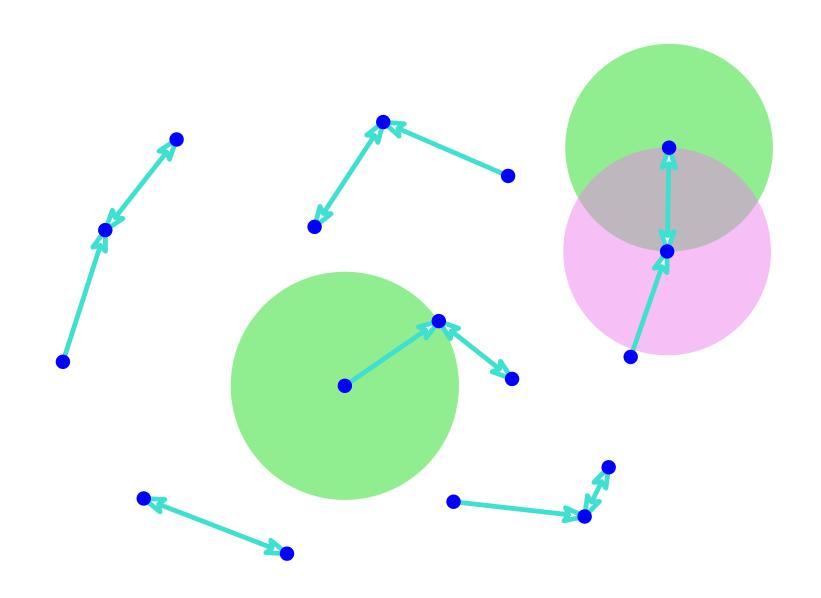


20 - 1

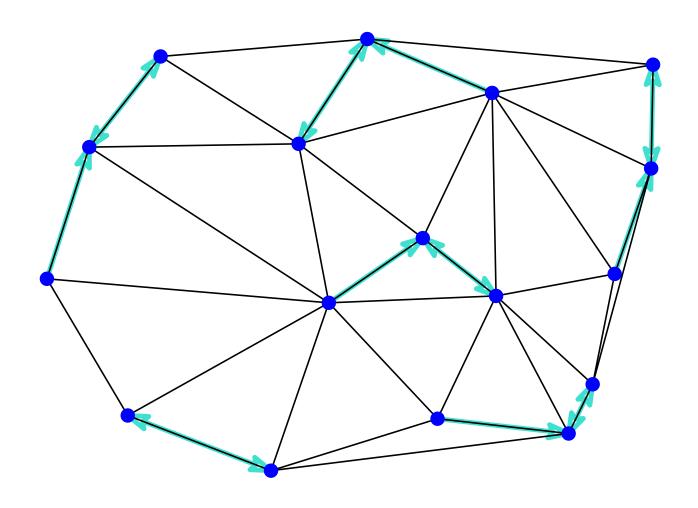


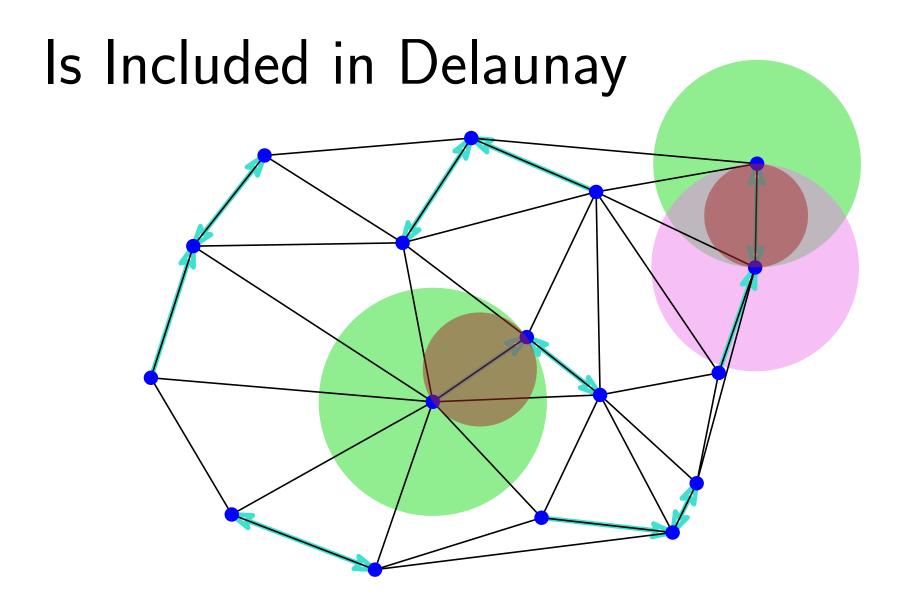
Quelques applications algorithmiques





Is Included in Delaunay





Has max degree 5

$$p = NN(q)$$

Has max degree 5

Places for q' such that NN(q') = p ?

$$p = NN(q)$$

Has max degree 5

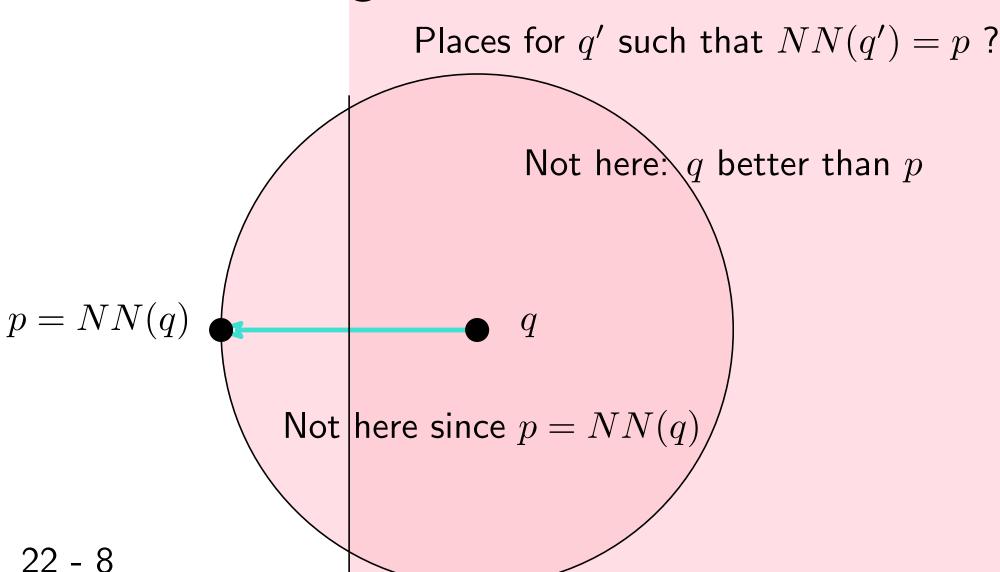
Places for q' such that NN(q') = p ?

Not here: q better than p

$$p = NN(q)$$

q

Has max degree 5

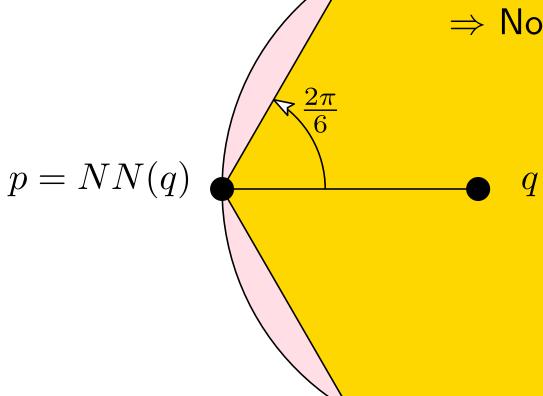


Delaunay Triangula

Has max degre/

Places for q' such that NN(q') = p?

$$\Rightarrow$$
 Not here $\Rightarrow \widehat{qpq'} > \frac{2\pi}{6}$



Delaunay Triangula

Has max degre/

 $\frac{2\pi}{6}$

Places for q' such that NN(q') = p?

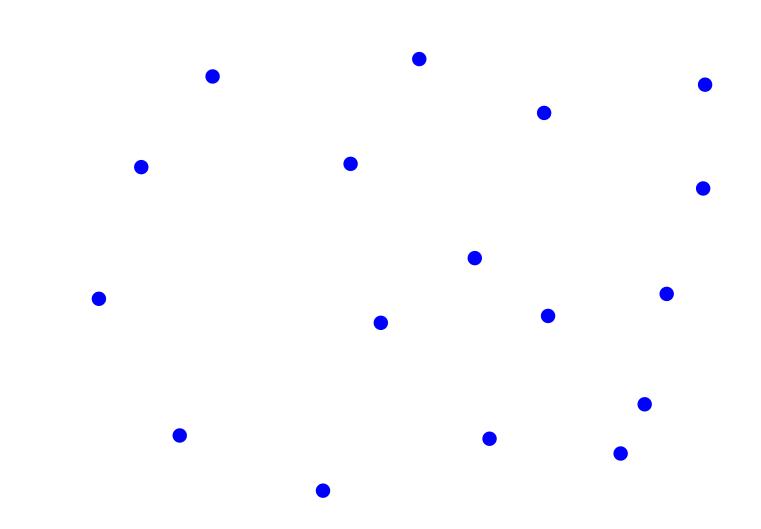
$$\Rightarrow$$
 Not here $\Rightarrow \widehat{qpq'} > \frac{2\pi}{6}$

p = NN(q)

q

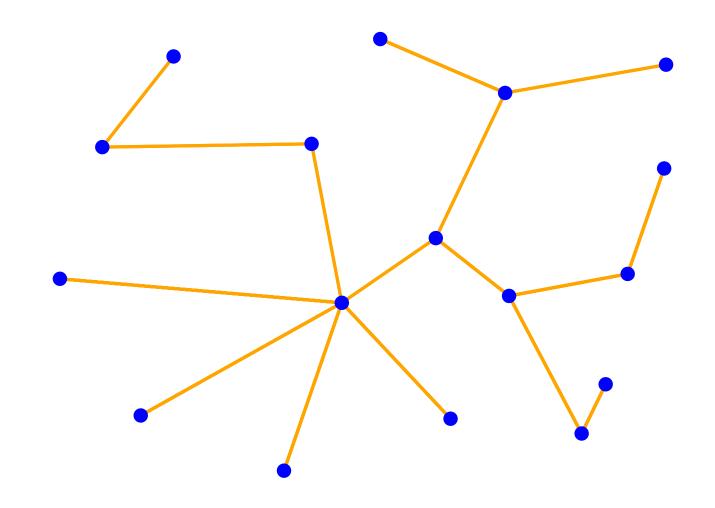
 \Rightarrow degree is smaller than 6

Delaunay Triangulation: EMST



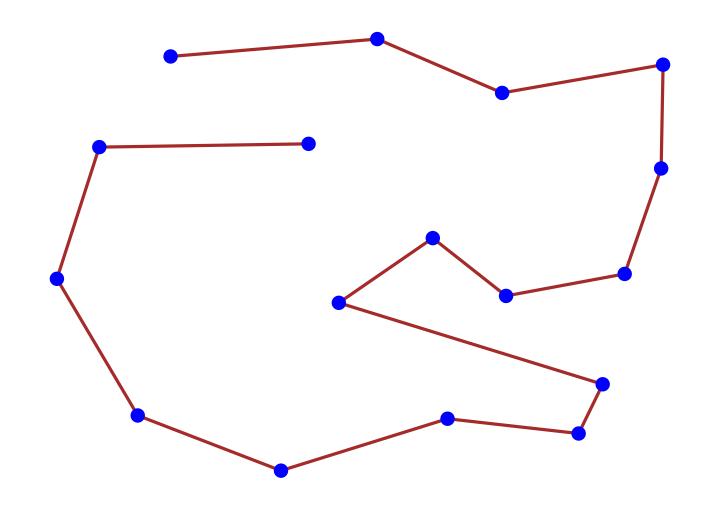
Delaunay Triangulation: EMST

A spanning tree



Delaunay Triangulation: EMST

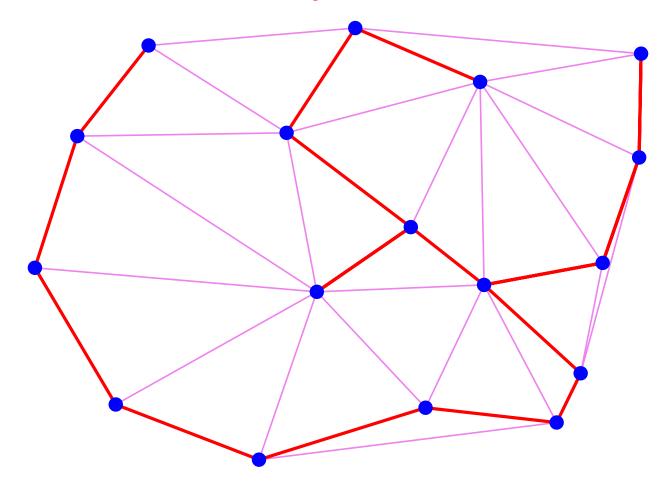
Another spanning tree



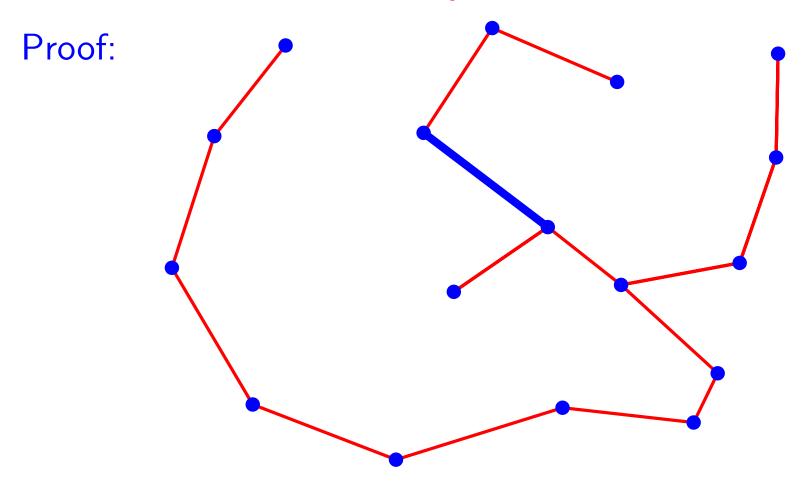
The Euclidean Minimum-length Spanning Tree



The Euclidean Minimum-length Spanning Tree is included in Delaunay

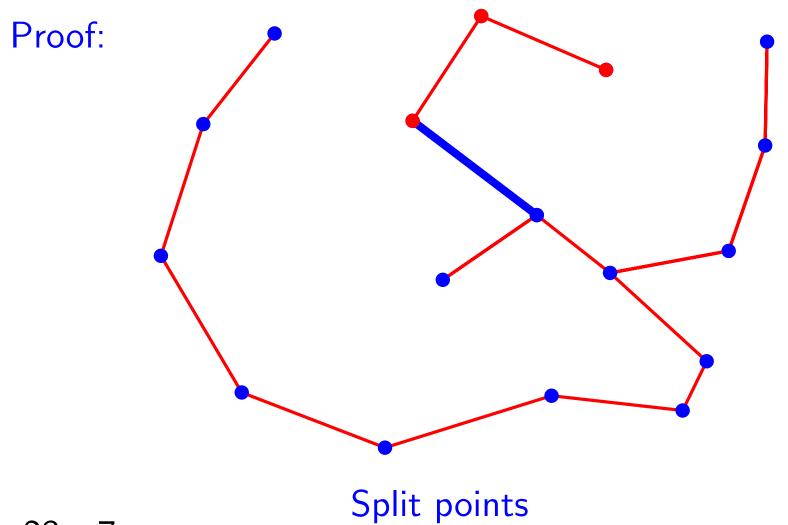


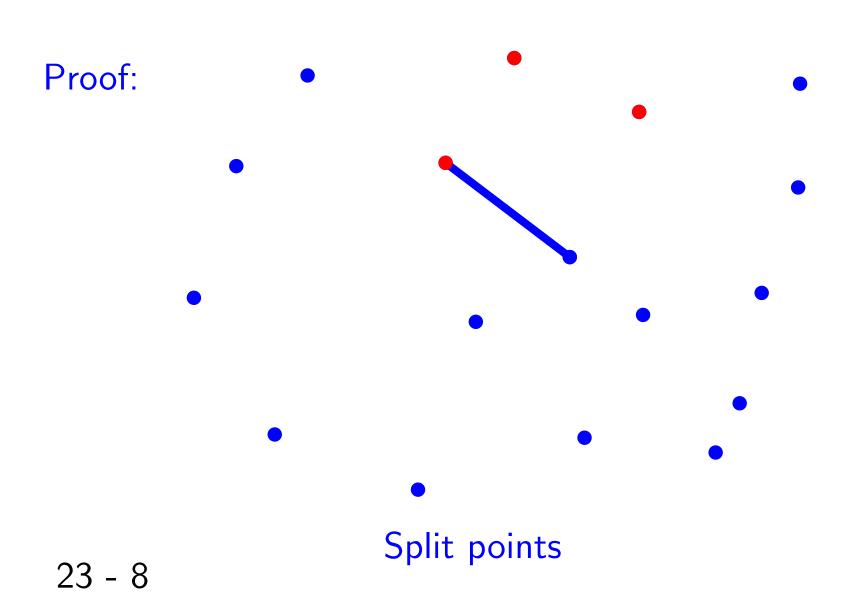
The Euclidean Minimum-length Spanning Tree is included in Delaunay



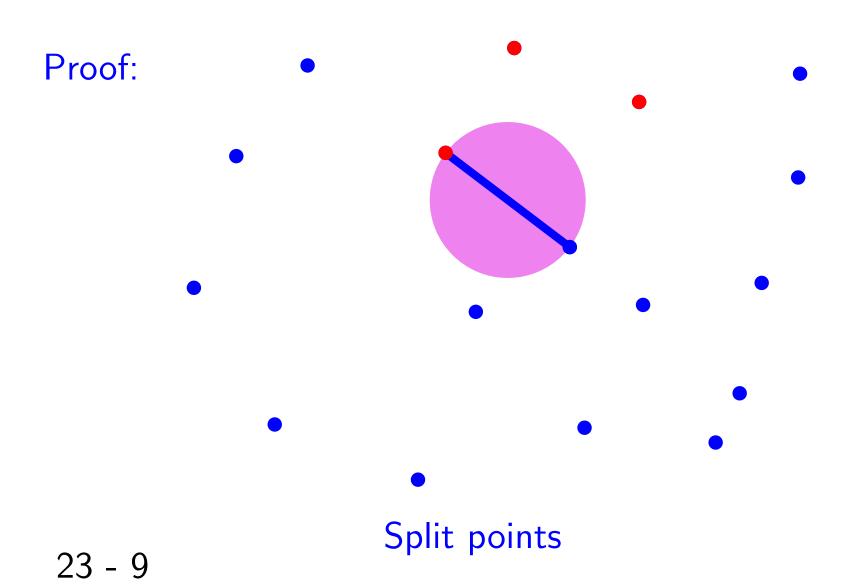
Choose an edge of EMST

The Euclidean Minimum-length Spanning Tree

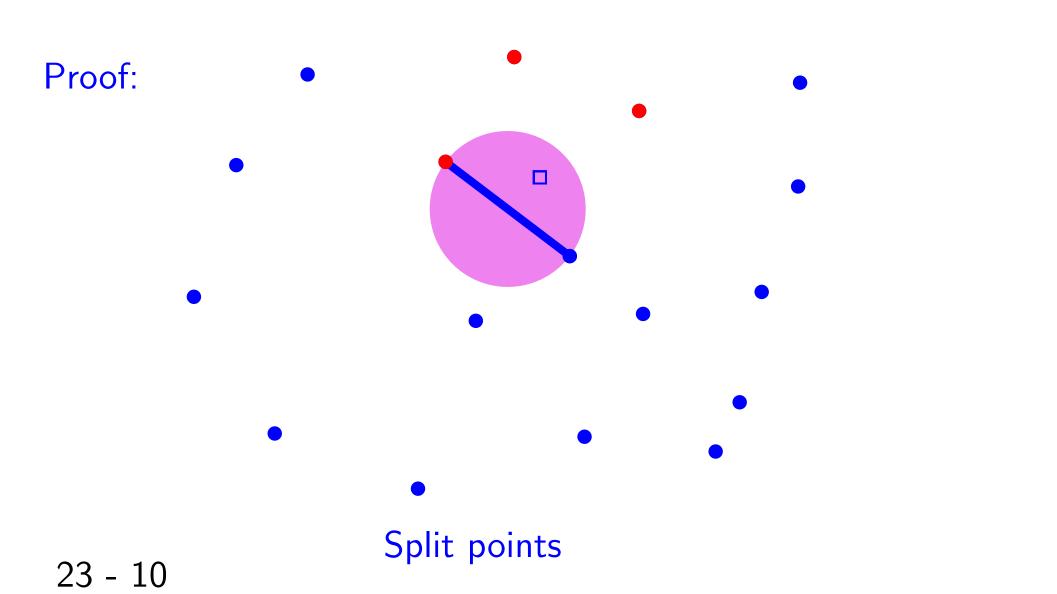




Is diametral circle empty?



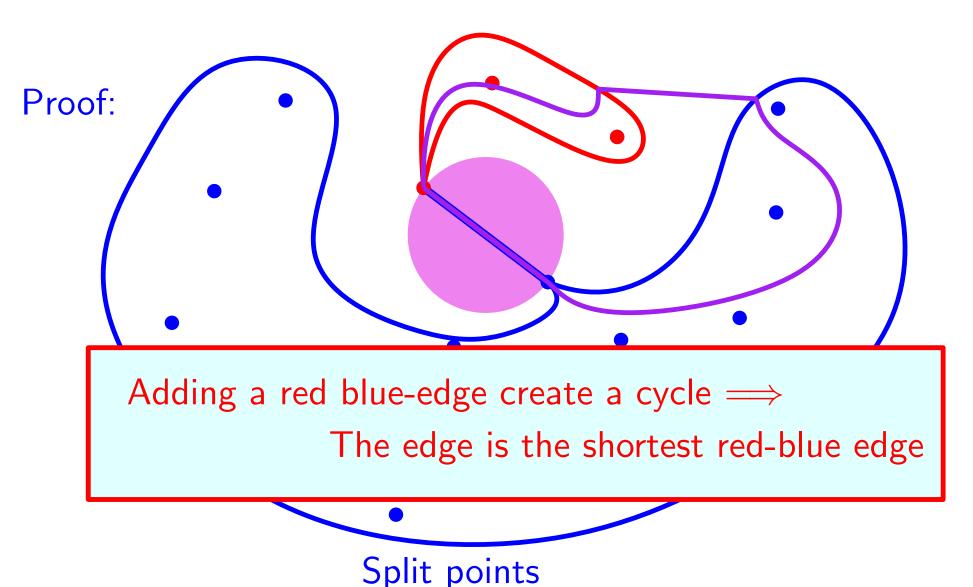
Is diametral circle empty? assume ∃ blue point inside



Is diametral circle empty? assume ∃ blue point inside better spanning tree **Proof:** Split points

Is diametral circle empty? assume ∃ blue point inside better spanning tree Proof: Empty circle ⇒ The edge is in Delaunay triangulation Split points

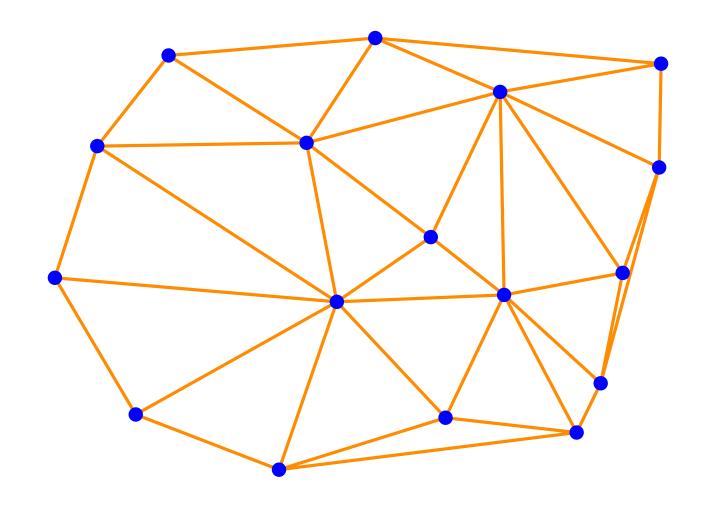
Is diametral circle empty?



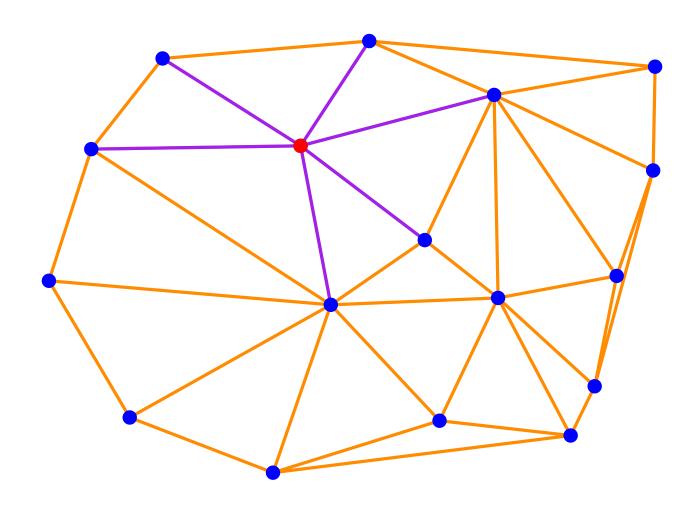
23 - 13

Algorithm

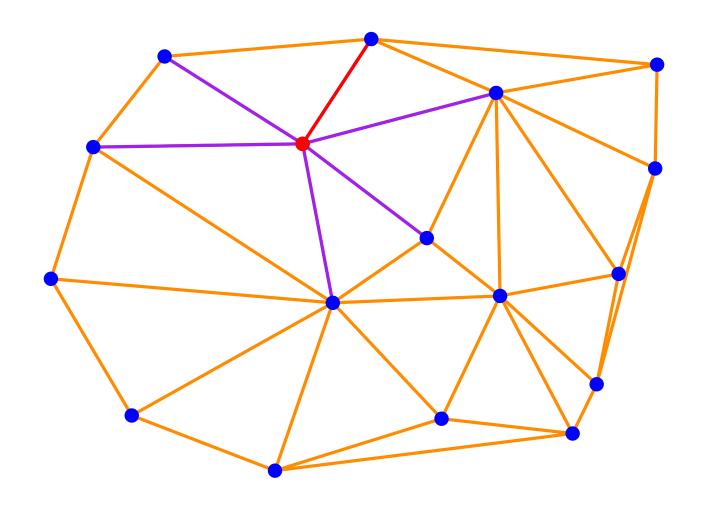
Algorithm



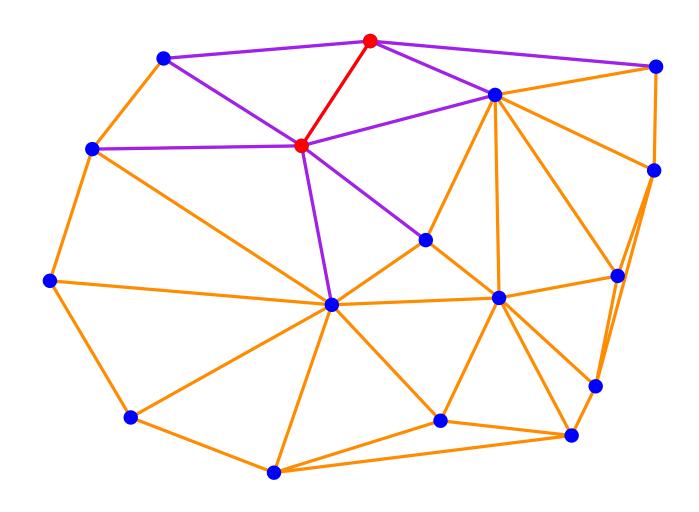
Algorithm



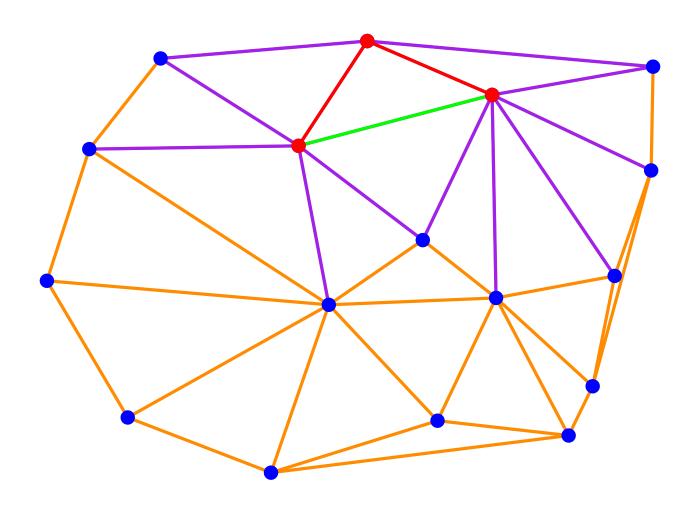
Algorithm



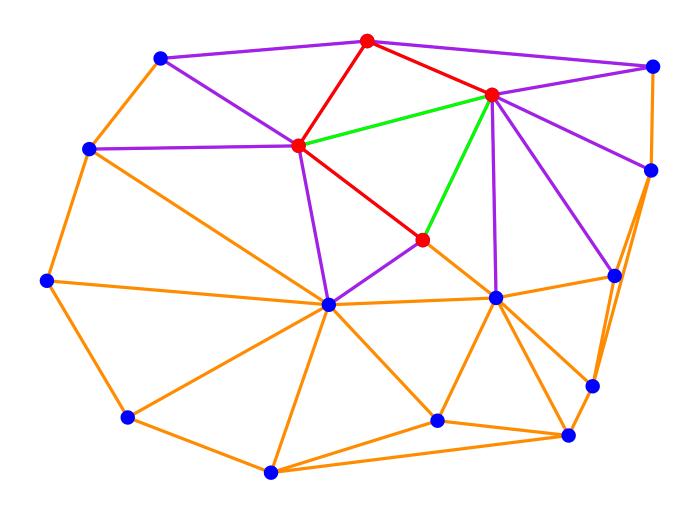
Algorithm



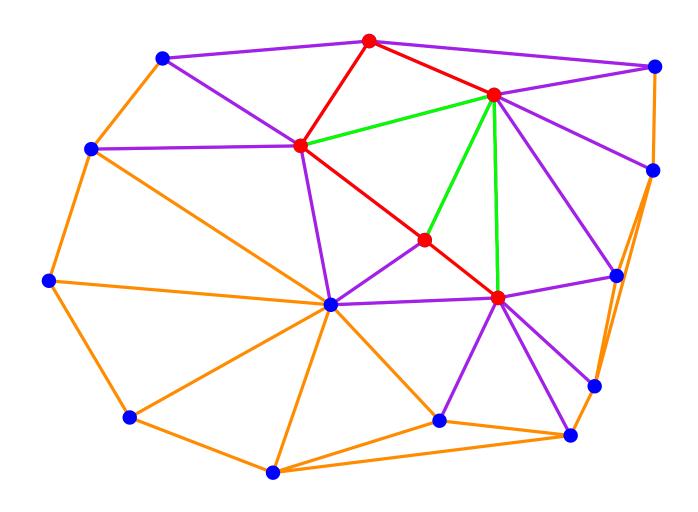
Algorithm



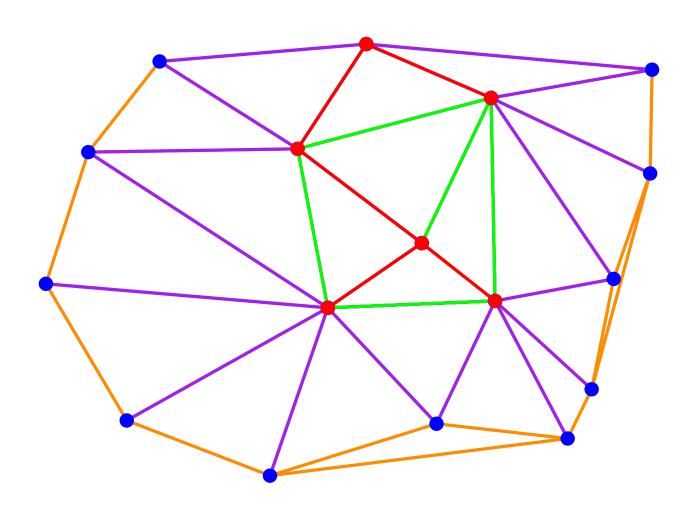
Algorithm



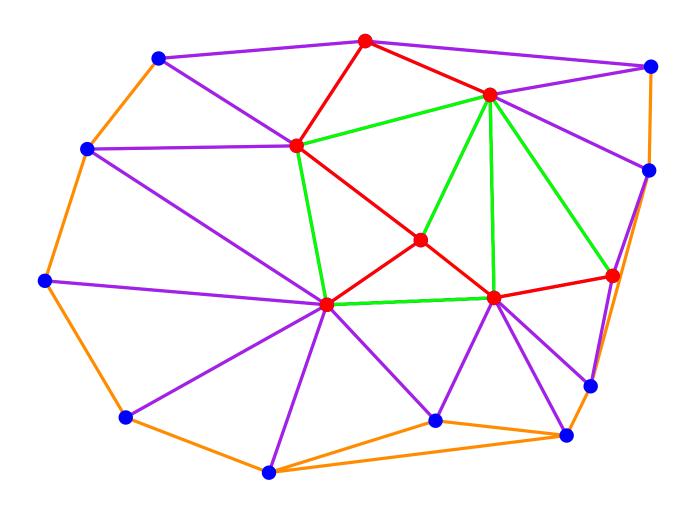
Algorithm



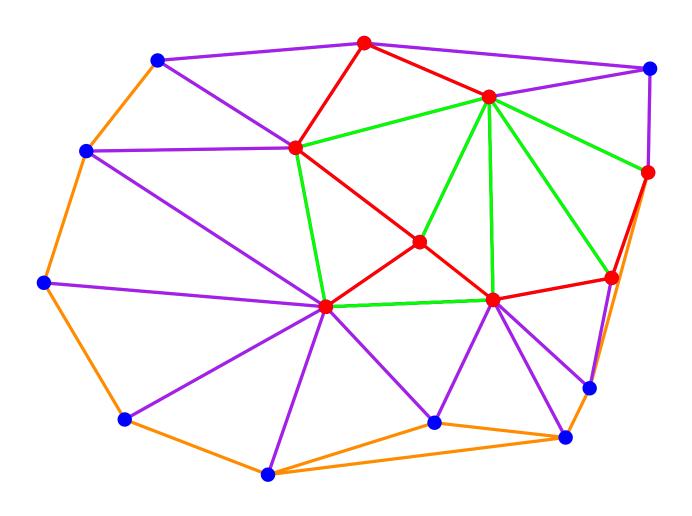
Algorithm



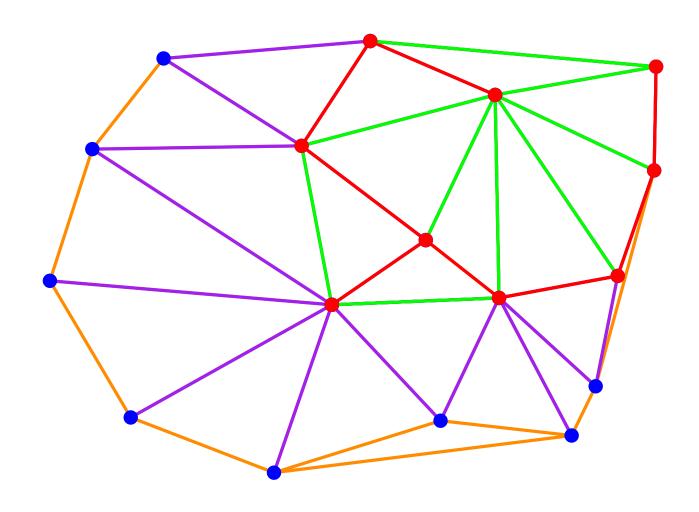
Algorithm



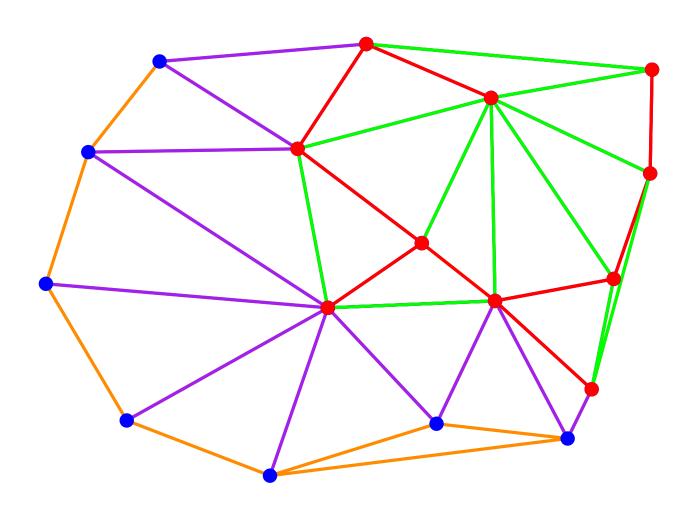
Algorithm



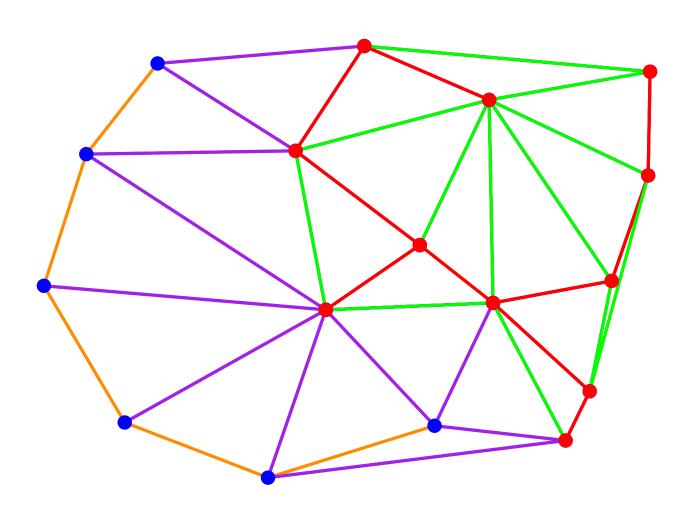
Algorithm



Algorithm

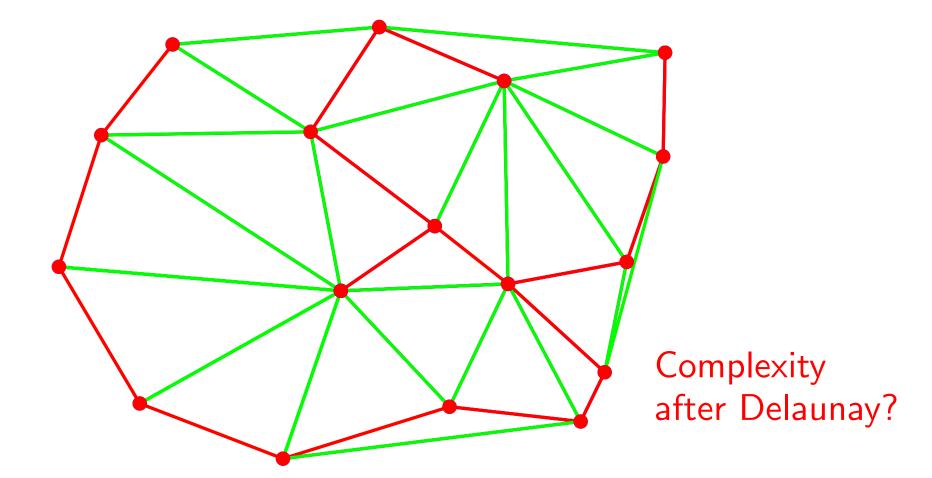


Algorithm



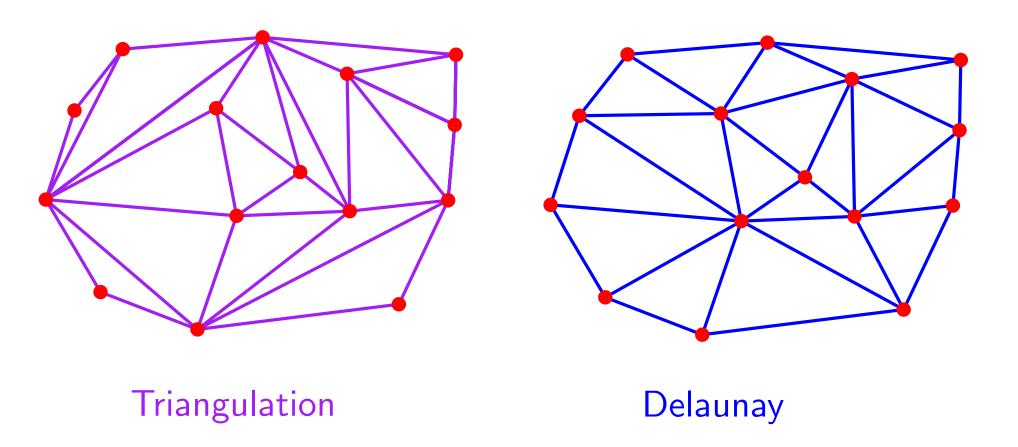
choose shorter purple edge Algorithm Complexity after Delaunay?

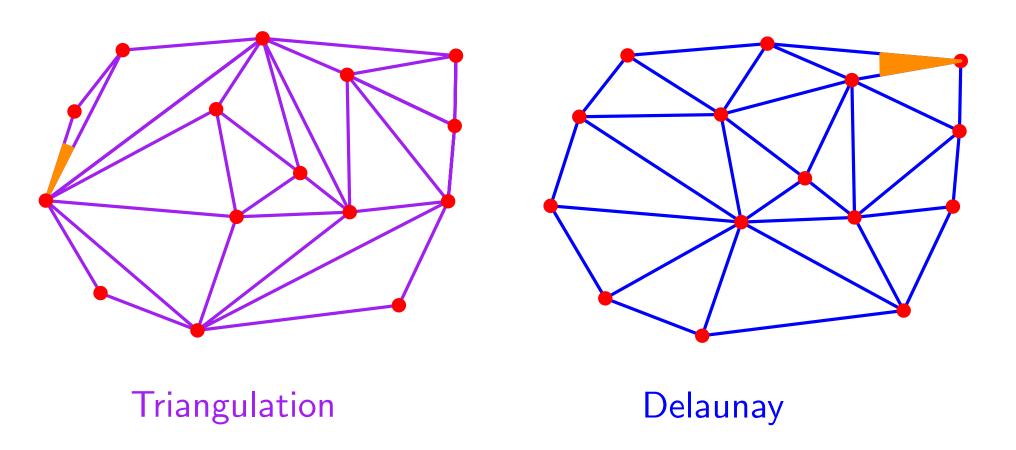
Algorithm choose shorter purple edge



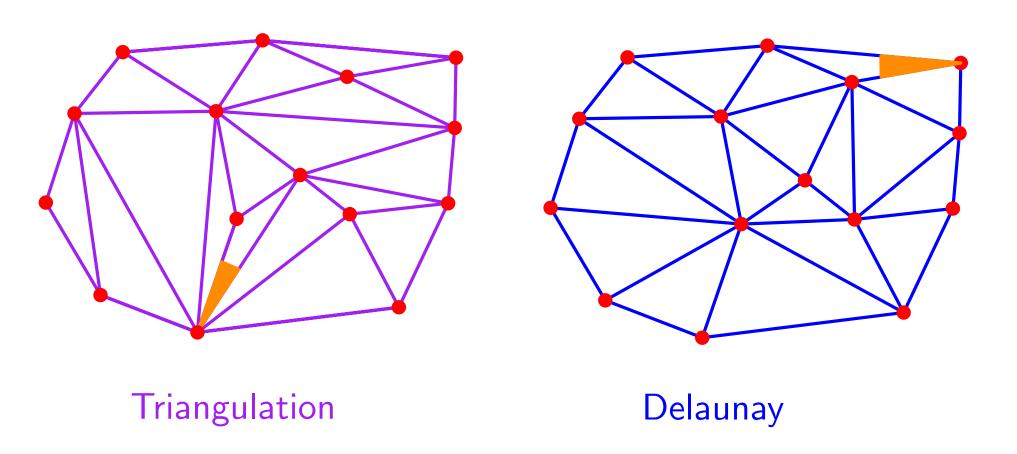
 $O(n \log n)$ after Delaunay

Delaunay & angles

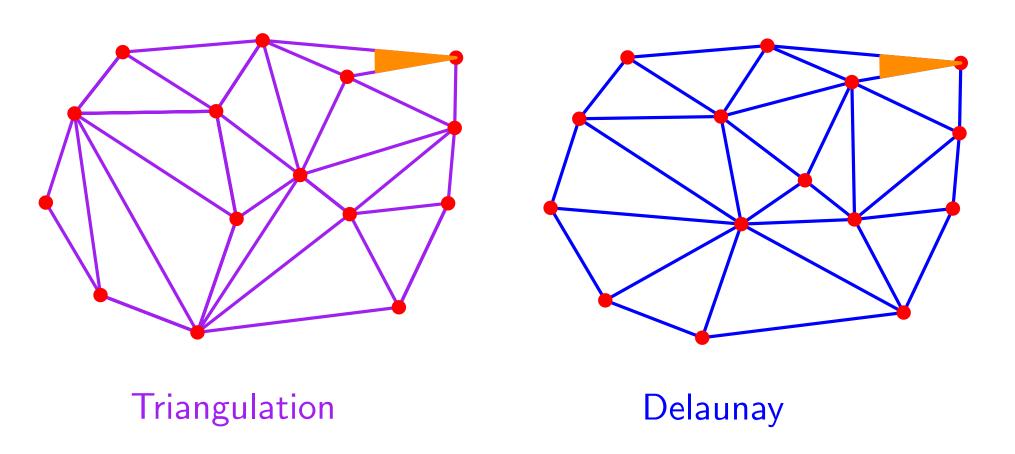




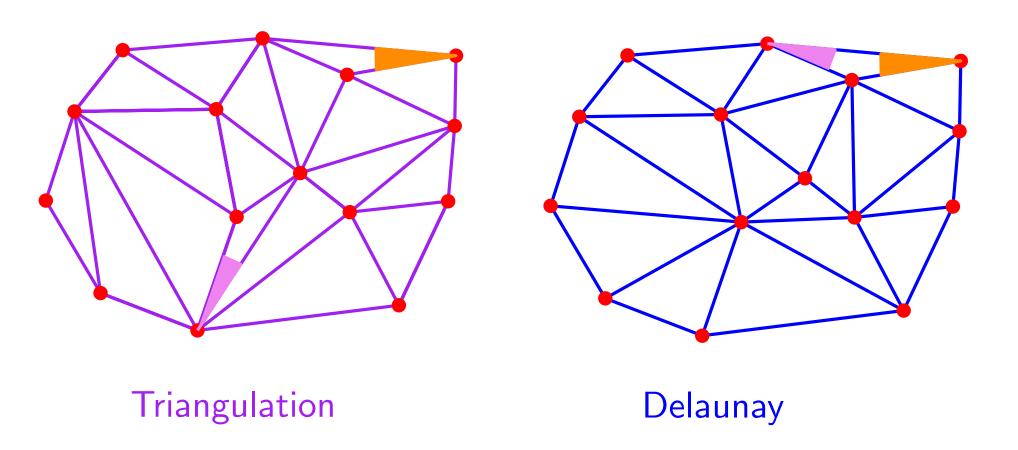
smallest angle



smallest angle



smallest angle



smallest angle

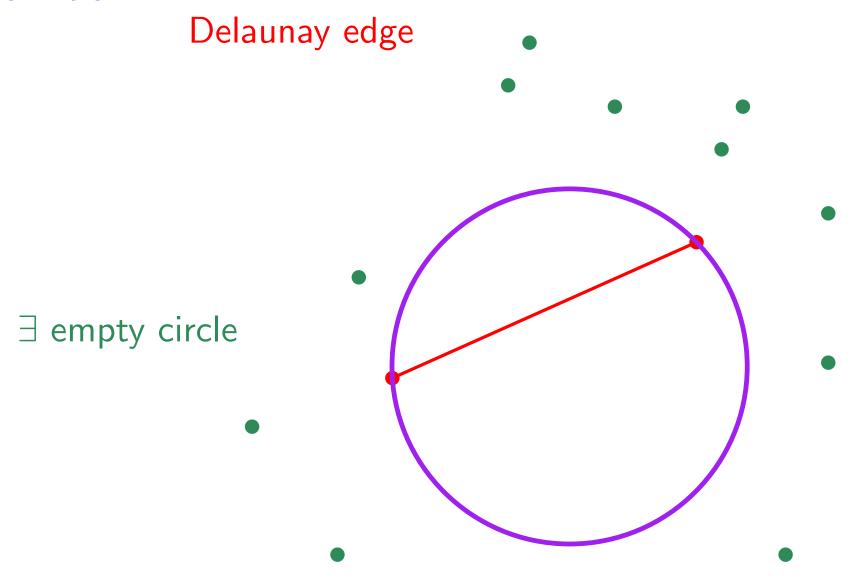
second smallest angle

Proof

Definition

Delaunay edge

Definition

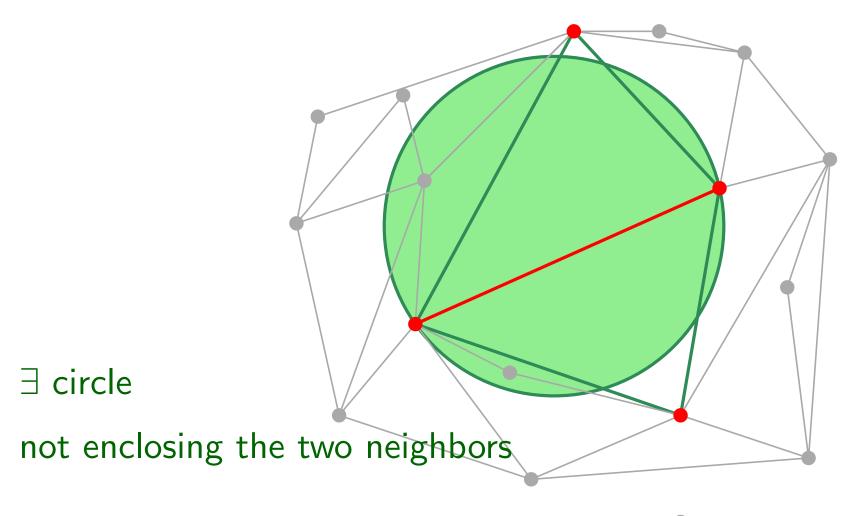


Definition

locally Delaunay edge w.r.t. a triangulation

Definition

locally Delaunay edge w.r.t. a triangulation



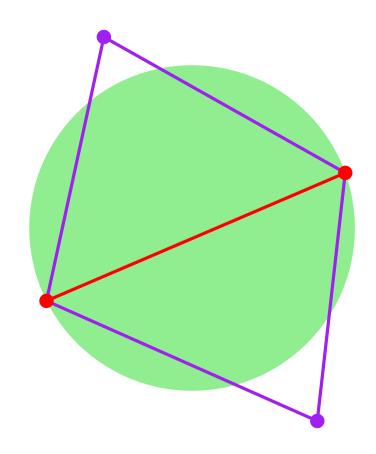
neighbor = visible from the edge

Lemma $(\forall \text{ edge: locally Delaunay}) \iff \text{Delaunay}$

Lemma $(\forall \text{ edge: locally Delaunay}) \iff \text{Delaunay}$

Proof:

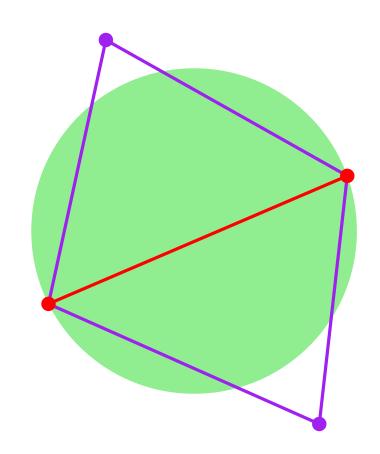
choose an edge



Lemma $(\forall \text{ edge: locally Delaunay}) \iff \text{Delaunay}$

Proof:

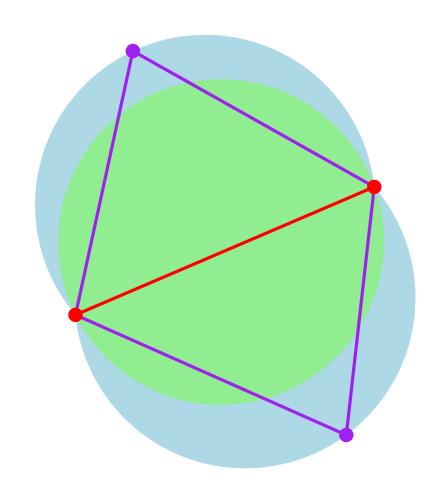
- choose an edge
- edges of the quadrilateral are locally Delaunay



Lemma $(\forall \text{ edge: locally Delaunay}) \iff \text{Delaunay}$

Proof:

- choose an edge
- edges of the quadrilateral are locally Delaunay

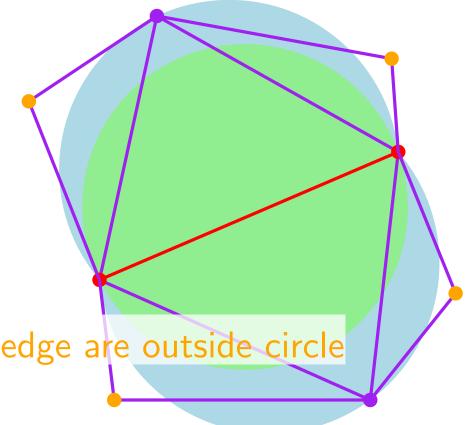


Lemma $(\forall \text{ edge: locally Delaunay}) \iff \text{Delaunay}$

Proof:

- choose an edge
- edges of the quadrilateral are locally Delaunay

Vertices visible through one edge are outside circle



Lemma $(\forall \text{ edge: locally Delaunay}) \iff \text{Delaunay}$

Proof:

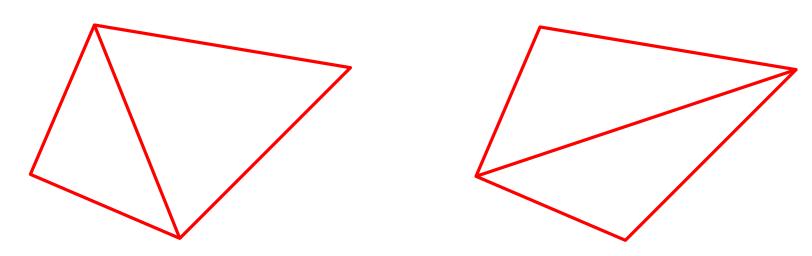
- choose an edge
- edges of the quadrilateral are locally Delaunay

■ Induction \rightarrow all vertices outside circle

Lemma For four points in convex position

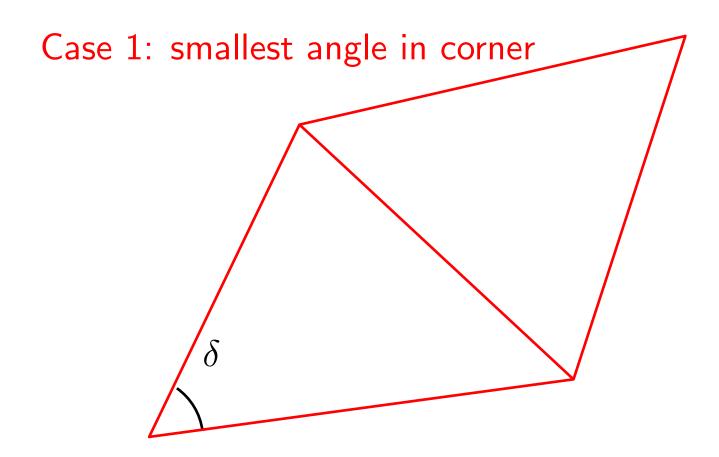
Delaunay \iff maximize the smallest angle

Two possible triangulation



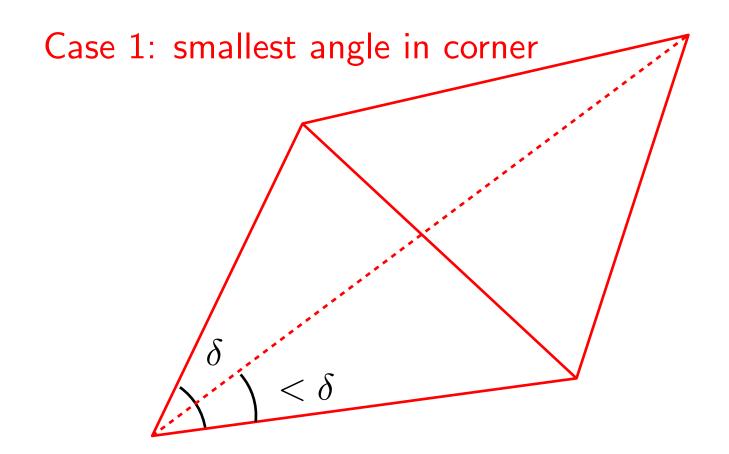
Lemma For four points in convex position

Delaunay \iff maximize the smallest angle



Lemma For four points in convex position

Delaunay \iff maximize the smallest angle

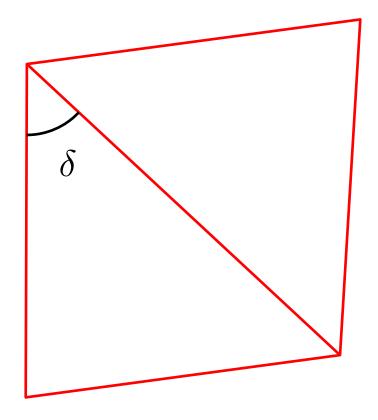


 \exists a smaller angle \in other triangulation

Lemma For four points in convex position

Delaunay \iff maximize the smallest angle

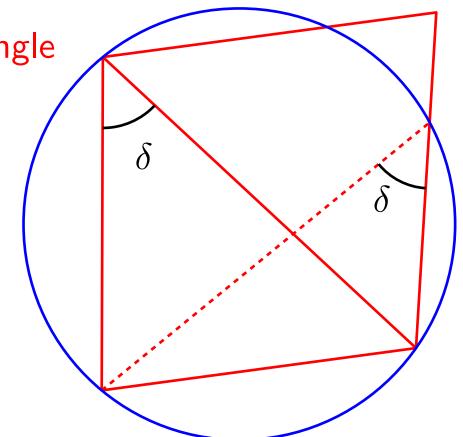
Case 2: smallest angle along diagonal



Lemma For four points in convex position

Delaunay \iff maximize the smallest angle

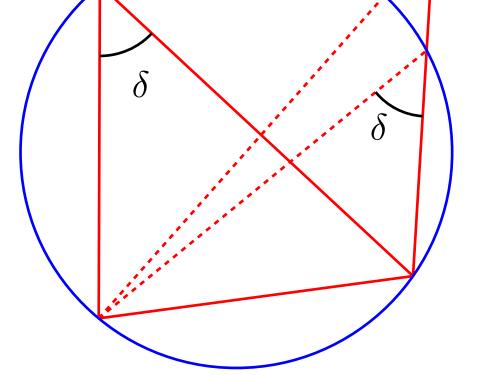
Case 2: smallest angle along diagonal /



Lemma For four points in convex position

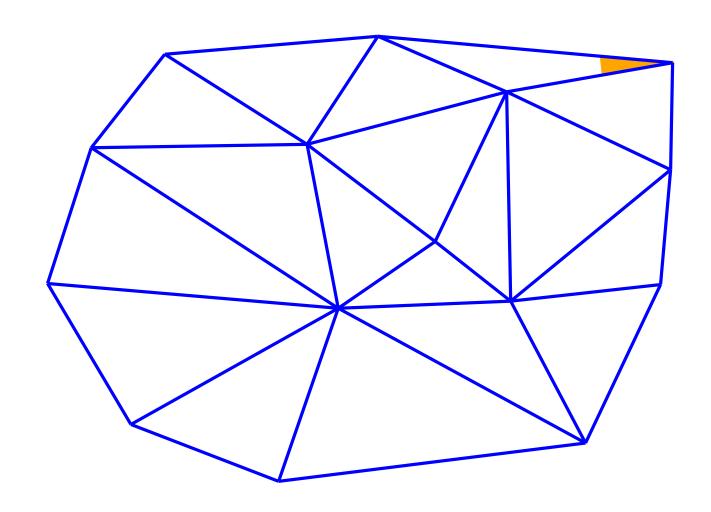
Delaunay \iff maximize the smallest angle

Case 2: smallest angle along diagonal δ



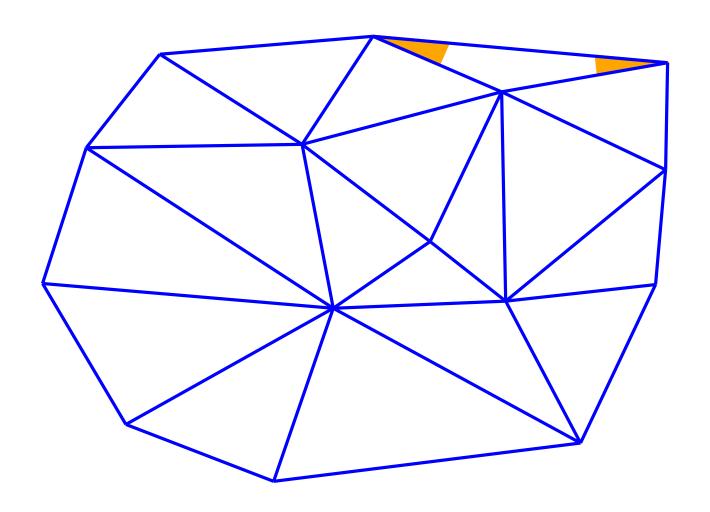
 \exists a smaller angle \in other triangulation

Map: Triangulations $\longrightarrow \mathbb{R}^{6n-3k-4}$ smallest angle α_1



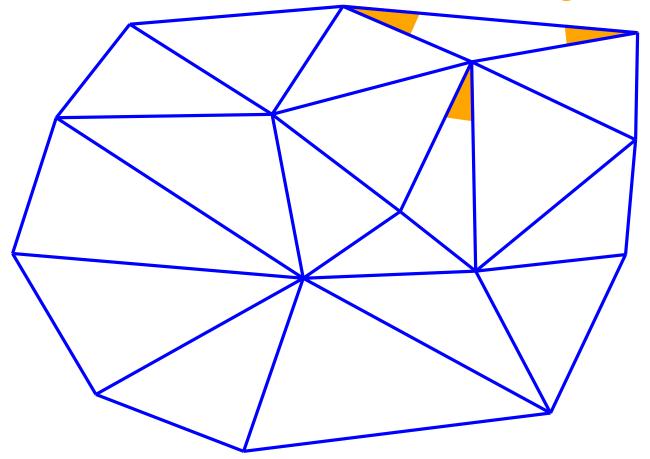
Map: Triangulations $\longrightarrow \mathbb{R}^{6n-3k-4}$

smallest angle α_1 second smallest angle α_2



Map: Triangulations $\longrightarrow \mathbb{R}^{6n-3k-4}$

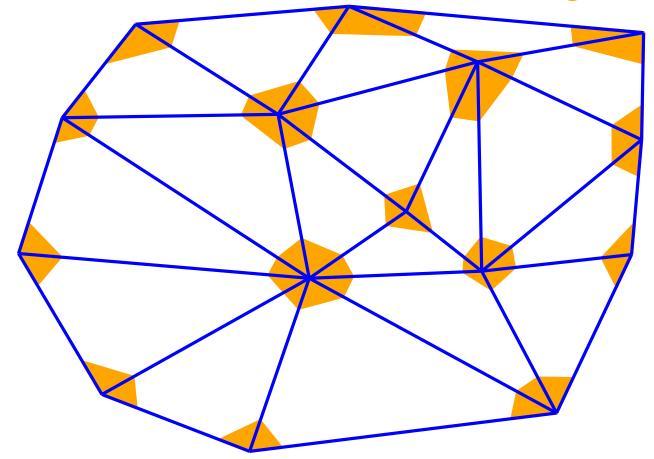
smallest angle α_1 second smallest angle α_2 third smallest angle α_3



Map: Triangulations $\longrightarrow \mathbb{R}^{6n-3k-4}$

 $(\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_{6n-3k-4})$

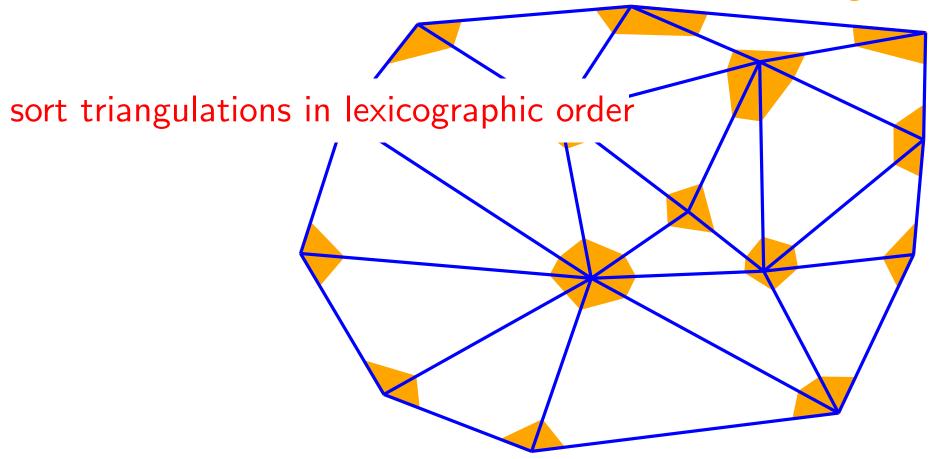
smallest angle α_1 second smallest angle α_2 third smallest angle α_3



Map: Triangulations $\longrightarrow \mathbb{R}^{6n-3k-4}$

$$(\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_{6n-3k-4})$$

smallest angle α_1 second smallest angle α_2 third smallest angle α_3



Theorem:

Delaunay maximizes minimum angles (in lexicographic order)

Theorem:

Delaunay maximizes minimum angles (in lexicographic order)

Proof:

Let T be the triangulation maximizing angles

Theorem:

Delaunay maximizes minimum angles (in lexicographic order)

Proof:

Let T be the triangulation maximizing angles

 $\implies \forall$ convex quadrilateral (from 2 triangles $\in T$) the diagonal maximizes smallest angle (in quad)

Theorem:

Delaunay maximizes minimum angles (in lexicographic order)

Proof:

Let T be the triangulation maximizing angles

 $\implies \forall \text{ convex quadrilateral (from 2 triangles } \in T)$ the diagonal maximizes smallest angle (in quad)

 $\implies \forall$ edge, it is locally Delaunay

Theorem:

Delaunay maximizes minimum angles (in lexicographic order)

Proof:

Let T be the triangulation maximizing angles

 $\implies \forall \text{ convex quadrilateral (from 2 triangles } \in T)$ the diagonal maximizes smallest angle (in quad)

 $\implies \forall$ edge, it is locally Delaunay

 $\Longrightarrow T = \mathsf{Delaunay}$

Indisk predicate

Convex hull

vwn + ?

$$\begin{vmatrix} x_w - x_v & x_n - x_v \\ y_w - y_v & y_n - y_v \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ x_v & x_w & x_n \\ y_v & y_w & y_n \end{vmatrix} > 0$$

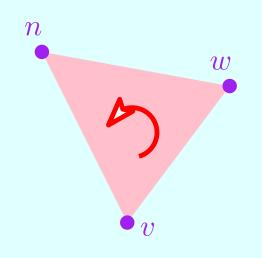
vwn - ?

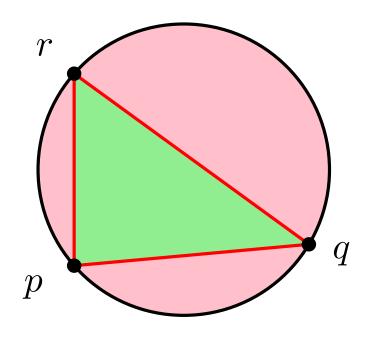
$$\begin{vmatrix} 1 & 1 & 1 \\ x_v & x_w & x_n \\ y_v & y_w & y_n \end{vmatrix} < 0$$

vwn 0 ?

$$\begin{vmatrix} 1 & 1 & 1 \\ x_v & x_w & x_n \\ y_v & y_w & y_n \end{vmatrix} = 0$$

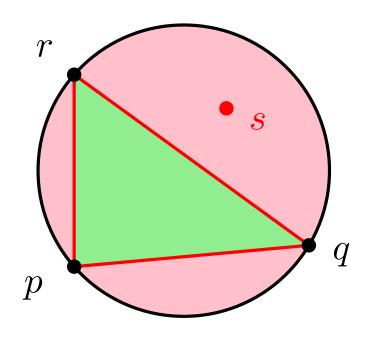
Orientation predicate





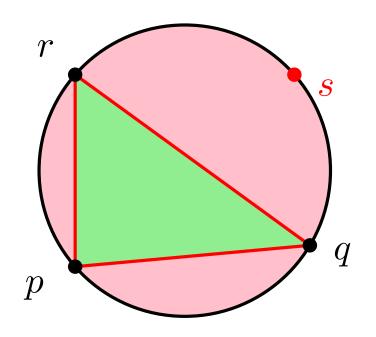
pqr ccw triangle

query s



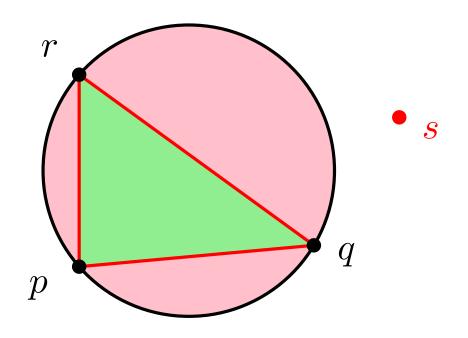
pqr ccw triangle

query s inside circumcircle



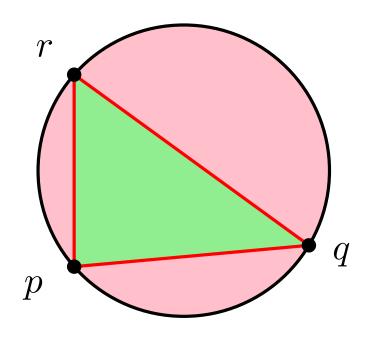
pqr ccw triangle

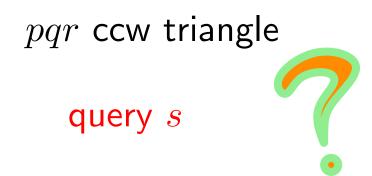
query s cocircular

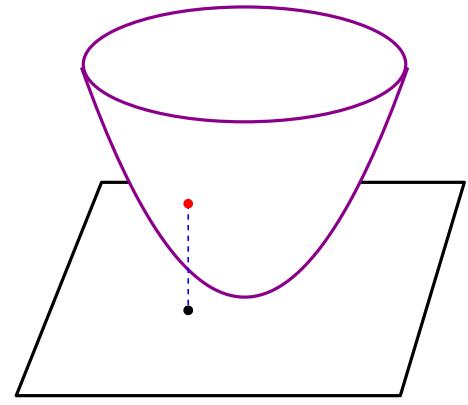


pqr ccw triangle

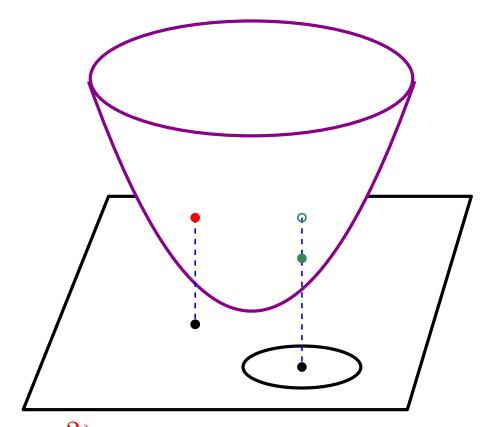
query s outside circumcircle







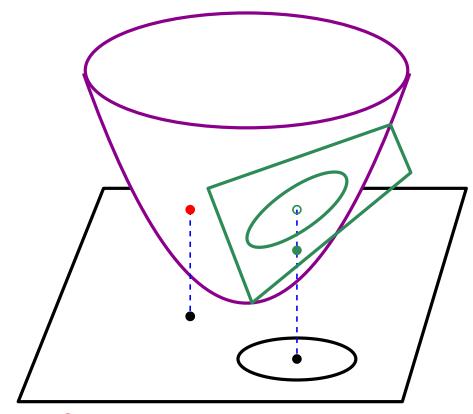
$$p = (x, y) \leadsto p^* = (x, y, x^2 + y^2)$$



$$p = (x, y) \leadsto p^* = (x, y, x^2 + y^2)$$

$$C : x^2 + y^2 - 2ax - 2by + a^2 + b^2 - r^2 = 0$$

$$\leadsto C^* = (a, b, a^2 + b^2 - r^2)$$



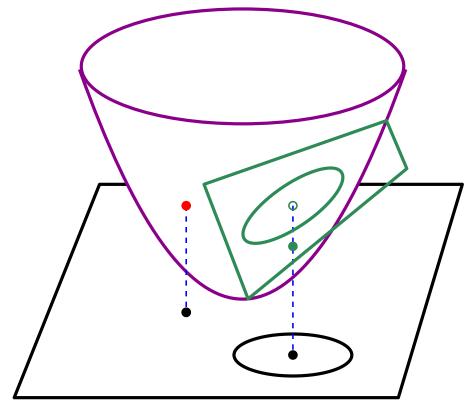
$$p = (x, y) \leadsto p^* = (x, y, x^2 + y^2)$$

$$C : x^2 + y^2 - 2ax - 2by + a^2 + b^2 - r^2 = 0$$

$$\leadsto C^* = (a, b, a^2 + b^2 - r^2)$$

$$\leadsto C^{\dagger} : z - 2ax - 2by + a^2 + b^2 - r^2 = 0$$

$$p \in C \iff p^* \in C^\dagger$$



$$p = (x, y) \leadsto p^* = (x, y, x^2 + y^2)$$

$$C: x^{2} + y^{2} - 2ax - 2by + a^{2} + b^{2} - r^{2} = 0$$

$$\leadsto C^{*} = (a, b, a^{2} + b^{2} - r^{2})$$

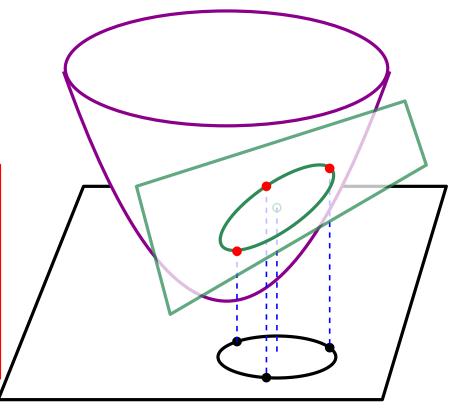
$$\leadsto C^{\dagger} : z - 2ax - 2by + a^2 + b^2 - r^2 = 0$$

Space of circles

$$p \in C \iff p^* \in C^\dagger$$

circle through pqr

 \rightsquigarrow plane through $p^{\star}q^{\star}r^{\star}$



$$p = (x, y) \leadsto p^* = (x, y, x^2 + y^2)$$

$$C: x^2 + y^2 - 2ax - 2by + a^2 + b^2 - r^2 = 0$$

$$\leadsto C^* = (a, b, a^2 + b^2 - r^2)$$

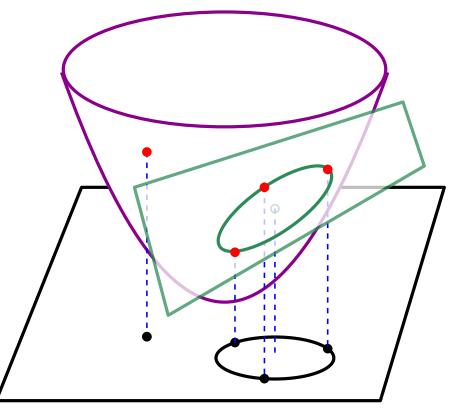
$$\sim C^{\dagger}: z - 2ax - 2by + a^2 + b^2 - r^2 = 0$$

Space of circles

$$p \in C \iff p^* \in C^\dagger$$

s inside/outside of circle through pqr

 \rightsquigarrow plane through $p^{\star}q^{\star}r^{\star}$ above/below s^{\star}



$$p = (x, y) \leadsto p^* = (x, y, x^2 + y^2)$$

$$C: x^2 + y^2 - 2ax - 2by + a^2 + b^2 - r^2 = 0$$

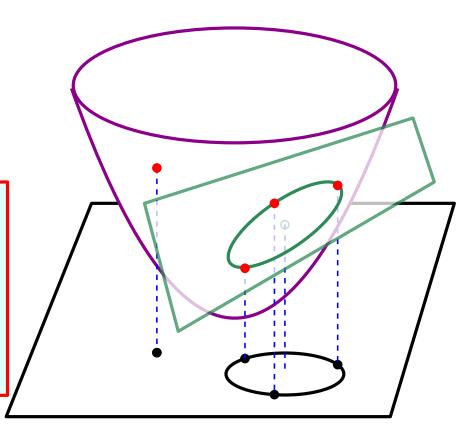
$$\leadsto C^* = (a, b, a^2 + b^2 - r^2)$$

$$\leadsto C^{\dagger} : z - 2ax - 2by + a^2 + b^2 - r^2 = 0$$

Space of circles

s inside/outside of circle through pqr

 \rightsquigarrow plane through $p^{\star}q^{\star}r^{\star}$ above/below s^{\star}



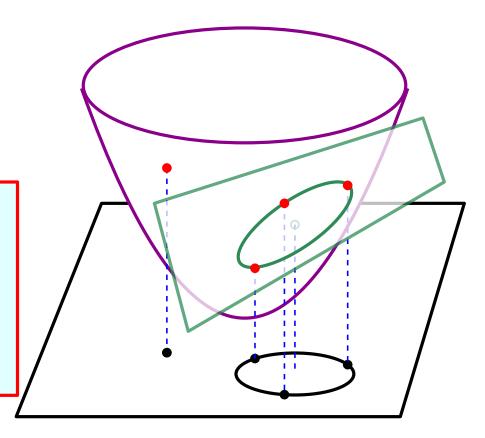
indisk predicate

→ 3D orientation predicate

Space of circles

s inside/outside of circle through pqr

 \rightsquigarrow plane through $p^{\star}q^{\star}r^{\star}$ above/below s^{\star}

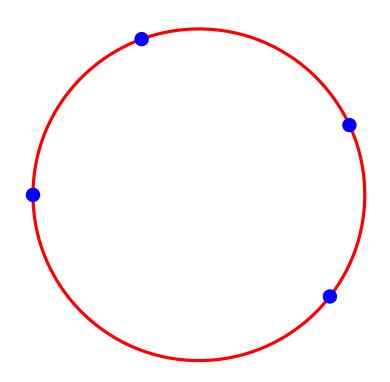


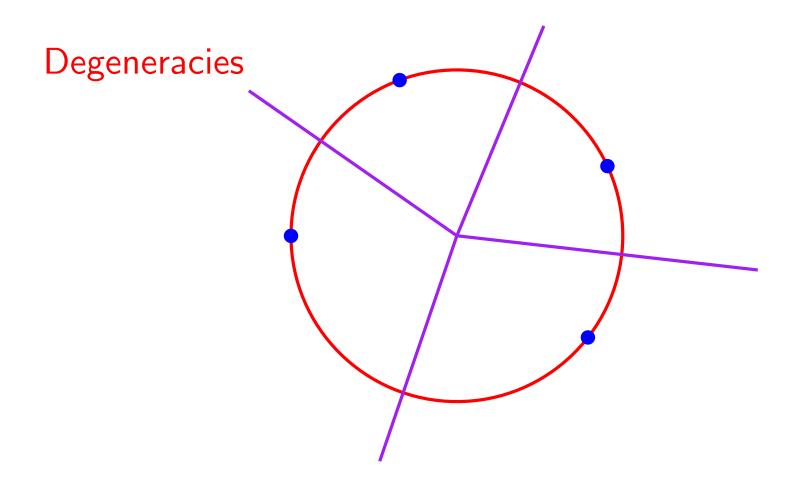
indisk predicate

→ 3D orientation predicate

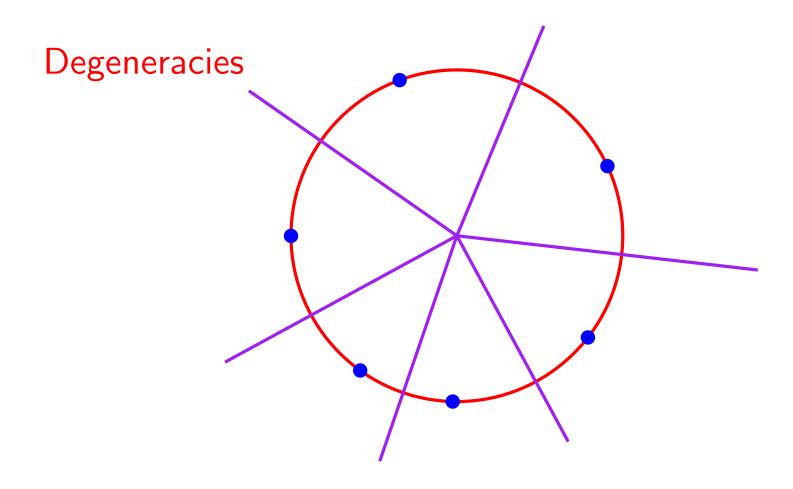
$$sign \begin{vmatrix}
1 & 1 & 1 & 1 \\
x_p & x_q & x_r & x_s \\
y_p & y_q & y_r & y_s \\
x_p^2 + y_p^2 & x_q^2 + y_q^2 & x_r^2 + y_r^2 & x_s^2 + y_s^2
\end{vmatrix}$$

Degeneracies

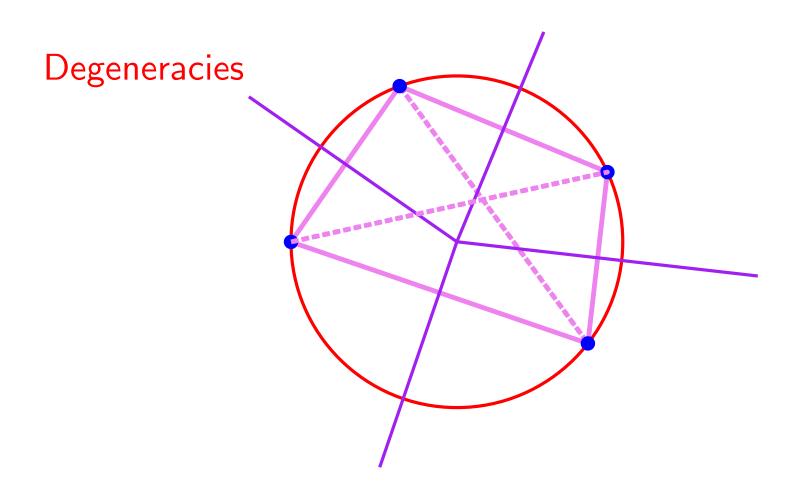




Degree 4 vertex in Voronoi diagram

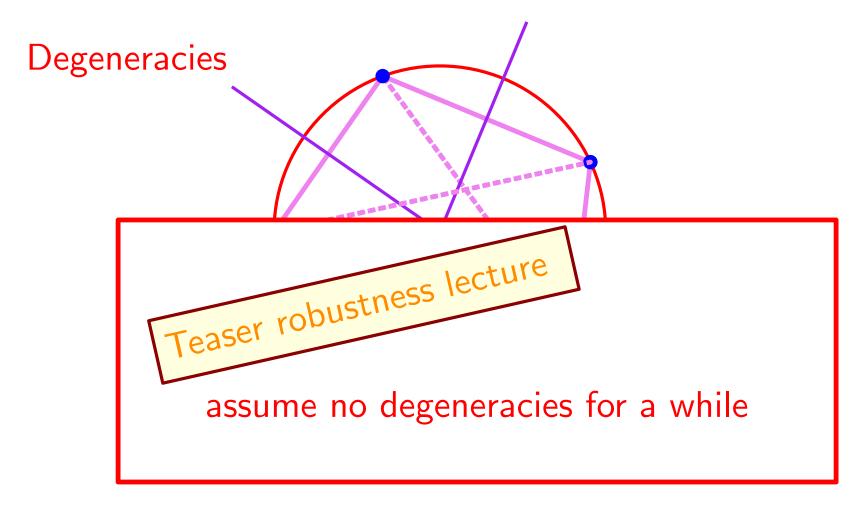


Degree \bigvee_{d} vertex in Voronoi diagram



Degree 4 vertex in Voronoi diagram

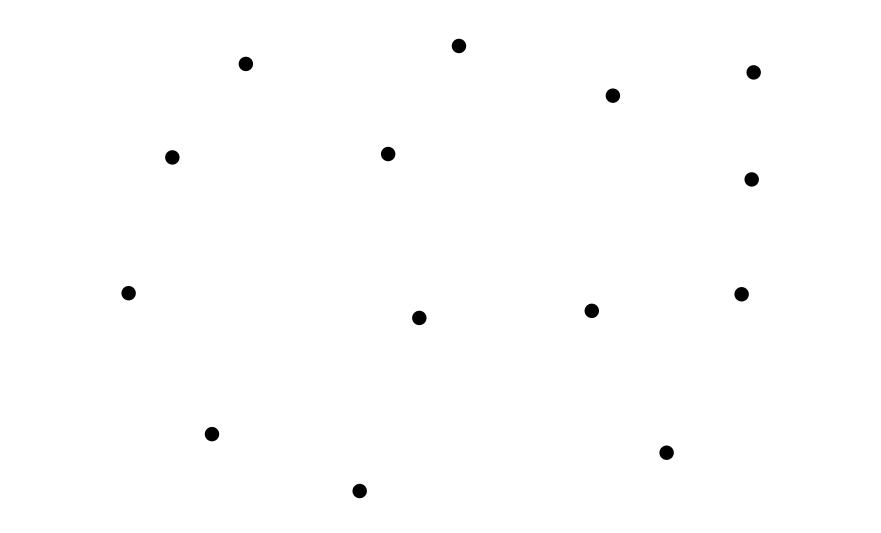
Delaunay quad? random diagonal?

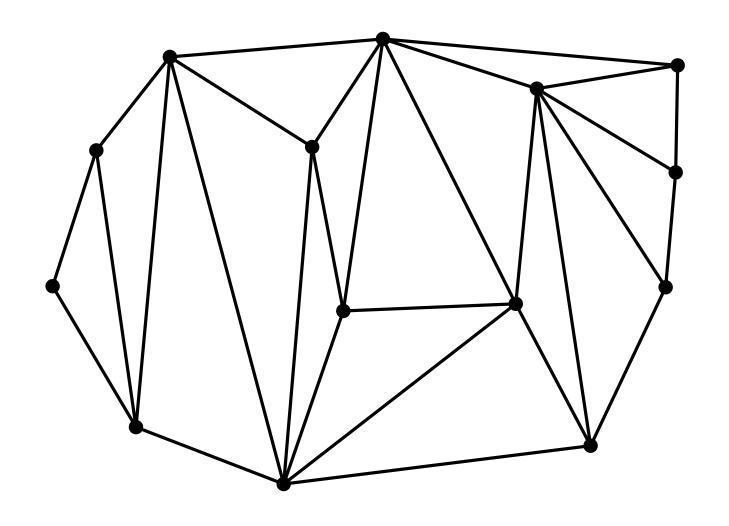


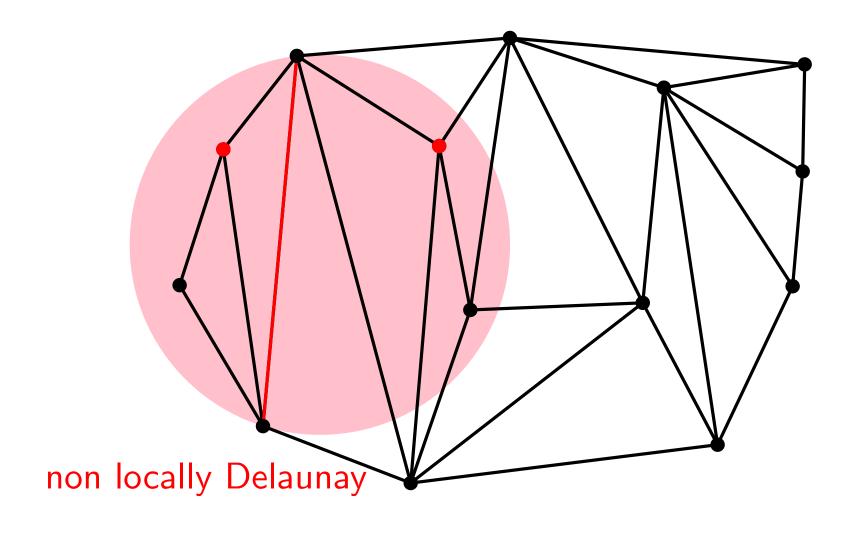
Degree 4 vertex in Voronoi diagram

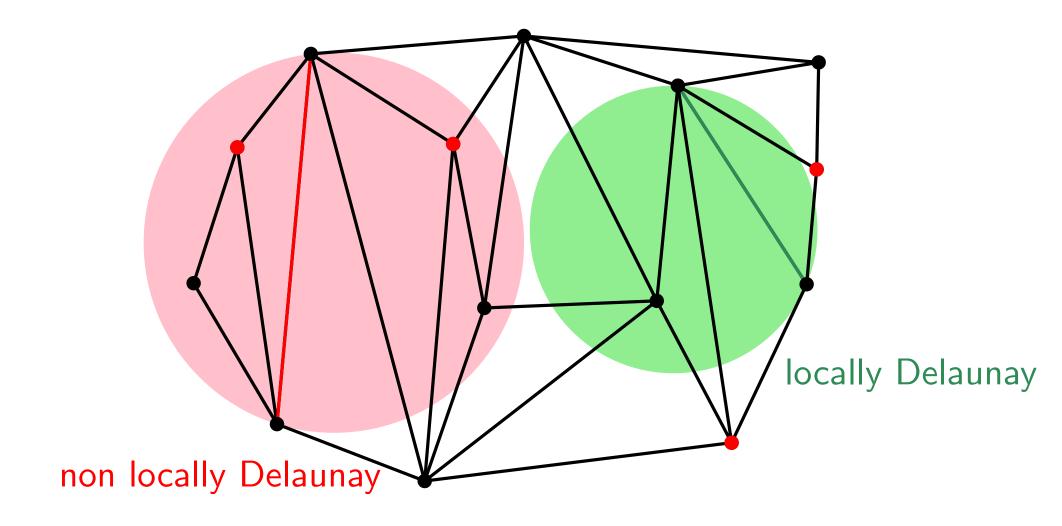
Delaunay quad? random diagonal?

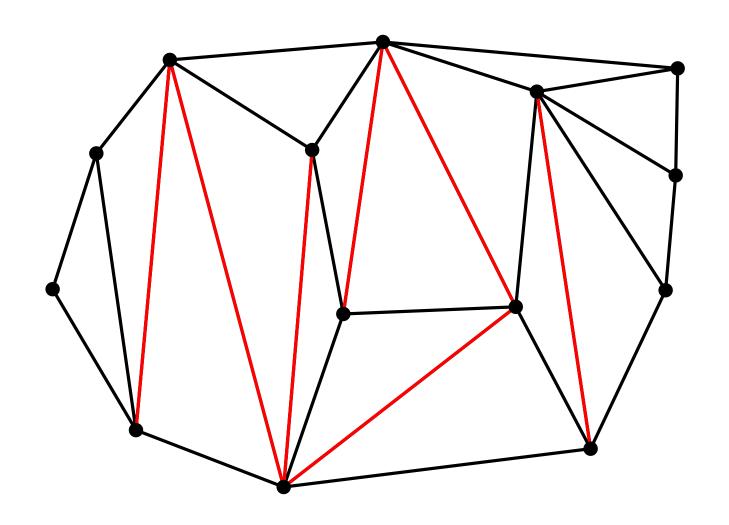
Algorithm: flip!

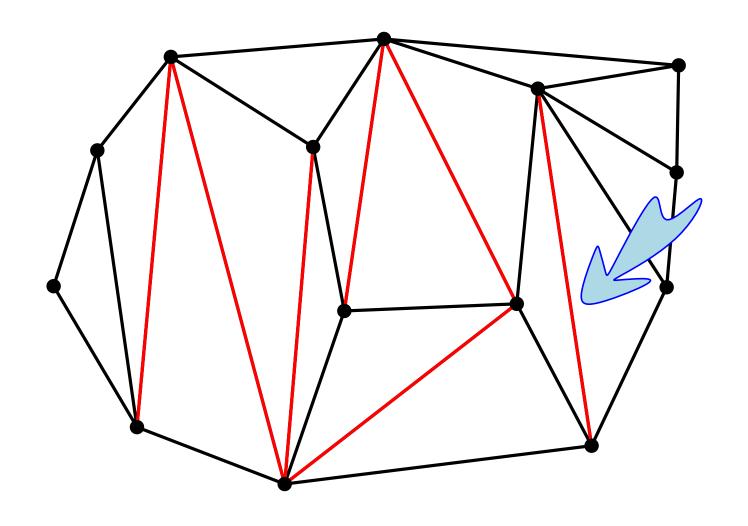


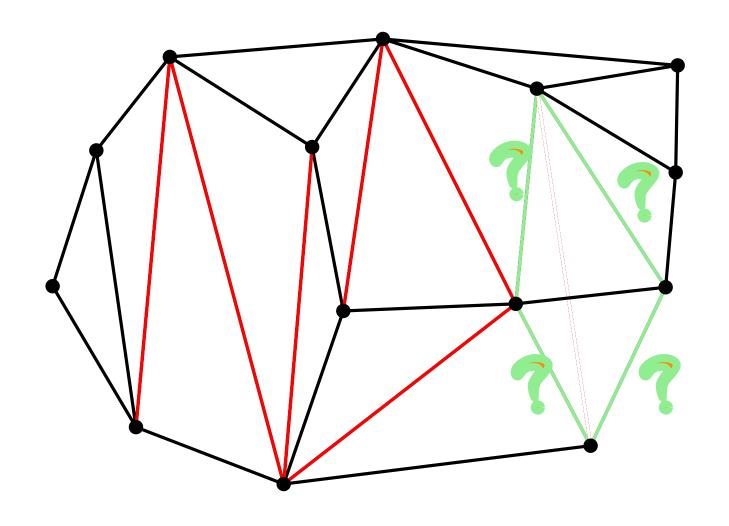


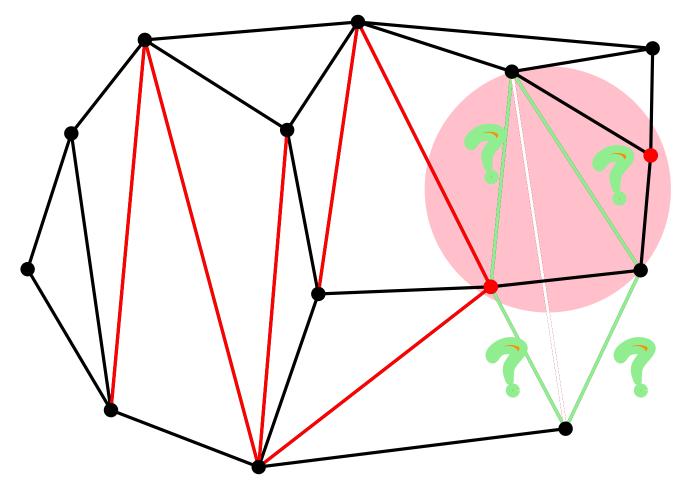




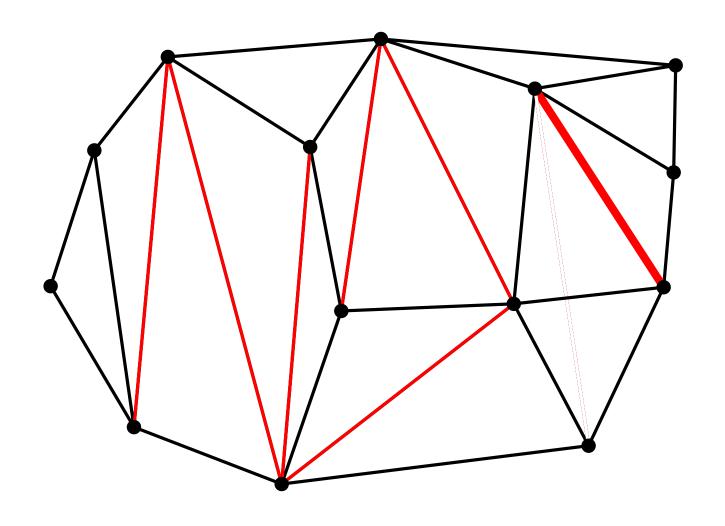


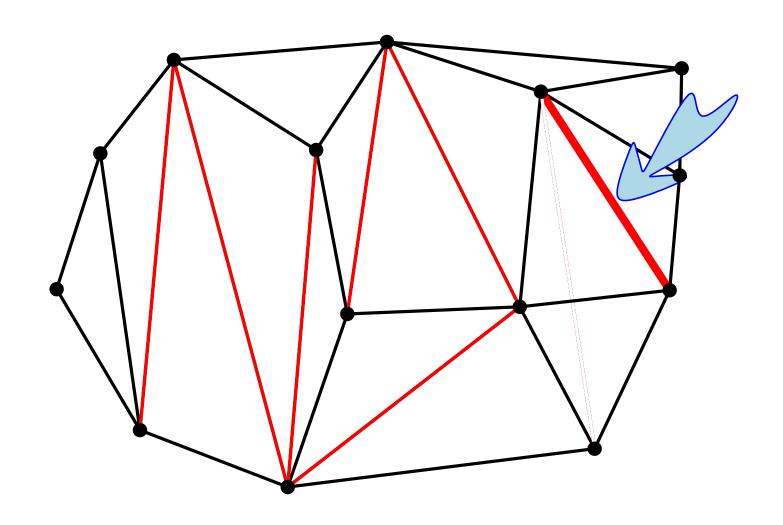


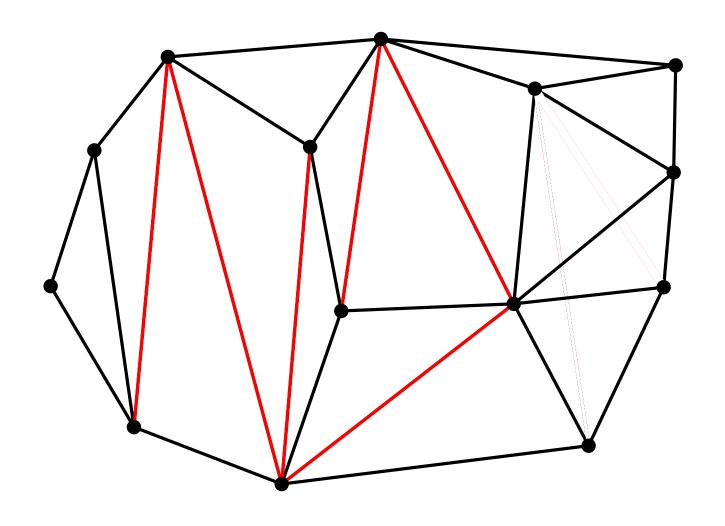


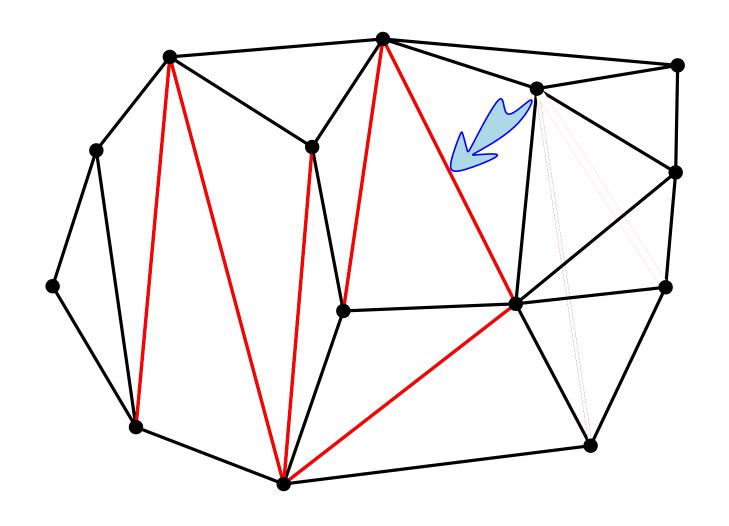


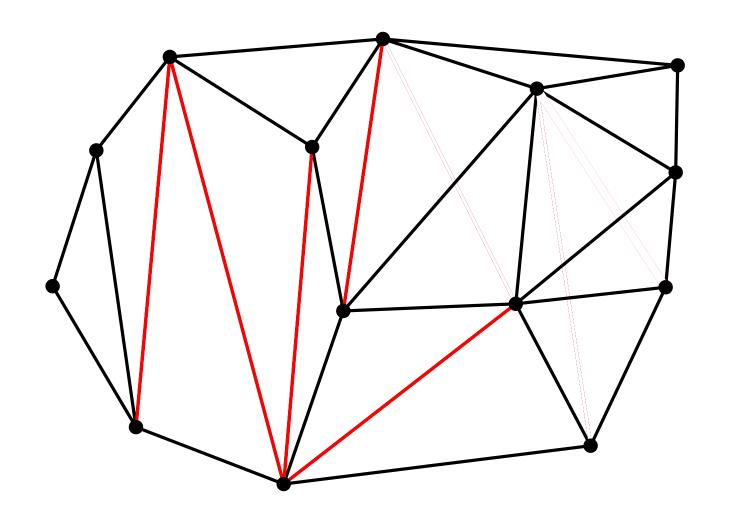
check edges of quadrilateral

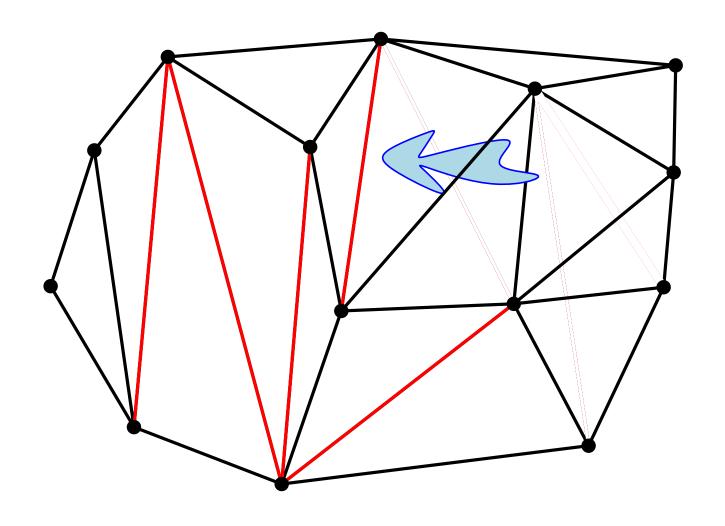


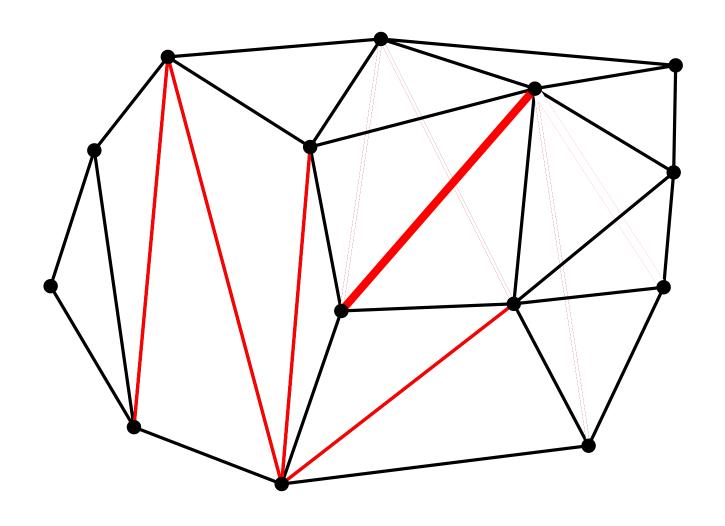


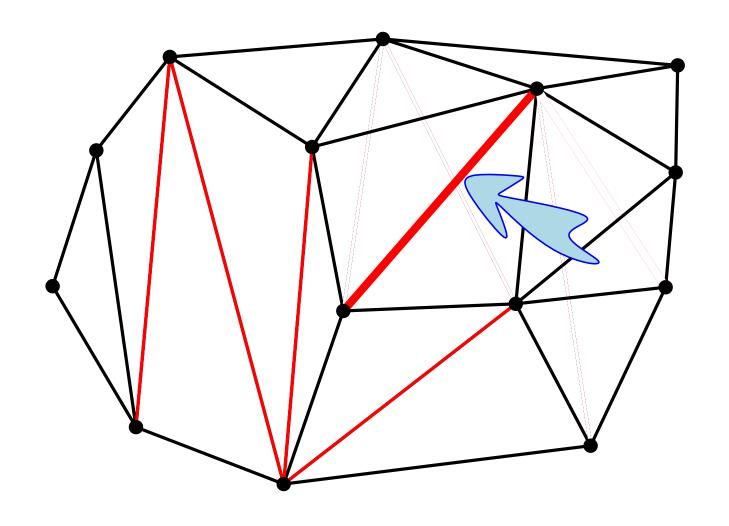


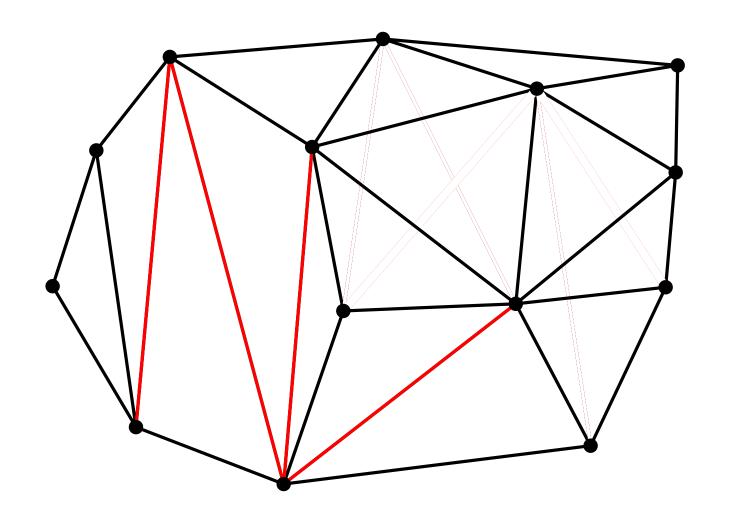


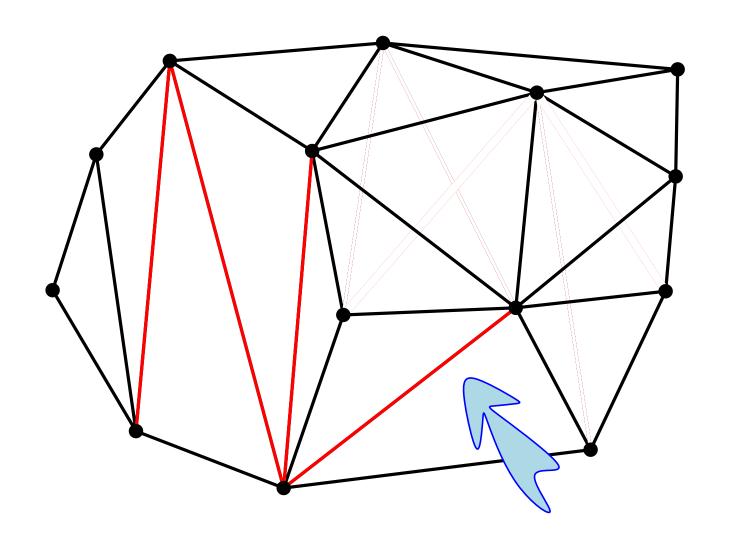


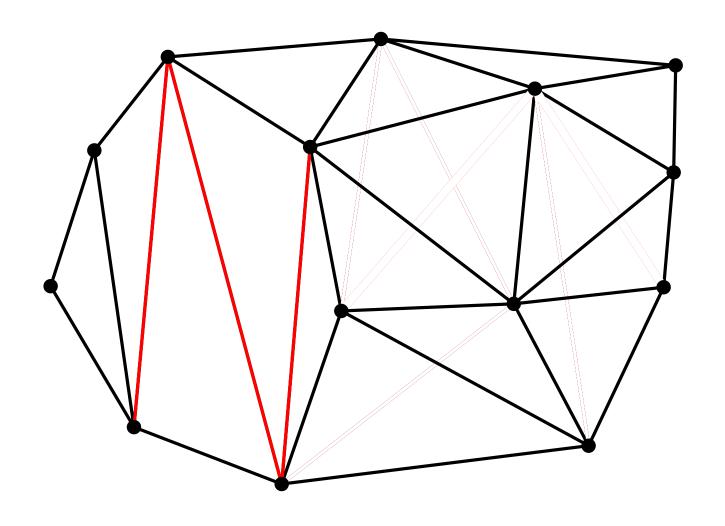


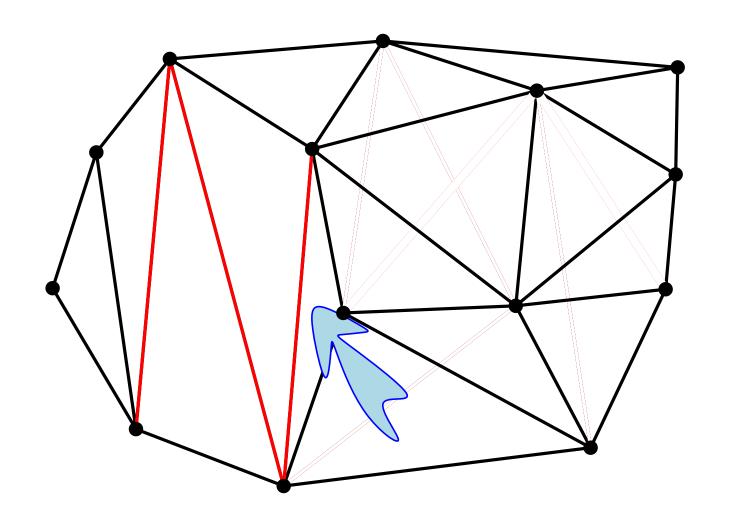


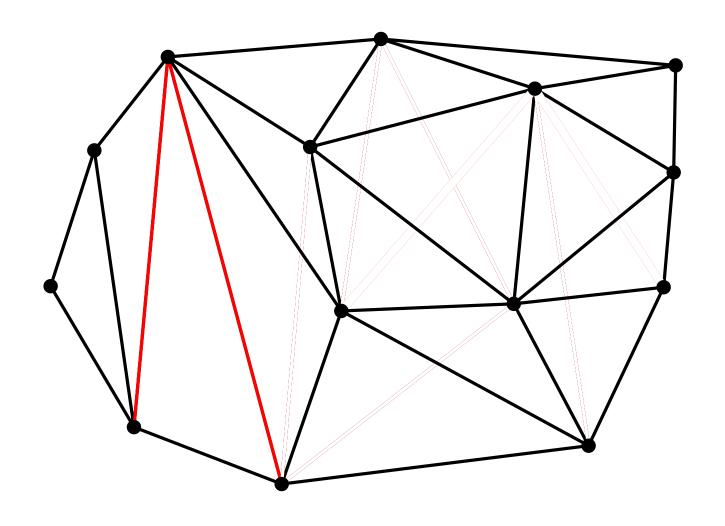


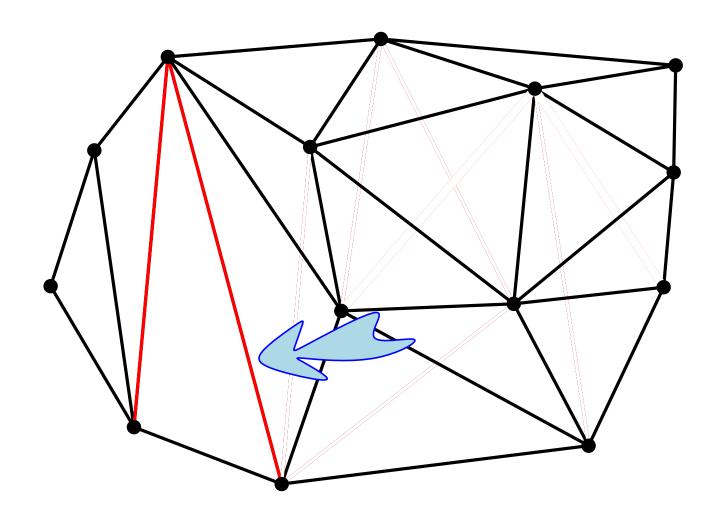


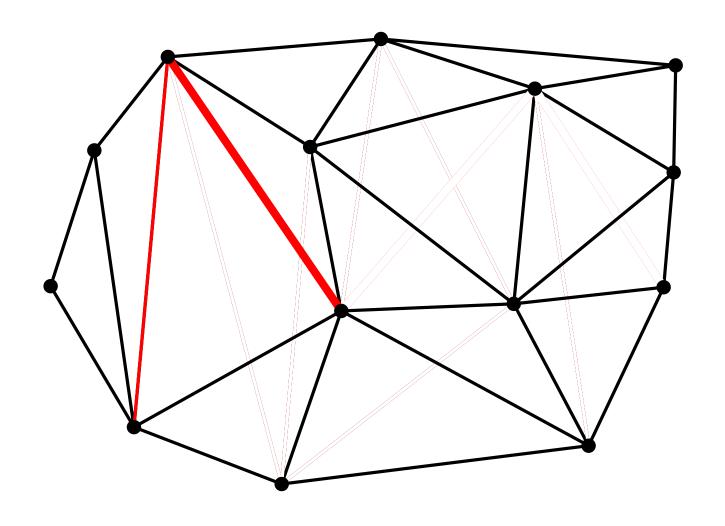


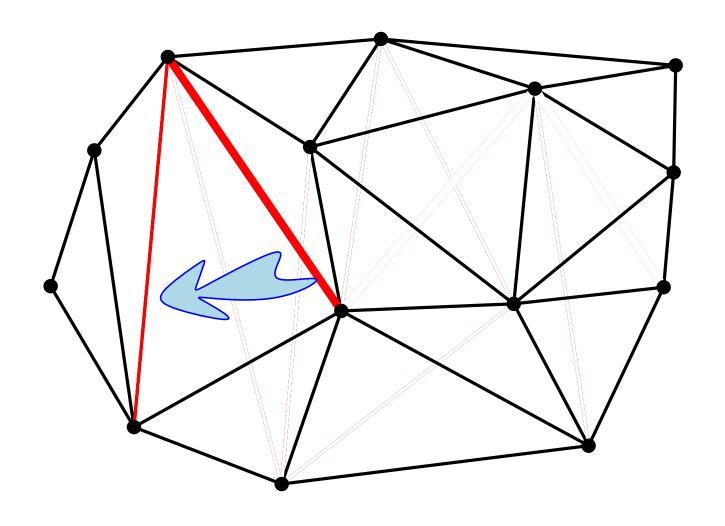


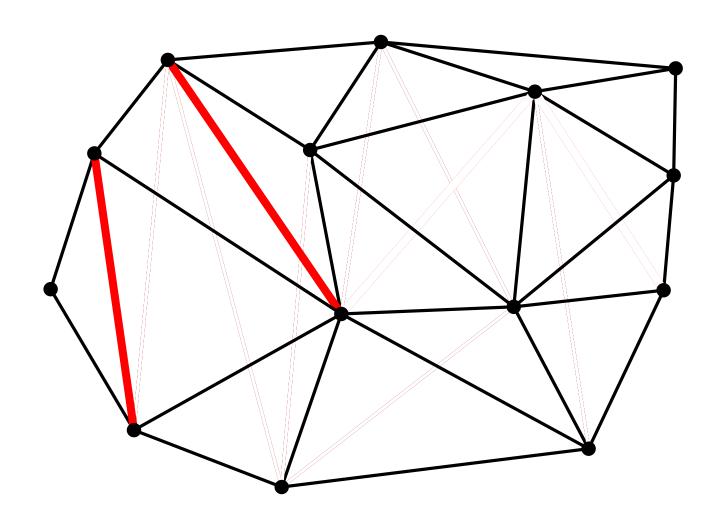


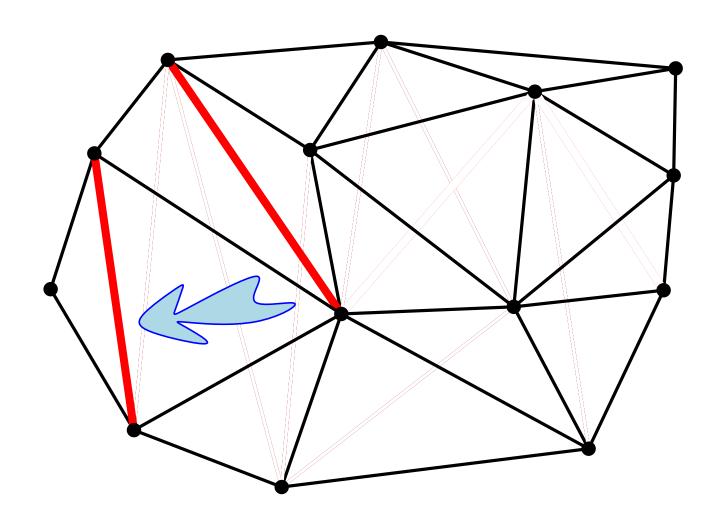


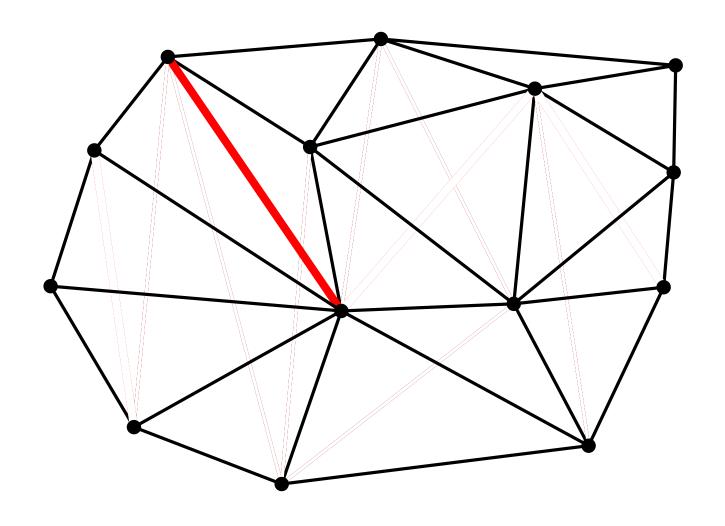


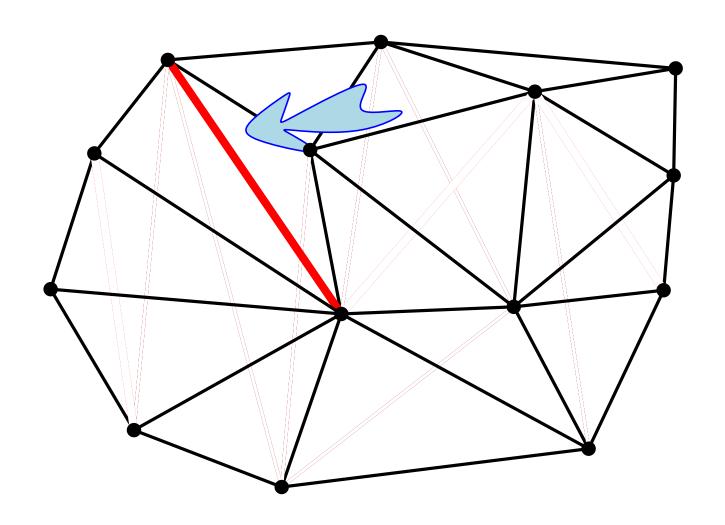


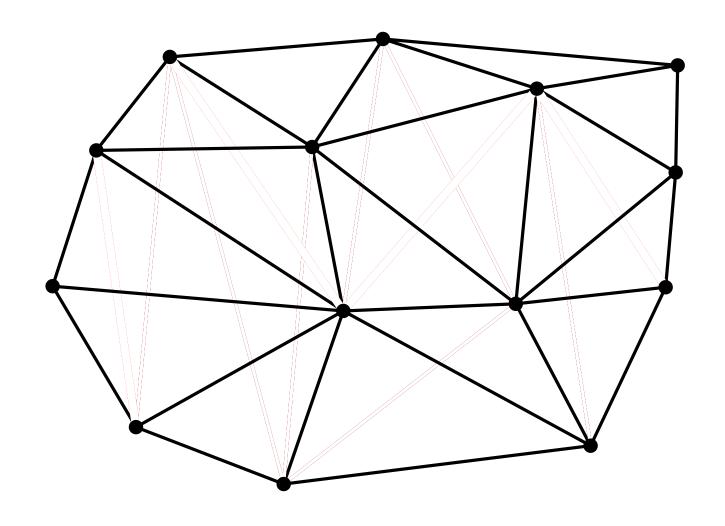


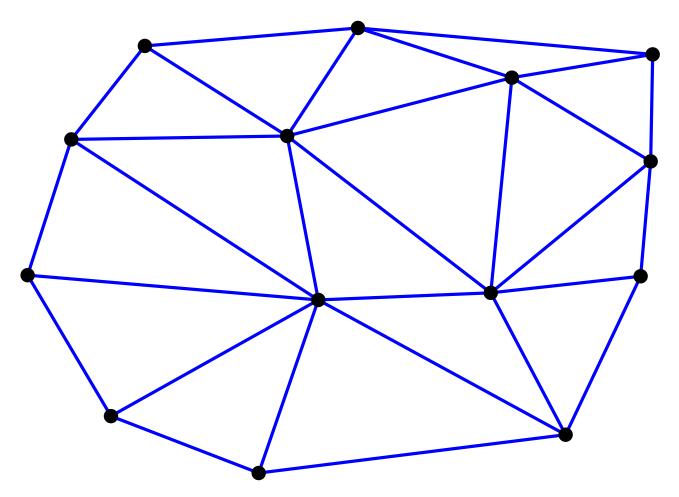




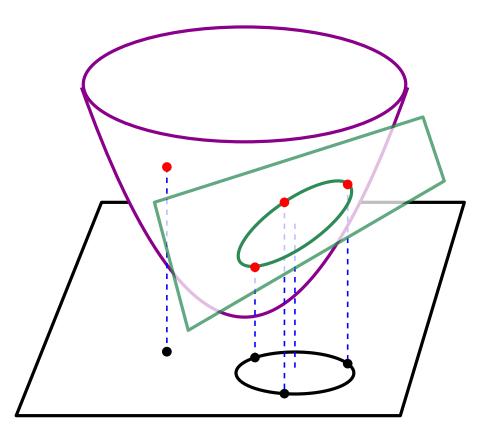


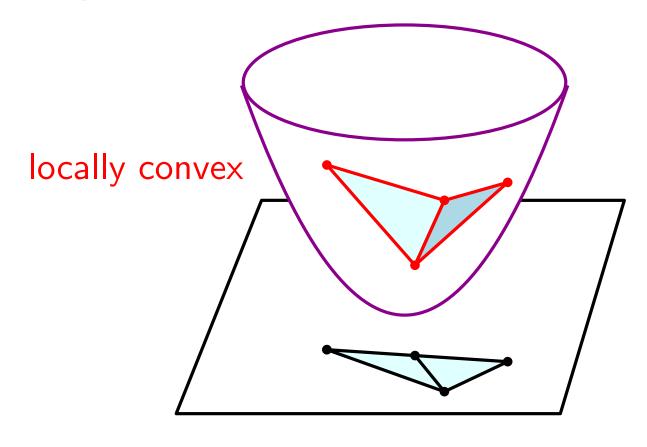




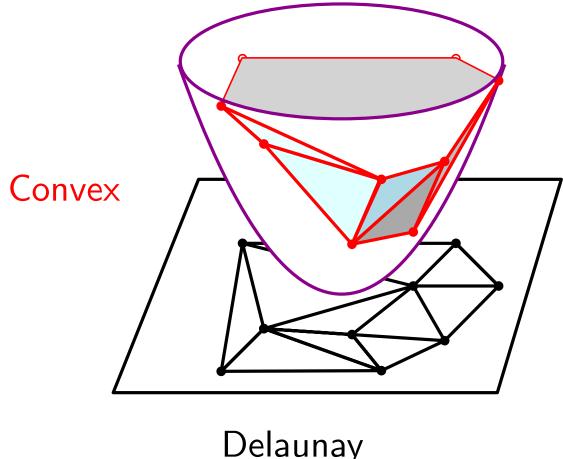


Delaunay is obtained



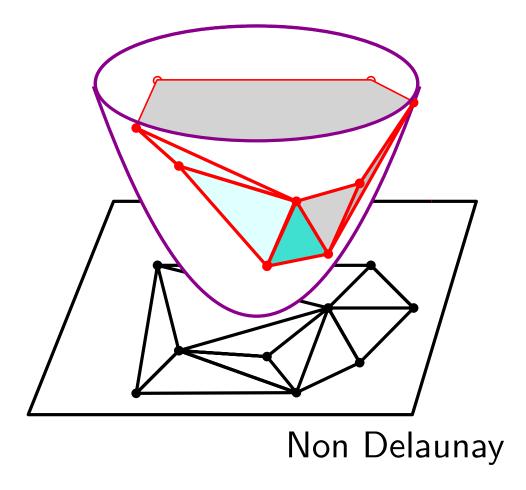


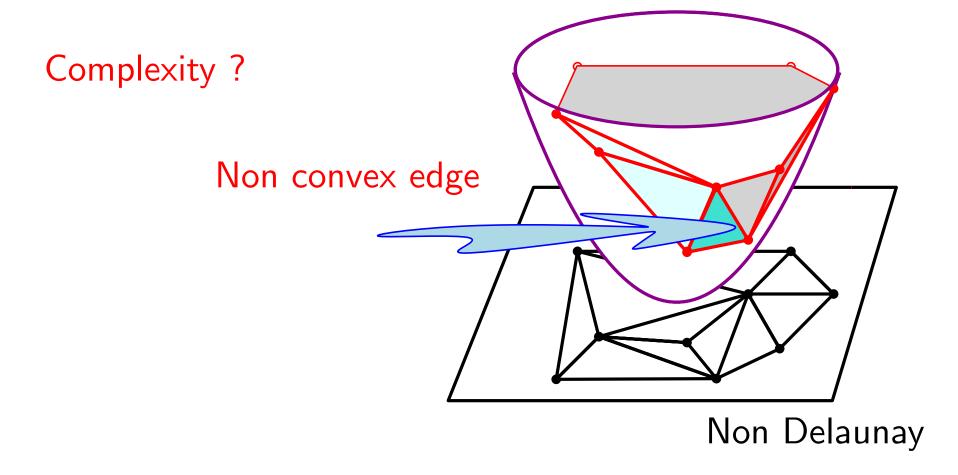
Locally Delaunay



Complexity?

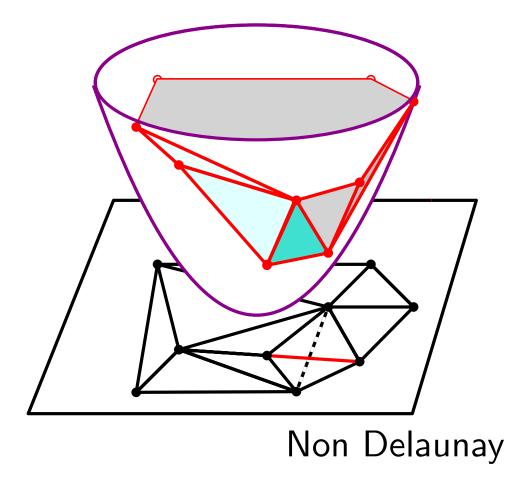
Non convex





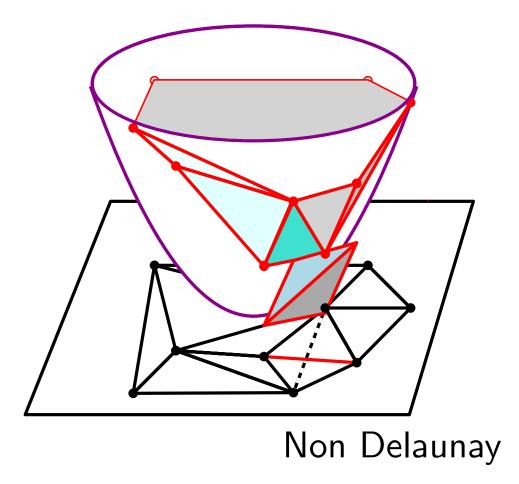
Complexity?

Non convex



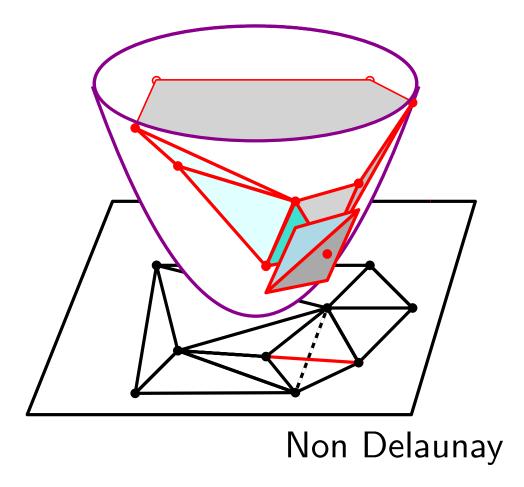
Complexity?

Non convex



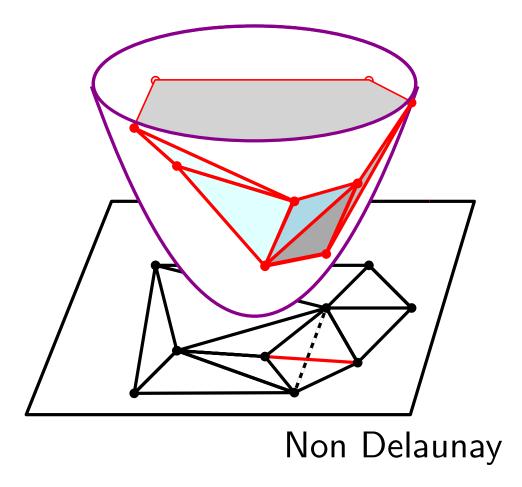
Complexity?

Non convex



Complexity?

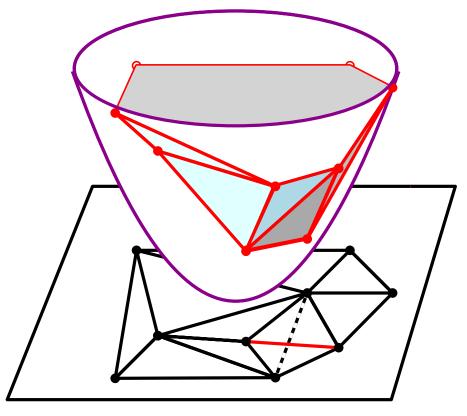
Non convex



Complexity?

Non convex

Flip



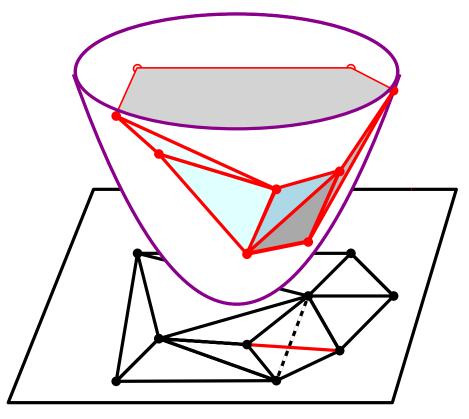
An hidden edge cannot be visible again

Non Delaunay

Complexity?

Non convex

Flip



An hidden edge cannot be visible again

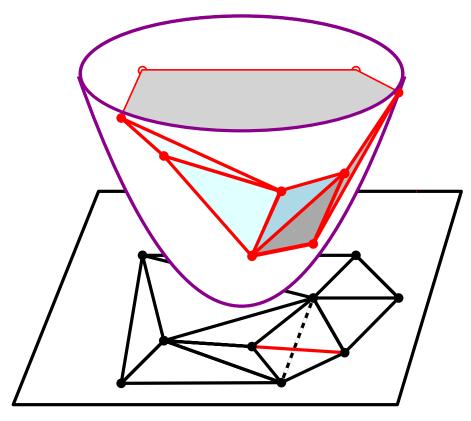
Non Delaunay

At most
$$\frac{n(n-1)}{2}$$
 edges

Complexity?

Non convex

Flip



An hidden edge cannot be visible again

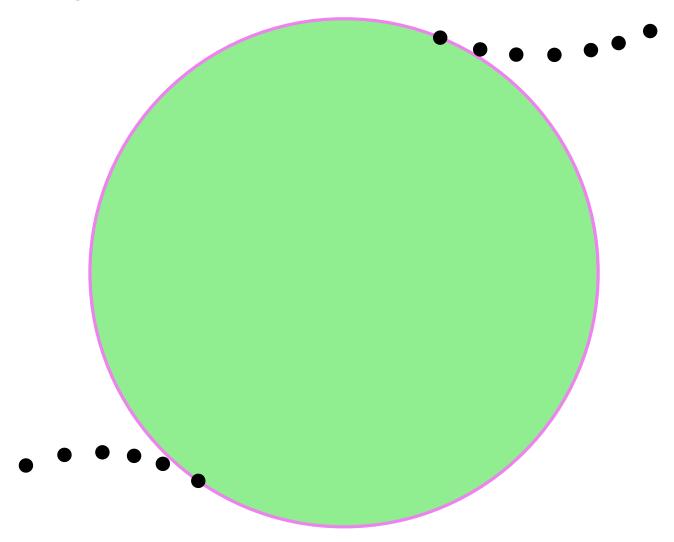
Non Delaunay

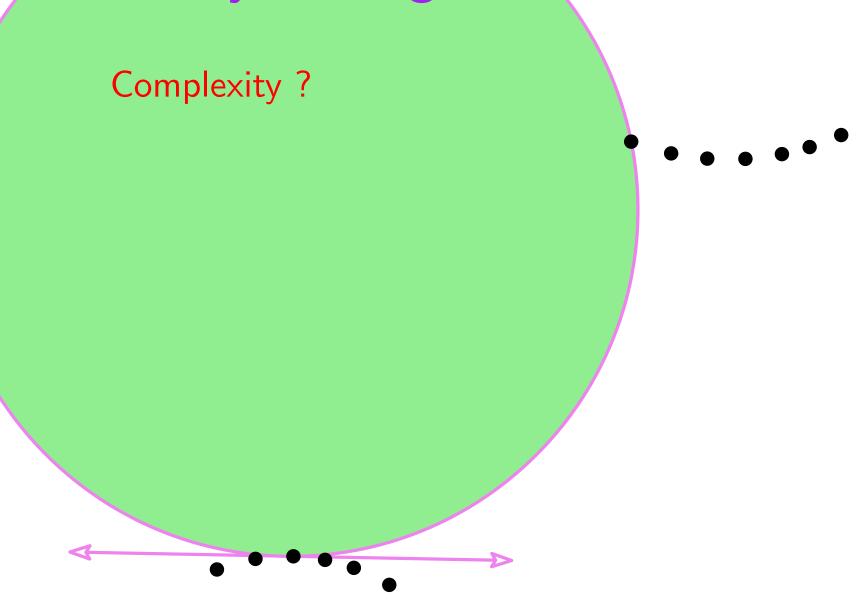
At most
$$\frac{n(n-1)}{2}$$
 edges

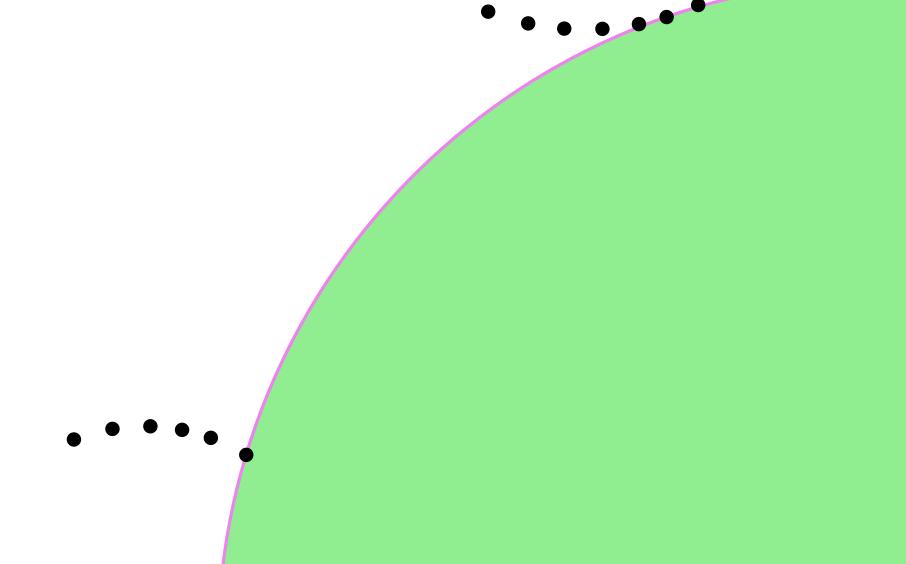
Complexity of diagonal flipping is $O(n^2)$

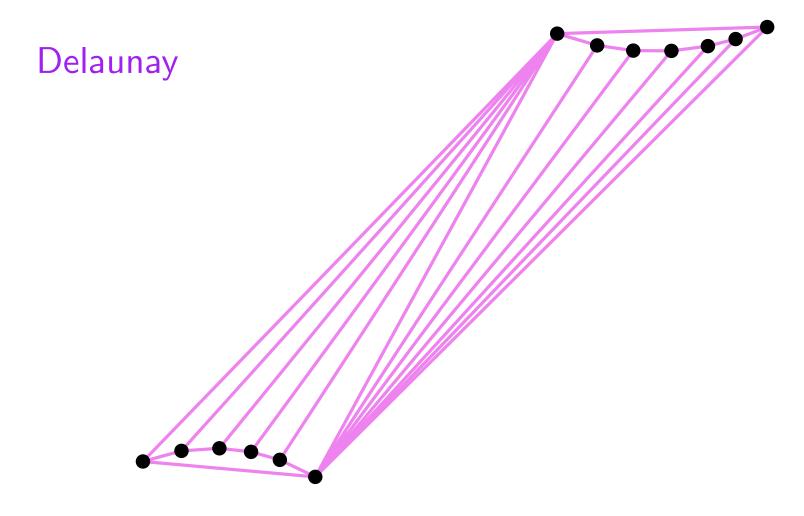
Complexity?

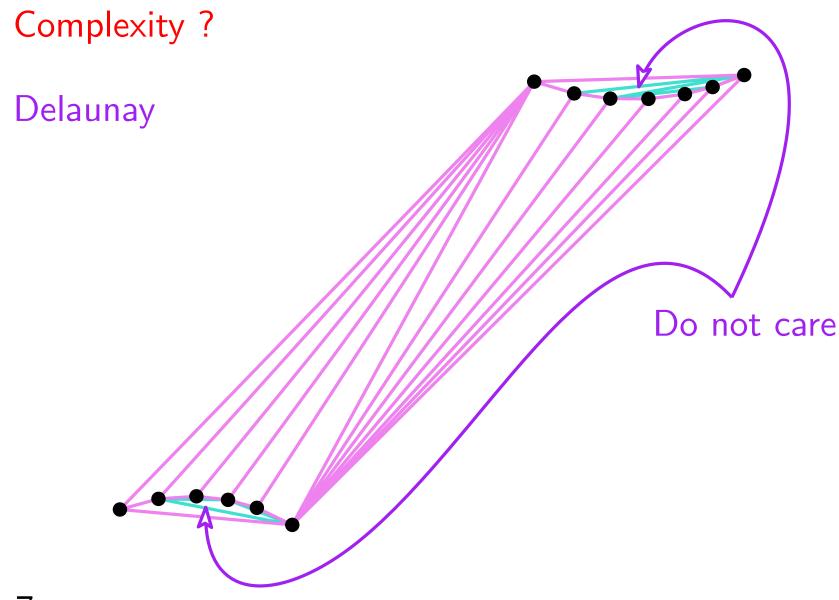
• • • • •

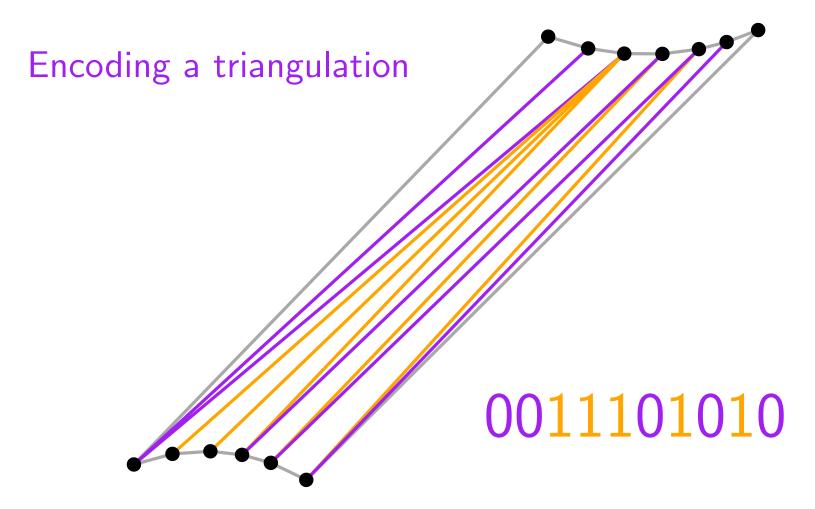






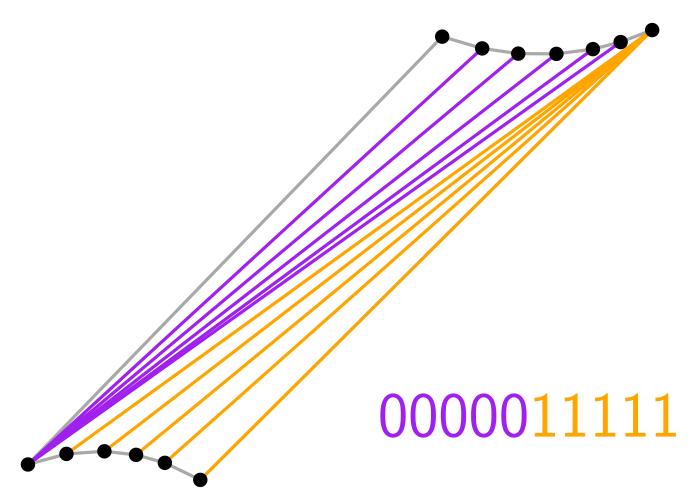




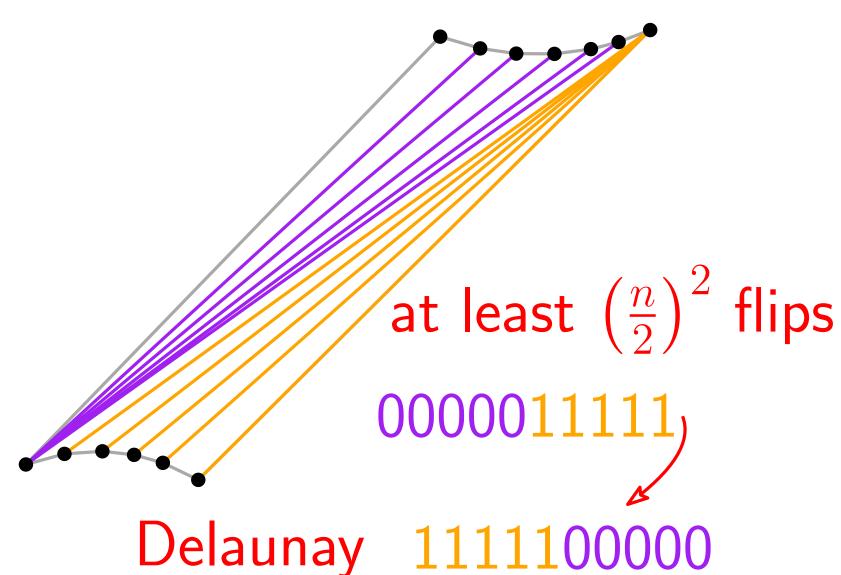


Complexity? Delaunay 1111100000

Complexity? Encoding a triangulation Flip 0011101010 swap



Complexity?



38 - 12

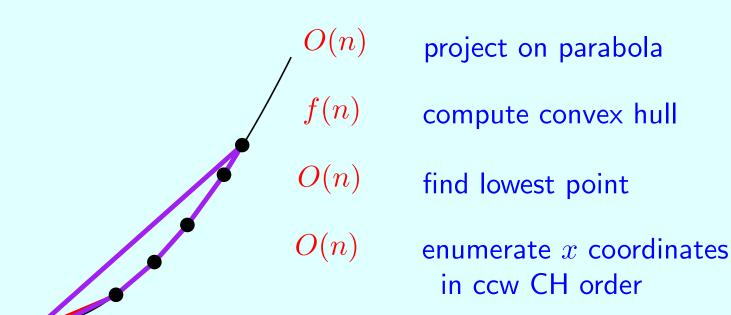
Borne inférieure de complexité

Delaunay Triangulation: lower bound

Convex hull

Lower bound

A stupid algorithm for sorting numbers



Lower bound on sorting

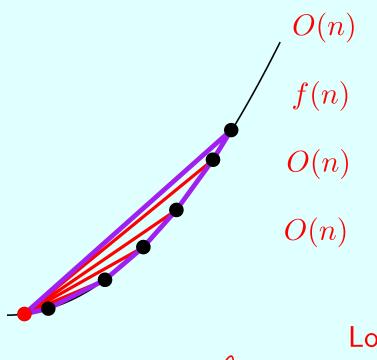
$$\implies f(n) + O(n) \ge \Omega(n \log n)$$

Delaunay Triangulation: lower bound

Convex hull

Lower bound

A stupid algorithm for sorting numbers



project on parabola

compute coDelaunay

find lowest point

enumerate x coordinates in ccw CH order

Lower bound on sorting

$$\implies f(n) + O(n) \ge \Omega(n \log n)$$

Point location in Delaunay

Delaunay Triangulation: pencils of circles

Power of a point w.r.t a circle

$$x^2 + y^2 - 2ax - 2by + c$$

Delaunay Triangulation: pencils of circles

Power of a point w.r.t a circle

$$x^2 + y^2 - 2ax - 2by + c$$

=0

on the circle

< 0

inside the circle

> 0

outside the circle

Delaunay Triangulation: pencils of circles

Power of a point w.r.t a circle

$$\lambda (x^{2} + y^{2} - 2a'x - 2b'y + c')$$

$$+(1 - \lambda)(x^{2} + y^{2} - 2ax - 2by + c) = 0$$

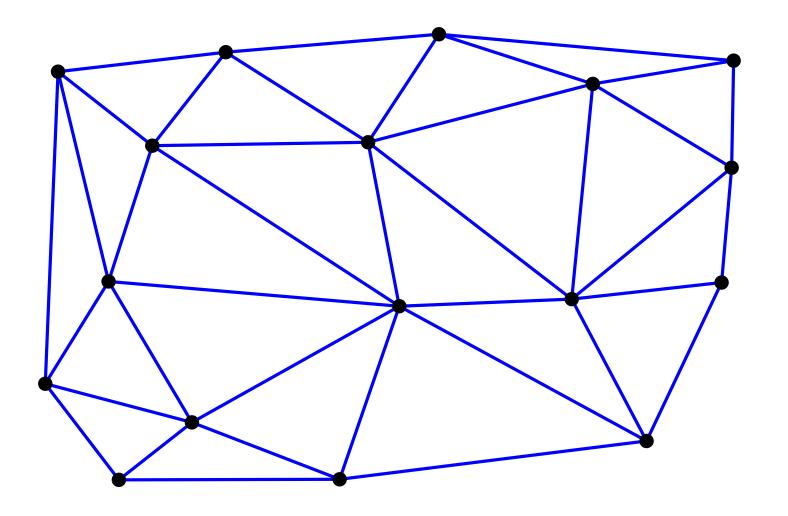
blue yields smaller power

equal power

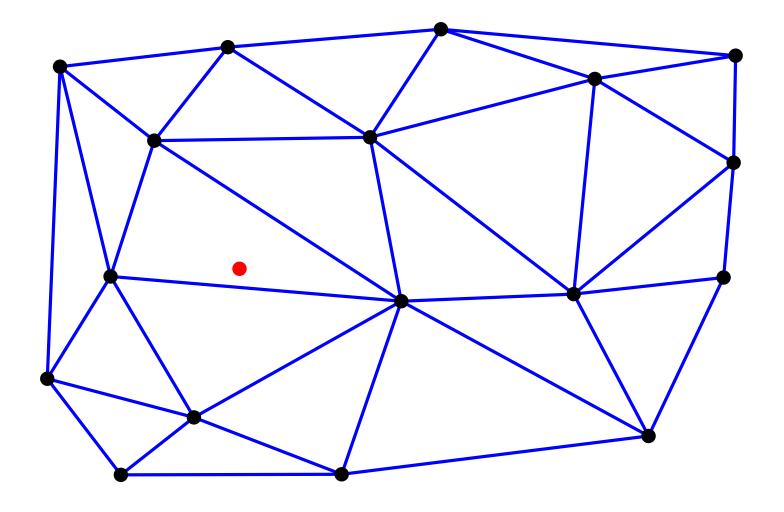
black yields smaller power

42 - 3

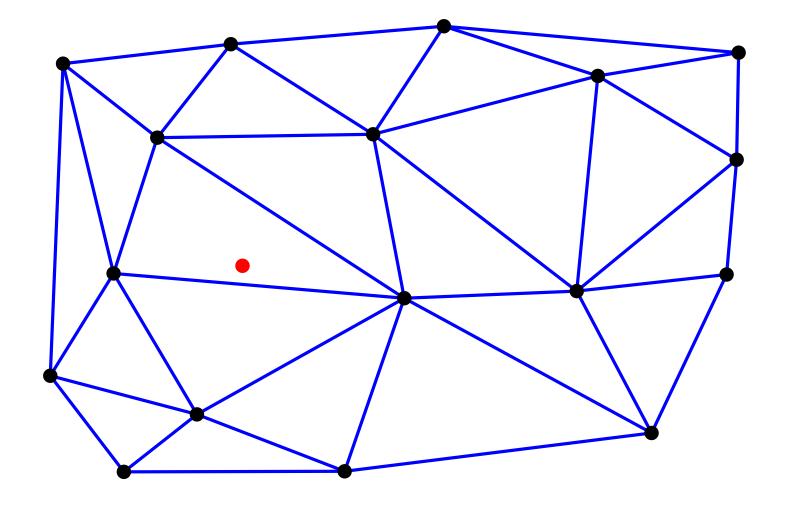
Delaunay Triangulation: incremental algorithm



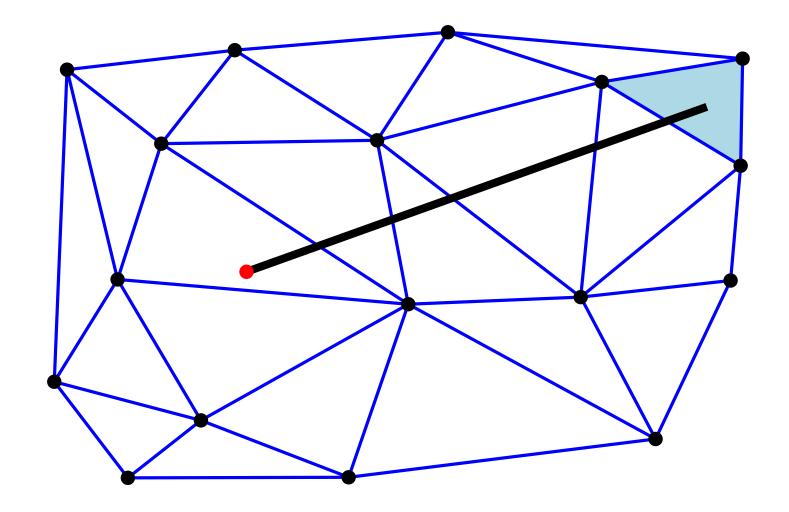
New point



New point

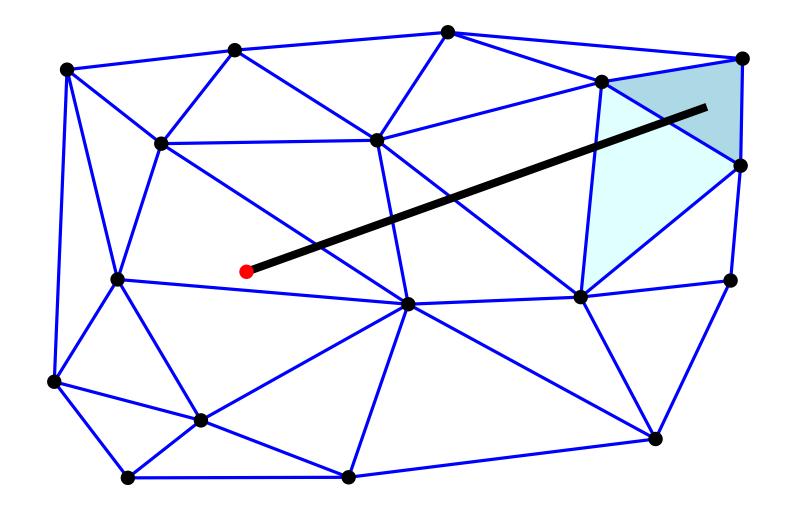


New point



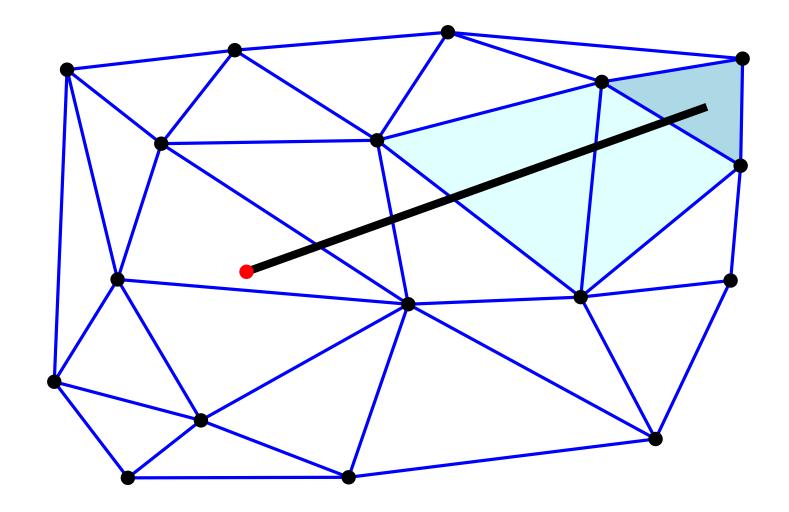
e.g.: straight walk

New point



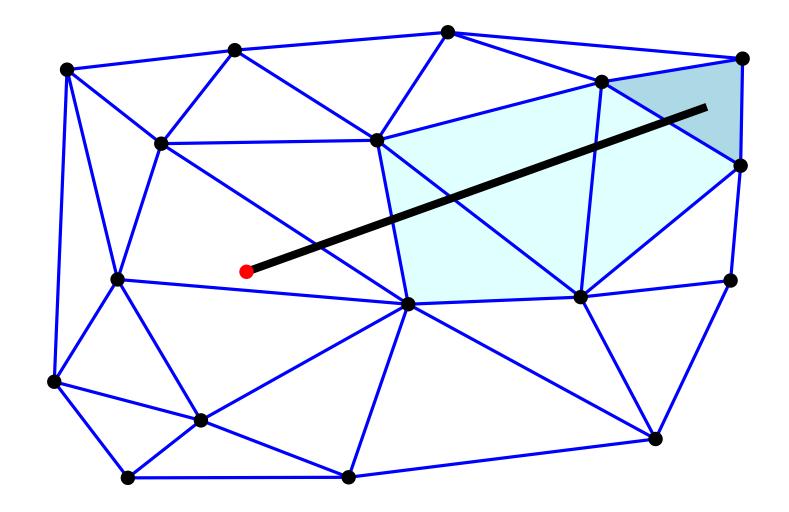
e.g.: straight walk

New point



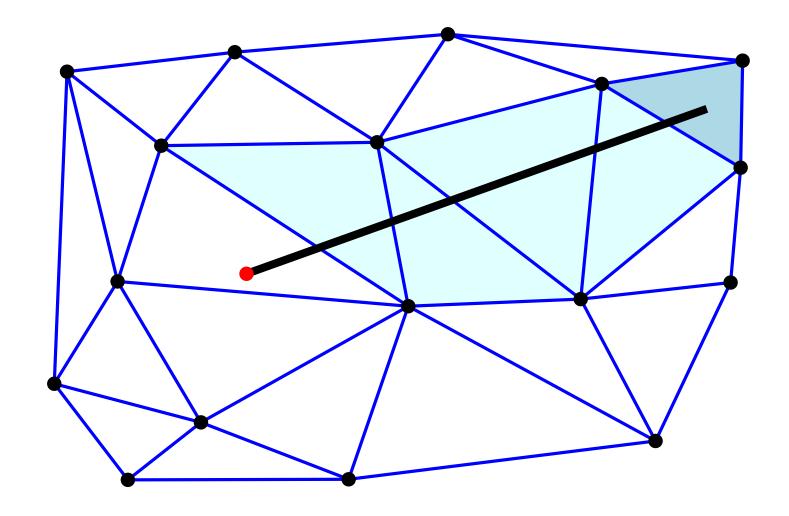
e.g.: straight walk

New point



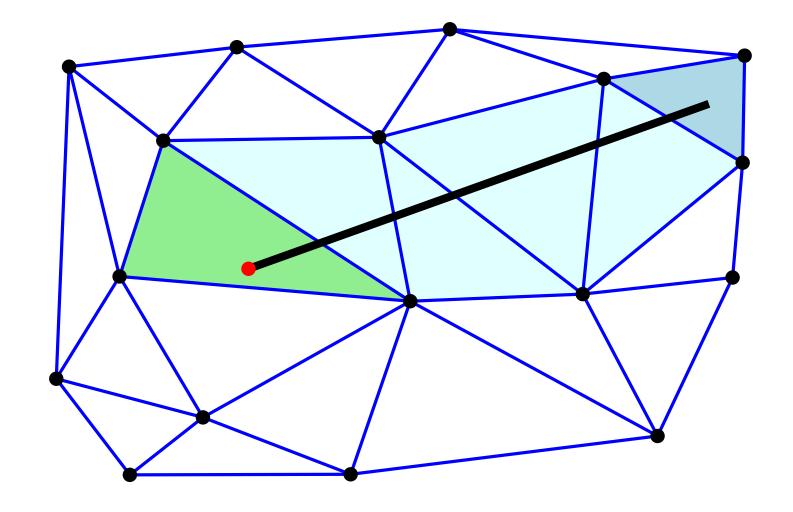
e.g.: straight walk

New point



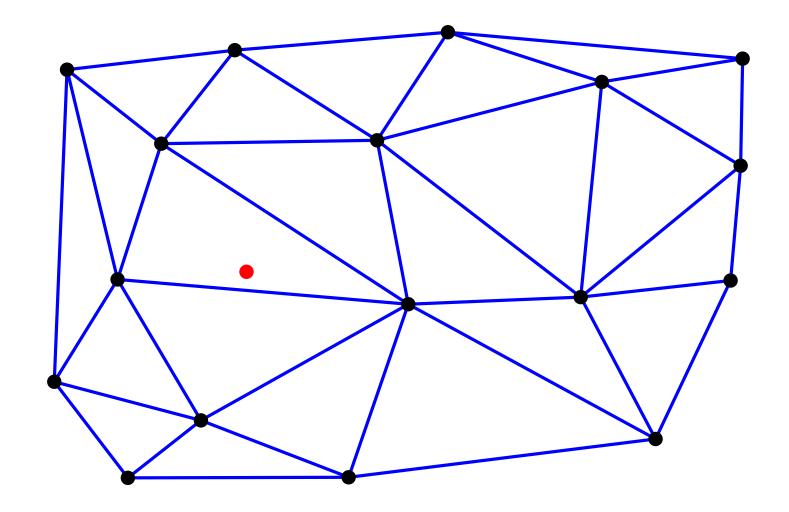
e.g.: straight walk

New point



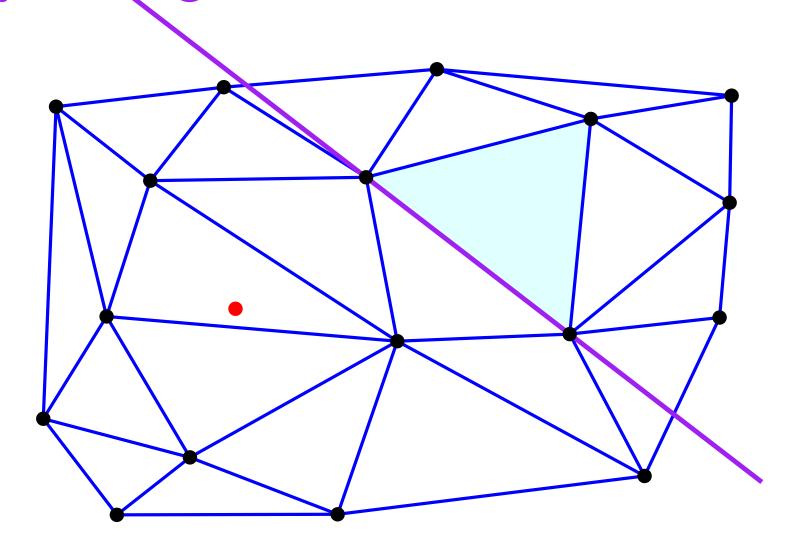
e.g.: straight walk

New point



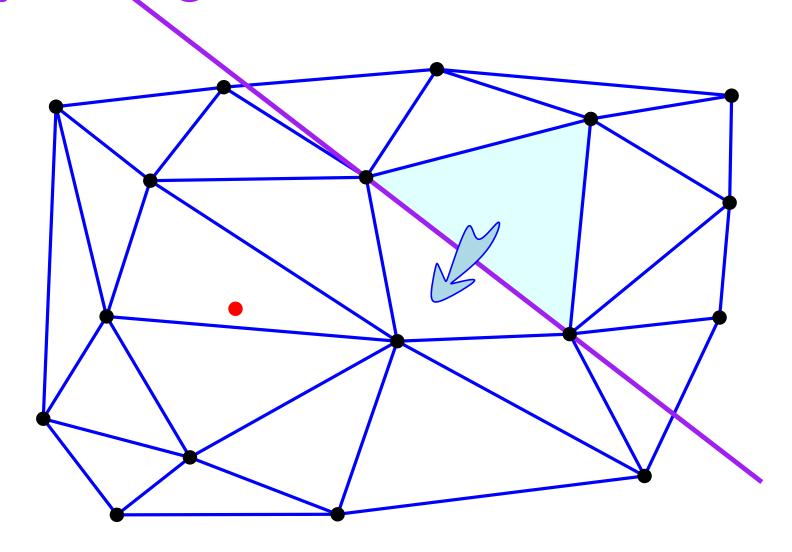
e.g.: visibility walk

New point



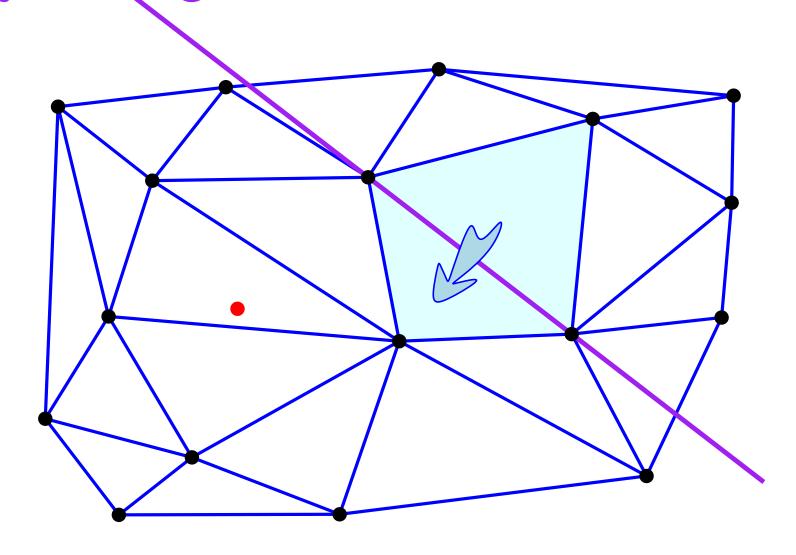
e.g.: visibility walk

New point



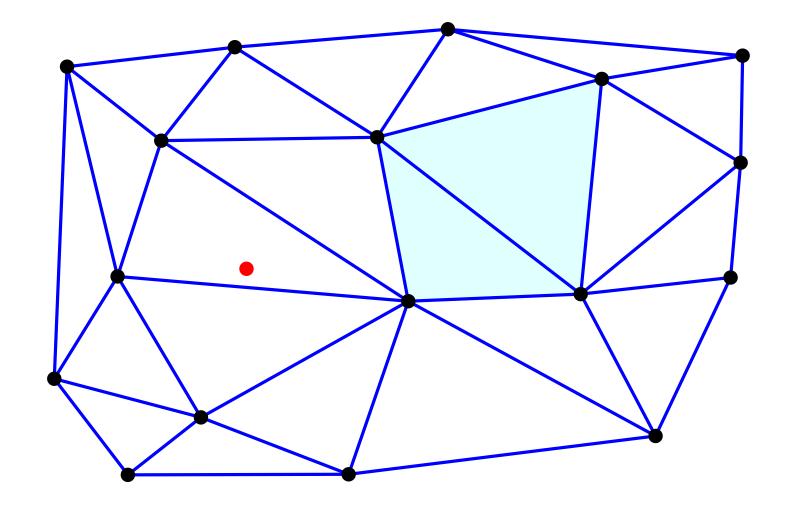
e.g.: visibility walk

New point



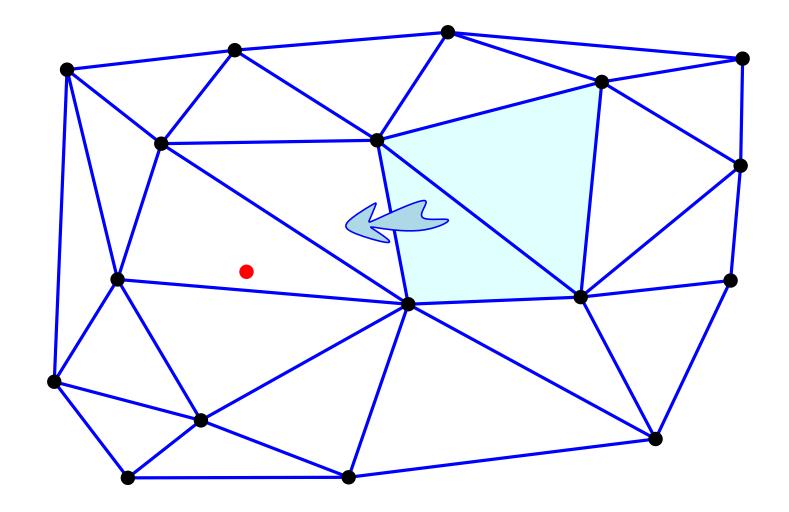
e.g.: visibility walk

New point



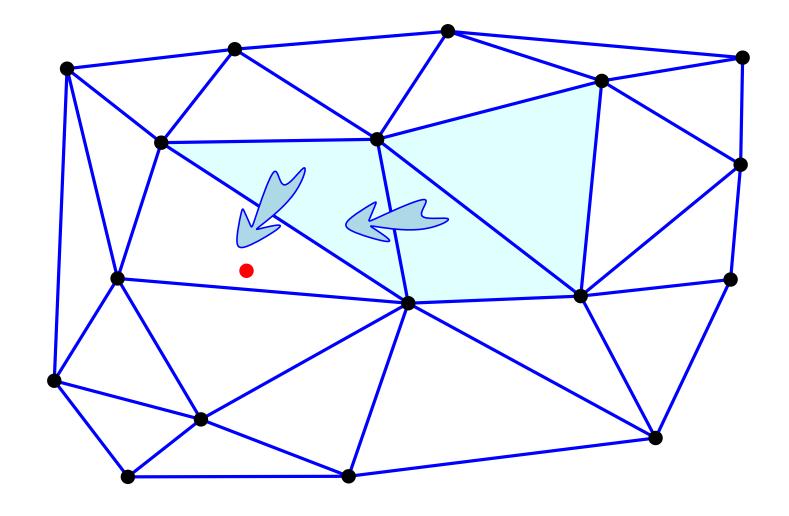
e.g.: visibility walk

New point



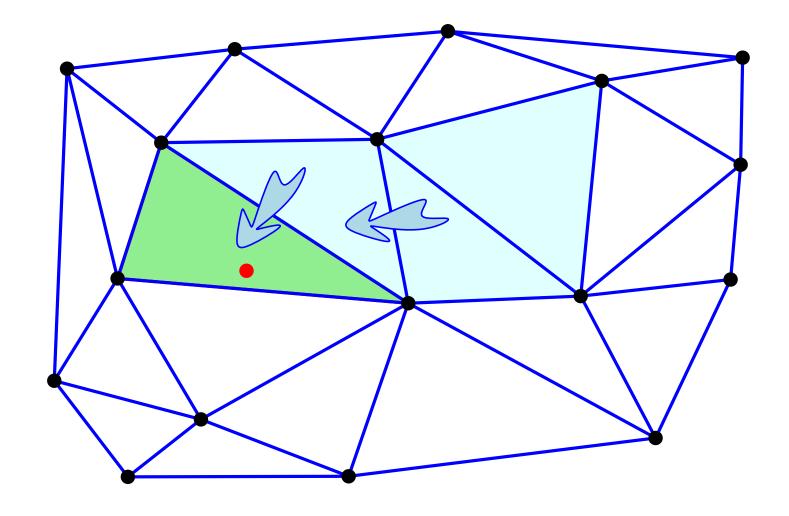
e.g.: visibility walk

New point



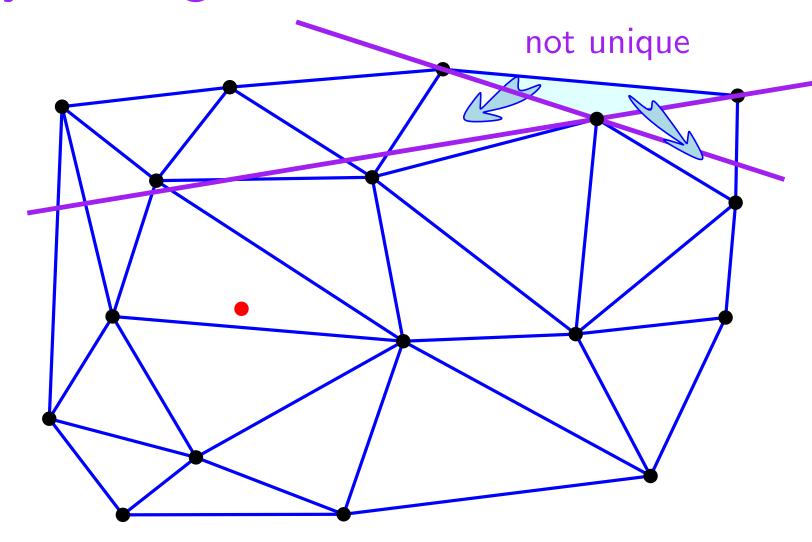
e.g.: visibility walk

New point



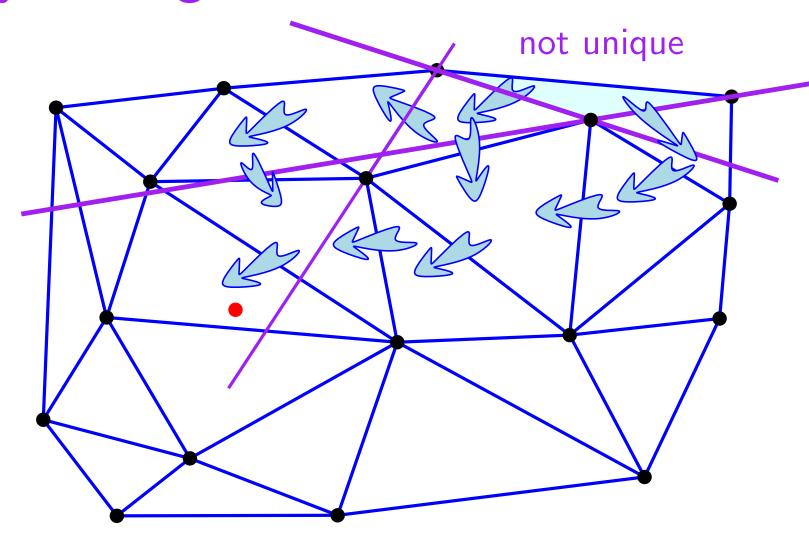
e.g.: visibility walk

New point



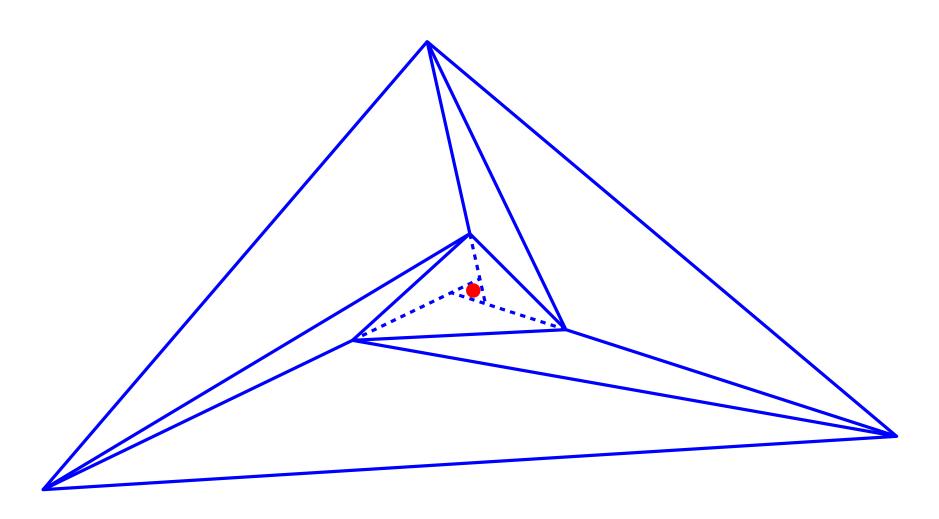
e.g.: visibility walk

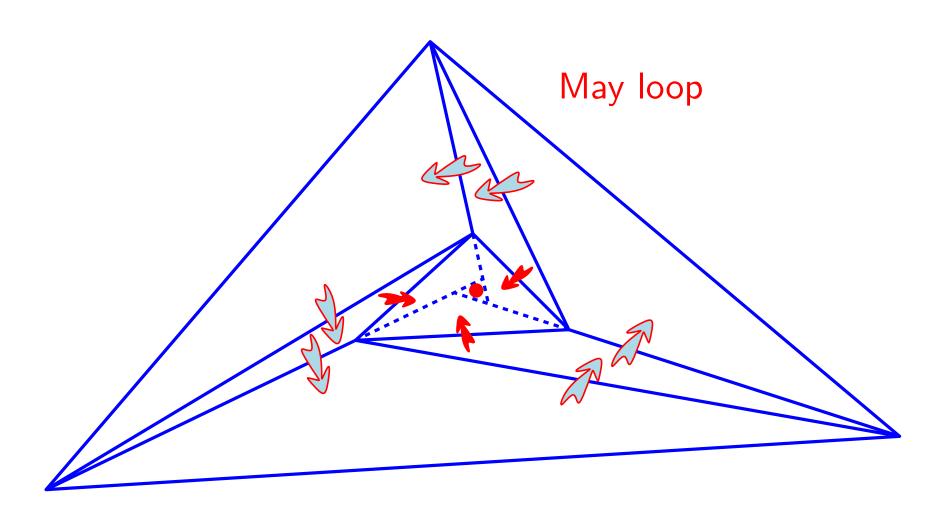
New point

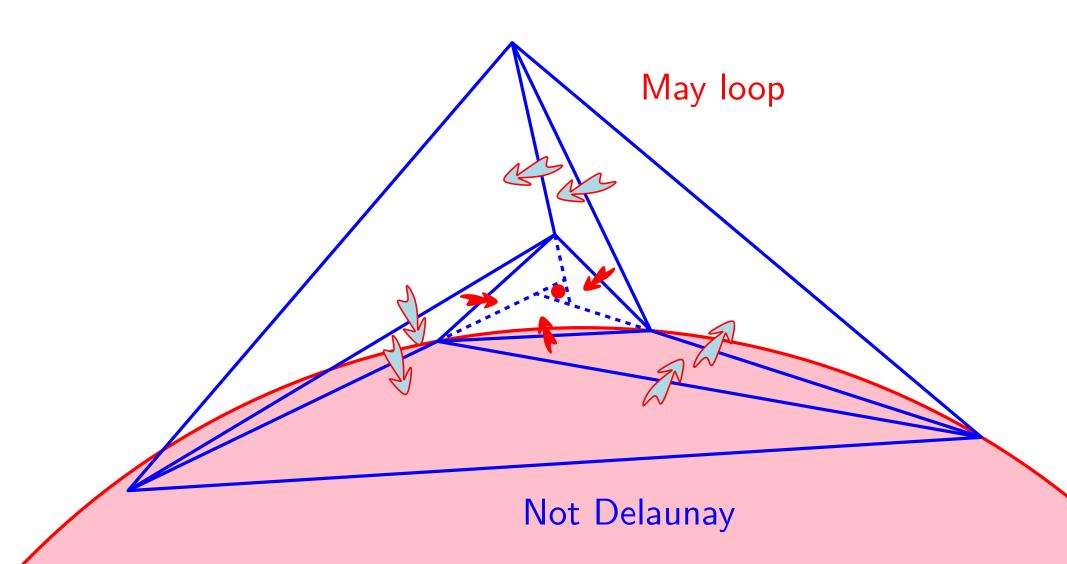


e.g.: visibility walk

Delaunay Triangulation: incremental algorithm Visibility walk terminates







Visibility walk terminates

Power of a point w.r.t a circle

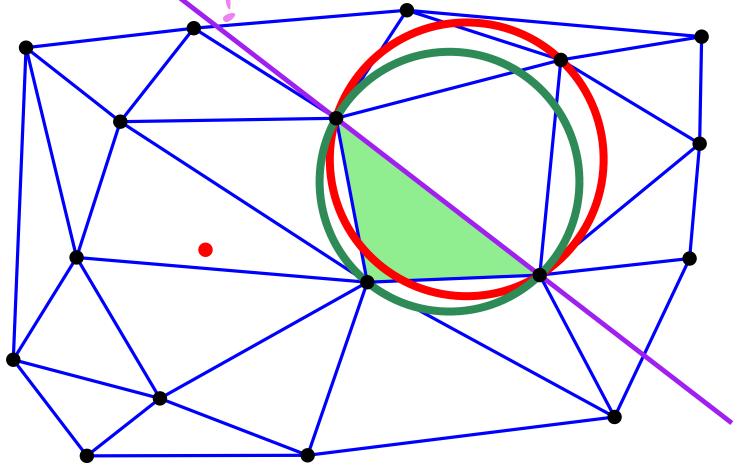
$$\lambda (x^2 + y^2 - 2a'x - 2b'y + c')$$

$$+(1 - \lambda) (x^2 + y^2 - 2ax - 2by + c) = 0$$

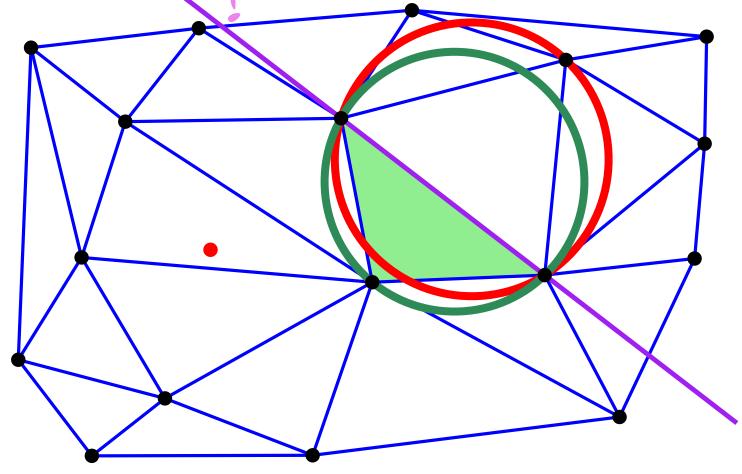
blue yields smaller power

black yields smaller power

equal power

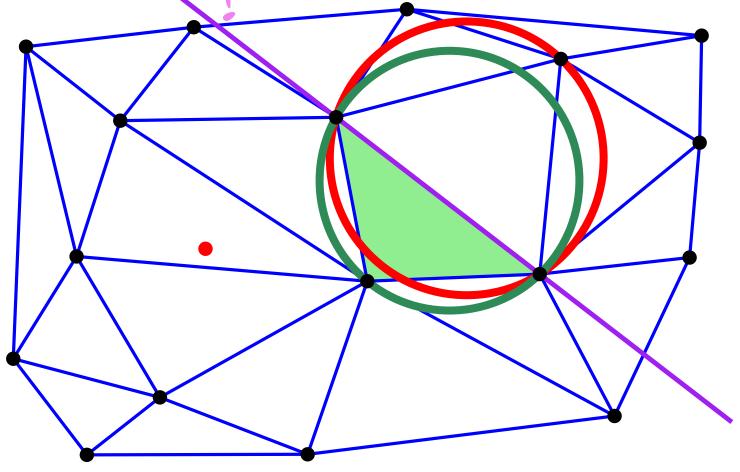


Visibility walk terminates



Green power < Red power

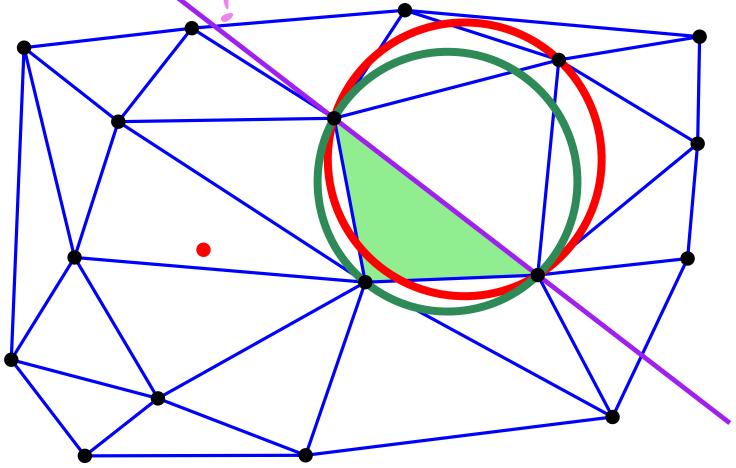
Visibility walk terminates



Green power < Red power

Power decreases

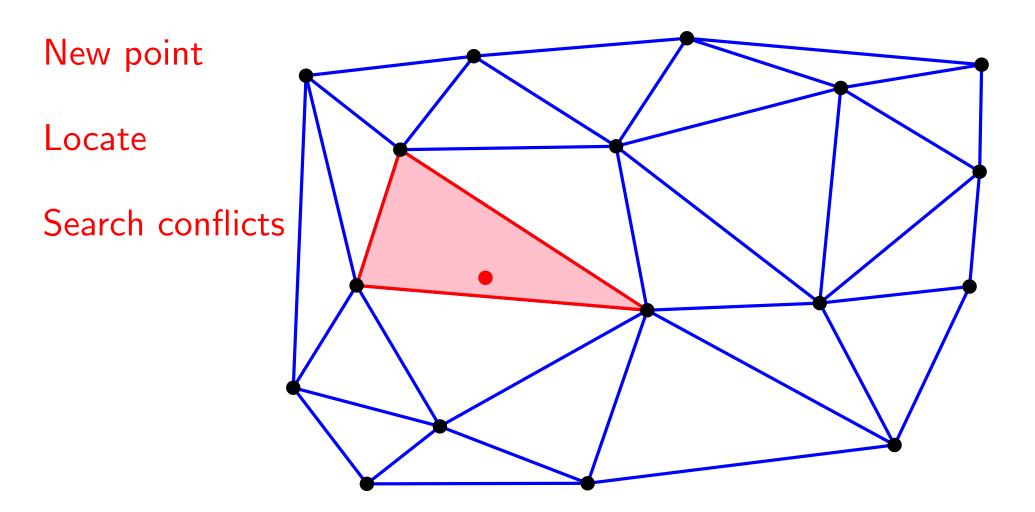
Visibility walk terminates

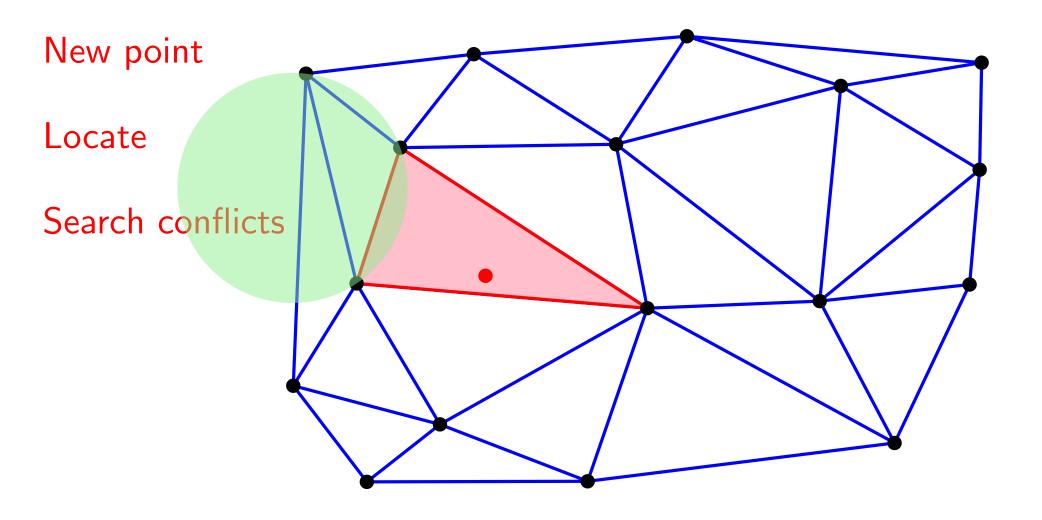


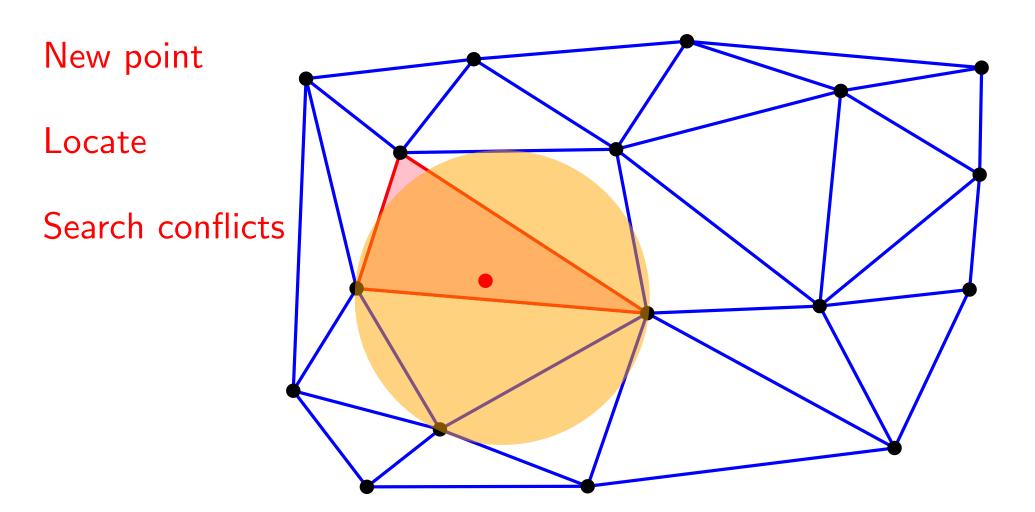
Green power < Red power

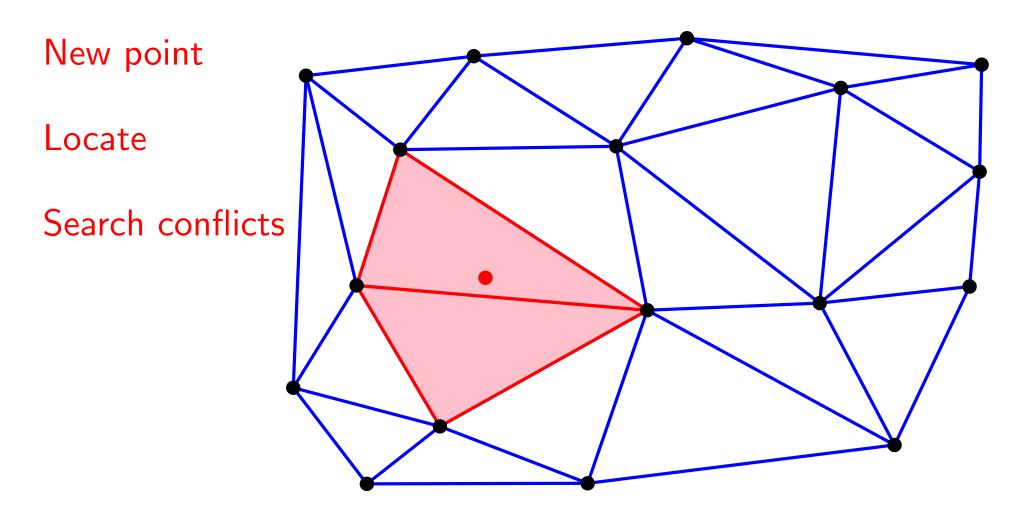
Power decreases

Algorithm: incremental





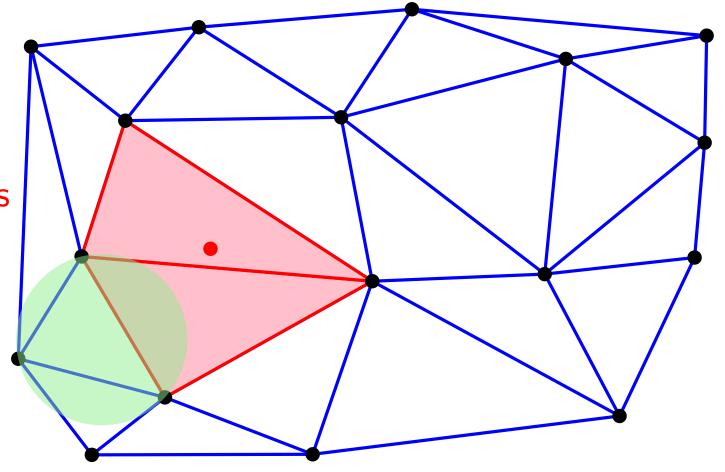


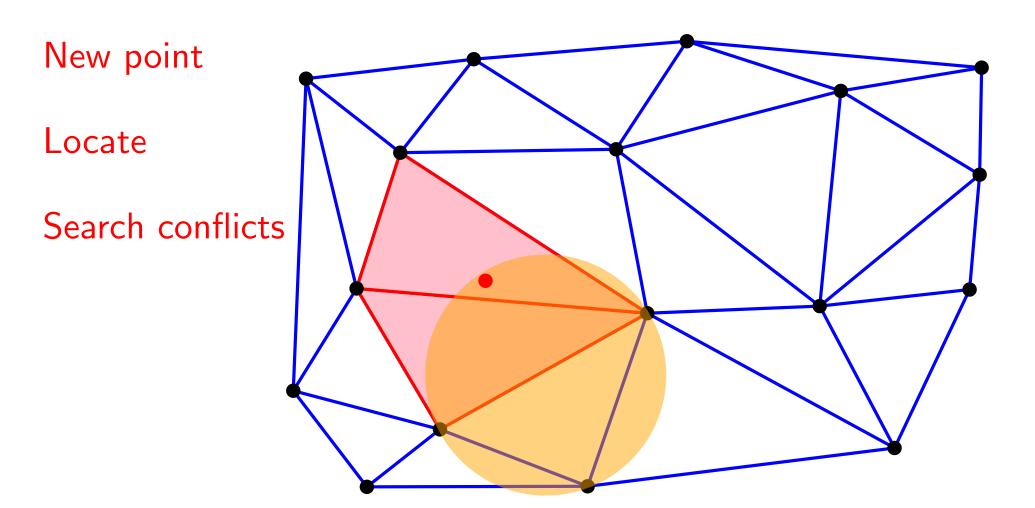


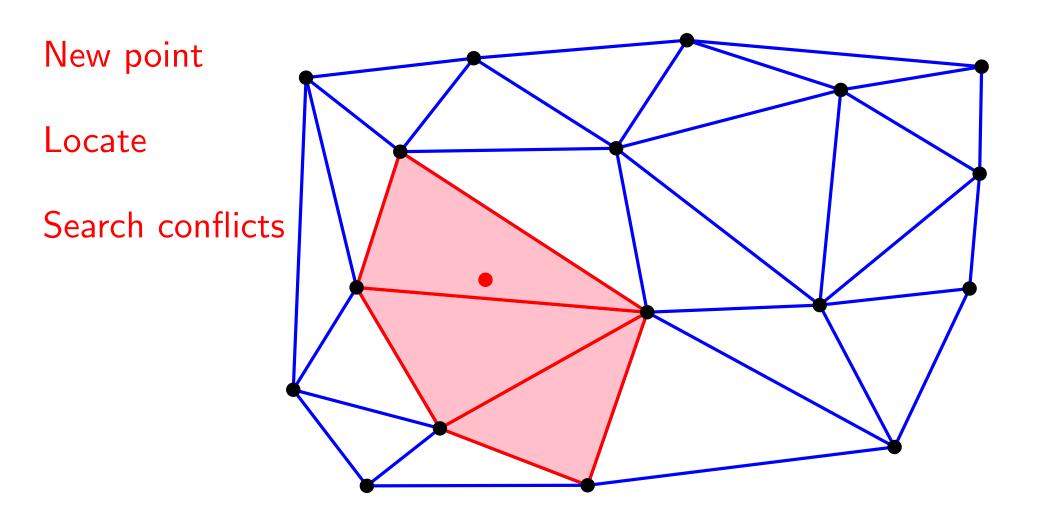
New point

Locate

Search conflicts



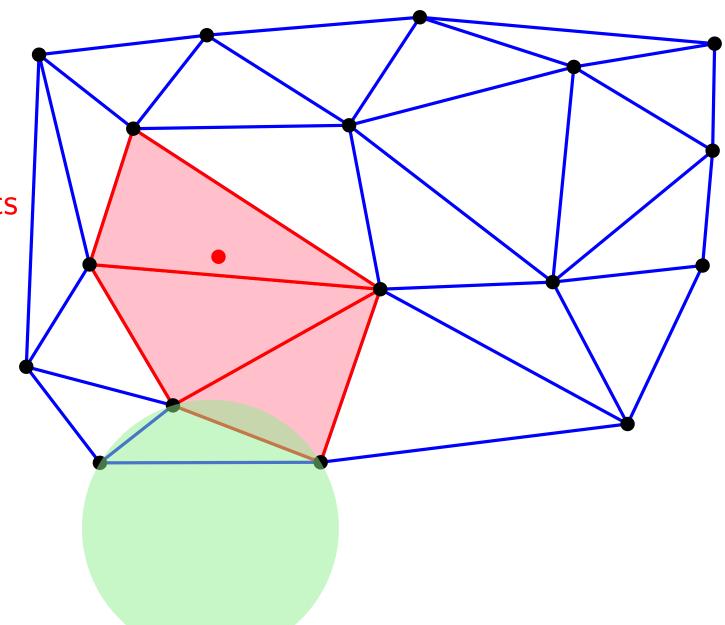




New point

Locate

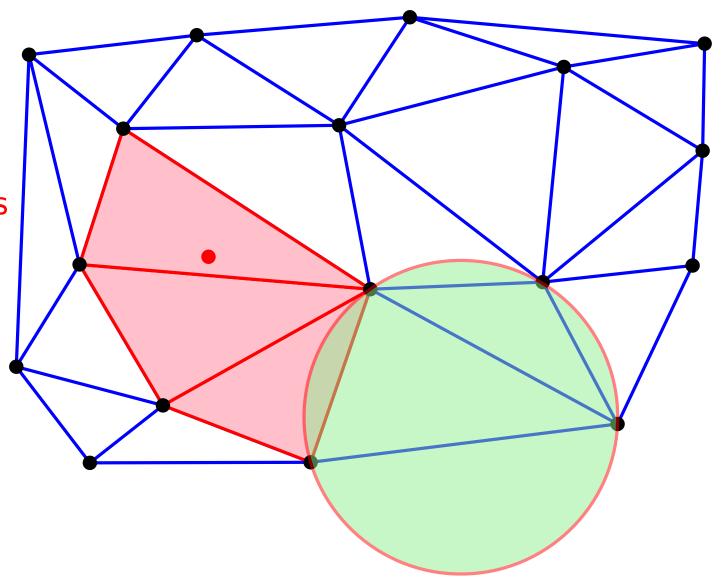
Search conflicts

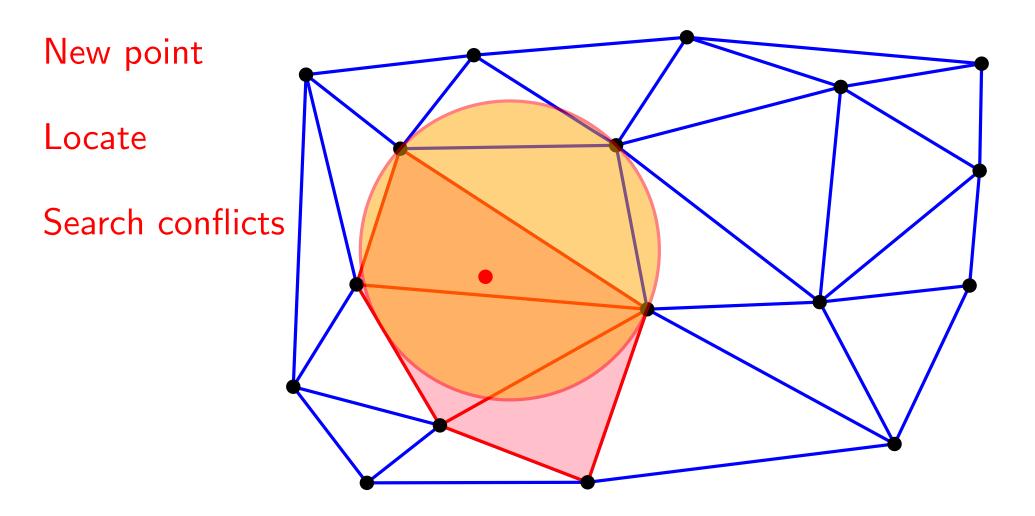


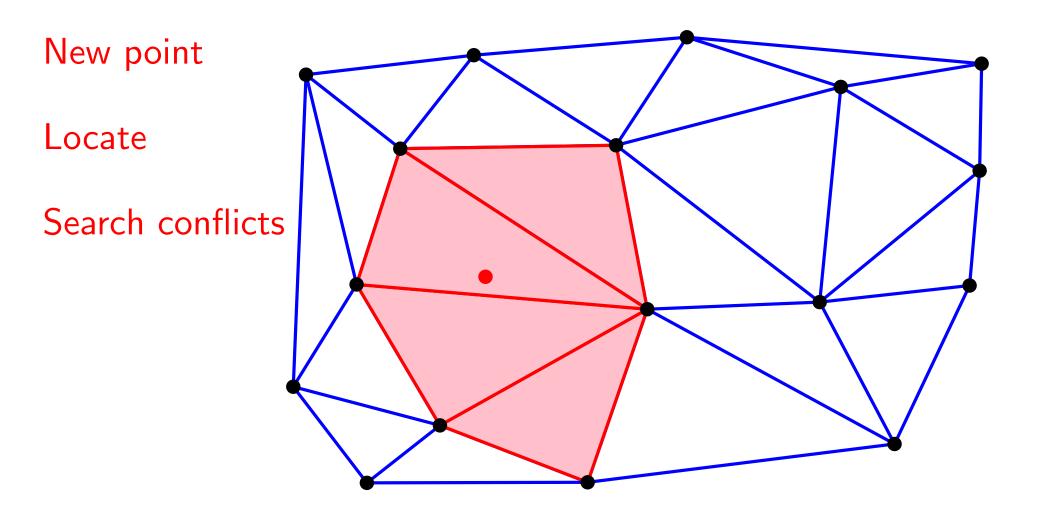
New point

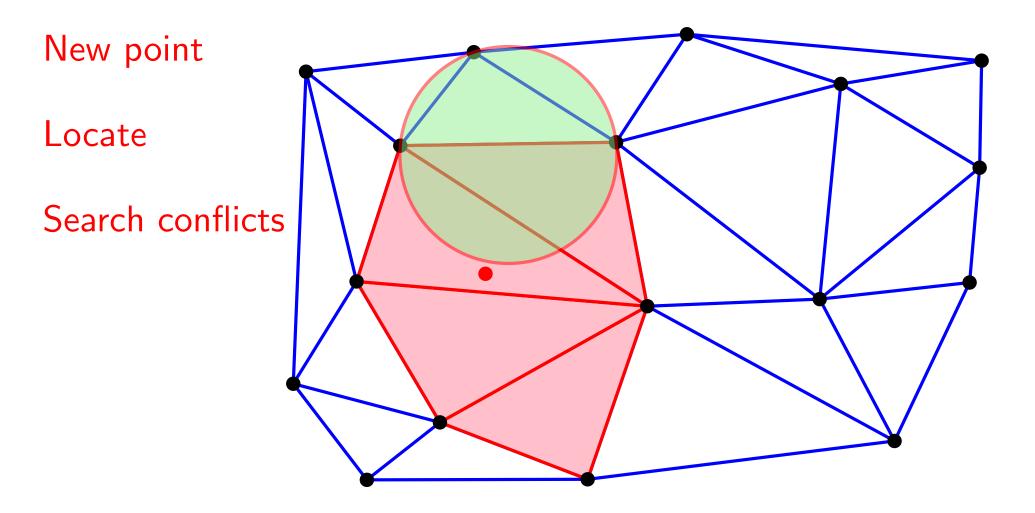
Locate

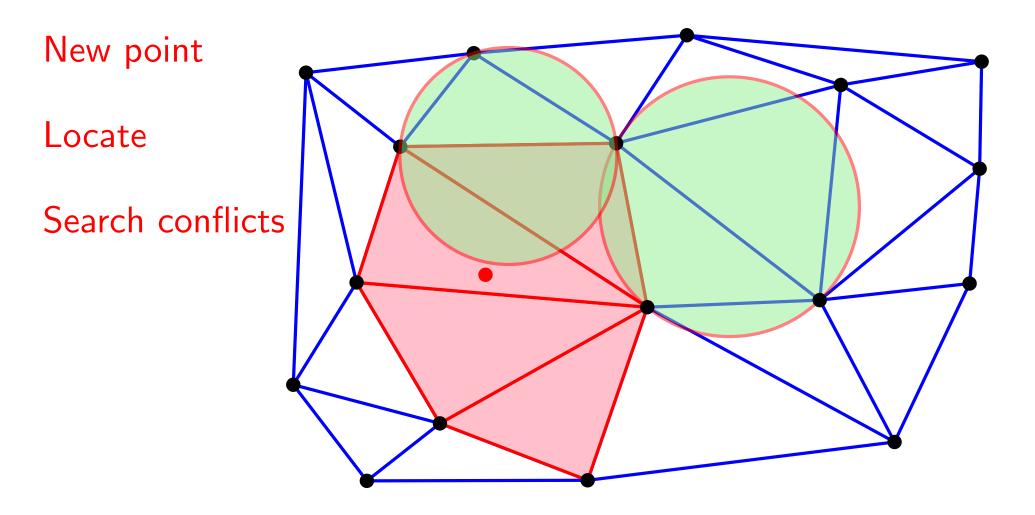
Search conflicts



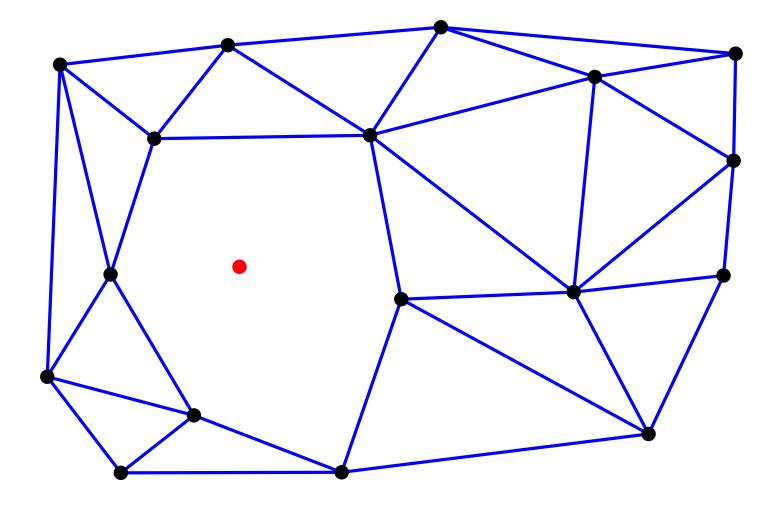




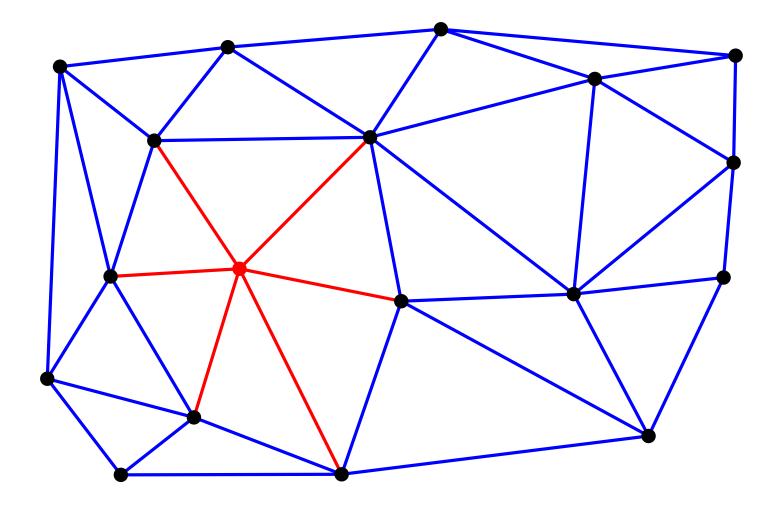




New point



New point



Complexity

Locate

Search conflicts

Complexity

Locate

Search conflicts

triangles in conflict

triangles neighboring triangles in conflict

Complexity

Locate

Search conflicts

triangles in conflict

triangles neighboring triangles in conflict

degree of new point in new triangulation

< n

Complexity

Locate

Walk may visit all triangles

< 2n

Search conflicts

degree of new point in new triangulation

< n

Complexity

Locate

O(n) per insertion

Search conflicts

Complexity

Locate

O(n) per insertion

Search conflicts

 $O(n^2)$ for the whole construction

Complexity

Locate

Search conflicts

half-parabola and circle

Complexity

Locate

Search conflicts

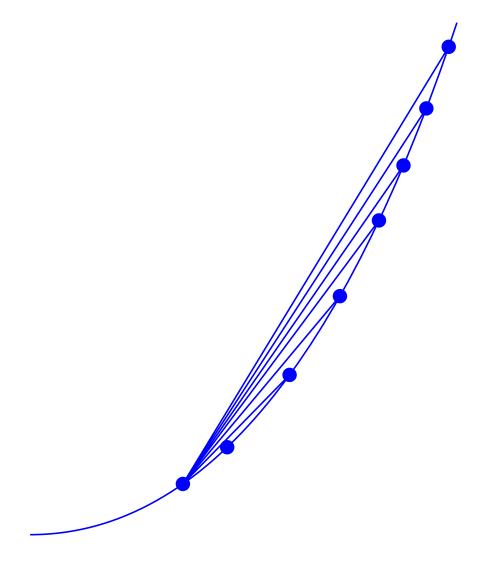
half-parabola and circle

Delaunay triangle

Complexity

Locate

Search conflicts



Complexity

Locate

Search conflicts

Insertion: $\Omega(n)$

Whole construction: $\Omega(n^2)$

Complexity

In practice

Locate

Many possibilities (walk, Delaunay hierarchy)

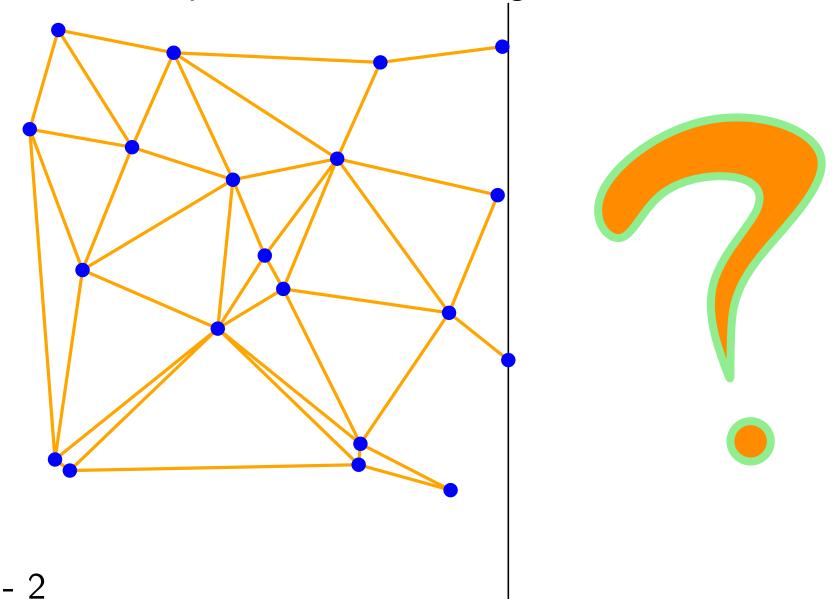
Search conflicts

Randomized

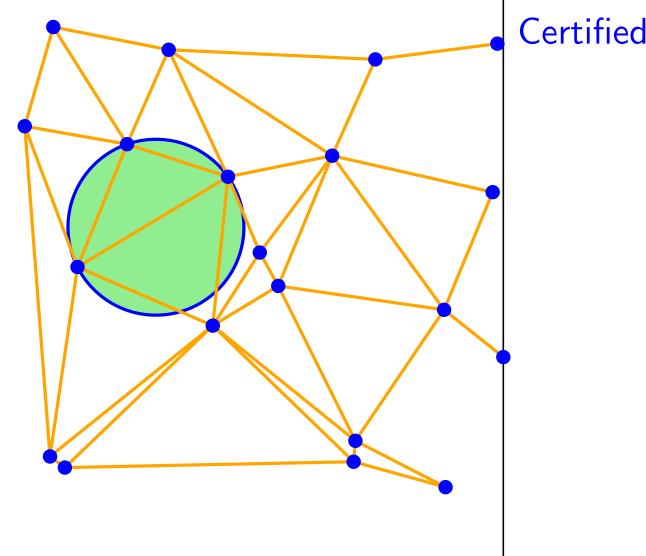
Algorithm: sweep line

Discover the points from left to right

Discover the points from left to right

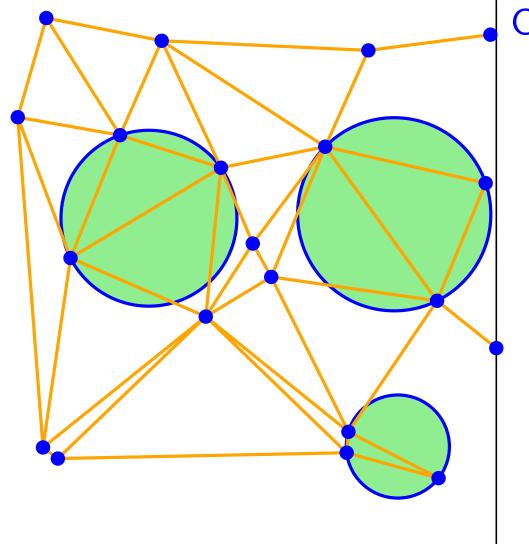


Discover the points from left to right



Certified Delaunay triangles

Discover the points from left to right

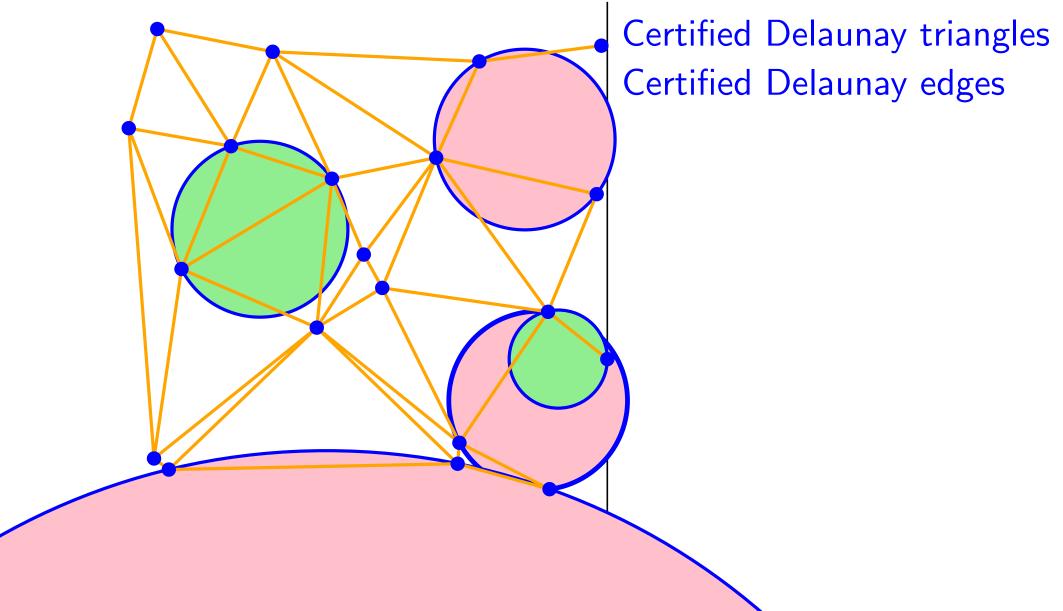


Certified Delaunay triangles

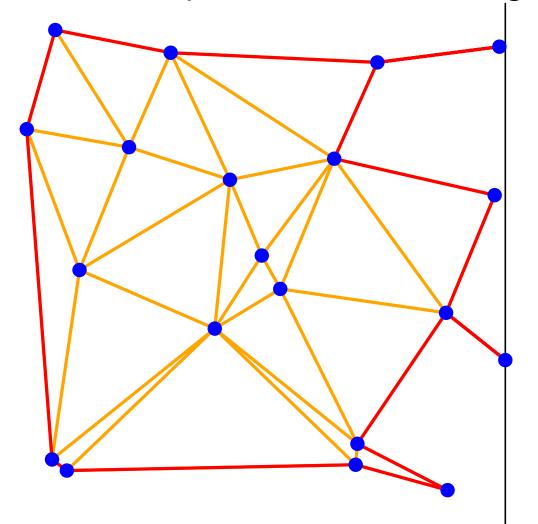
Discover the points from left to right

Certified Delaunay triangles

Discover the points from left to right

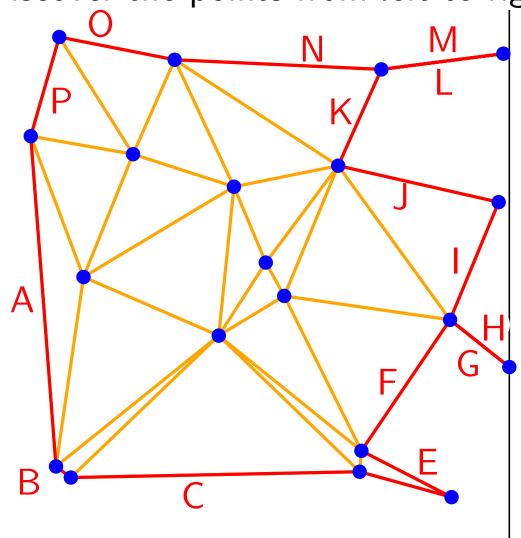


Discover the points from left to right



Boundary edges

Discover the points from left to right

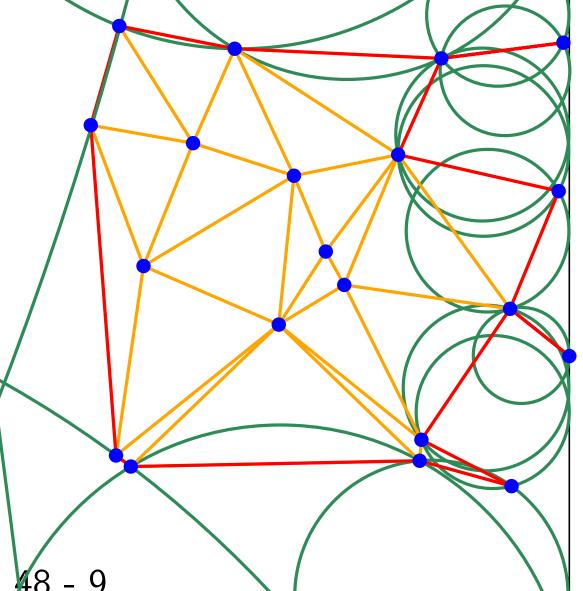


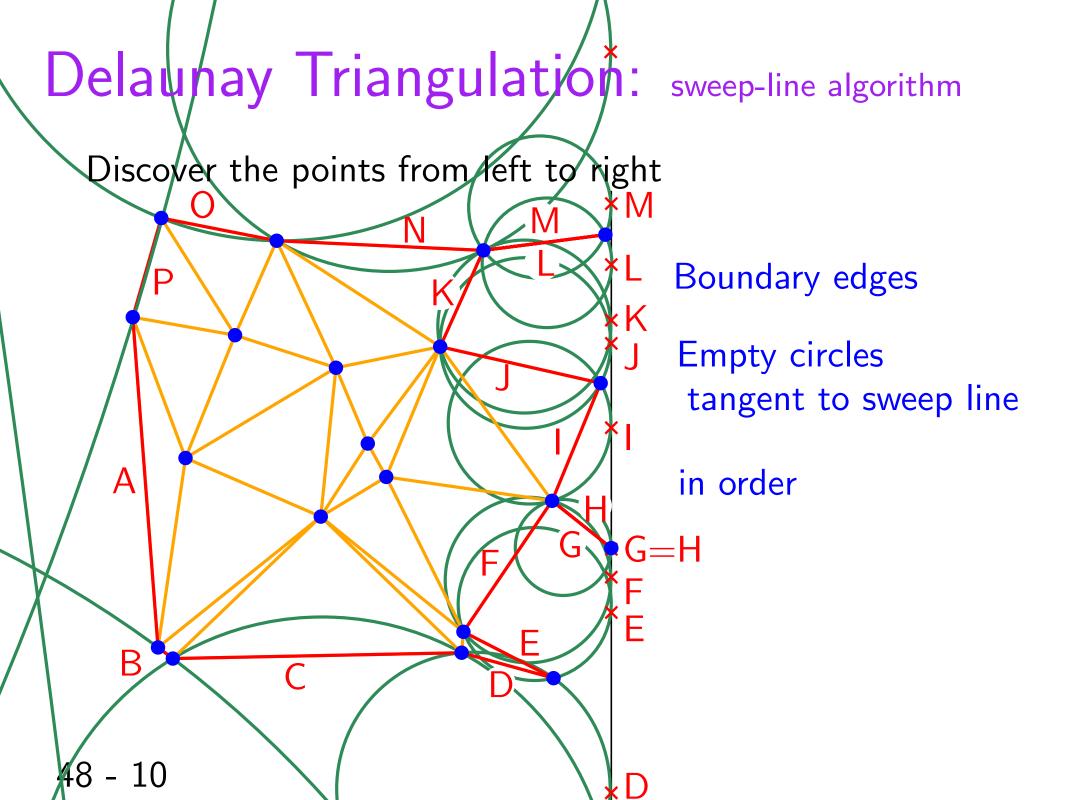
Boundary edges

Discover the points from left to right

Boundary edges

Empty circles tangent to sweep line



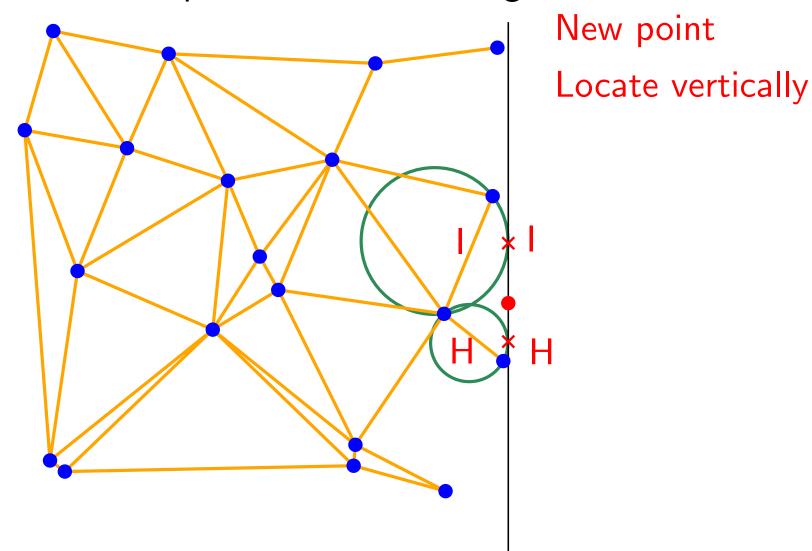


Discover the points from left to right

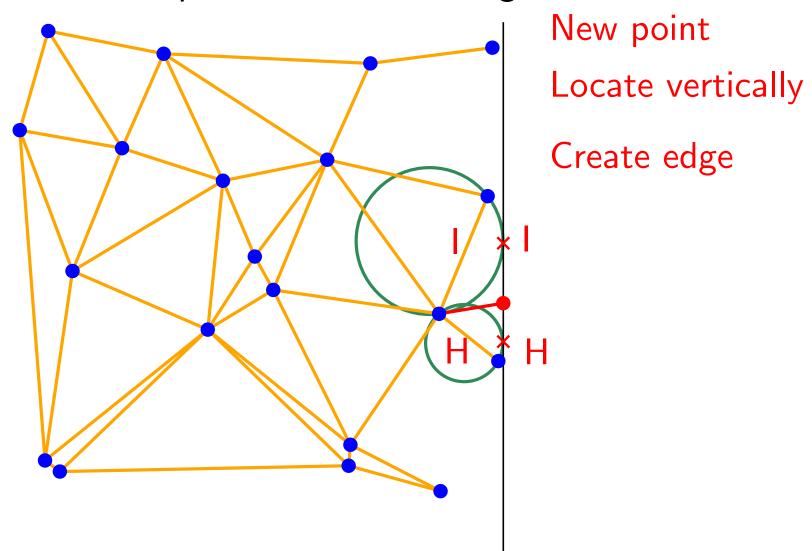
New point

Empty circles tangent to sweep line

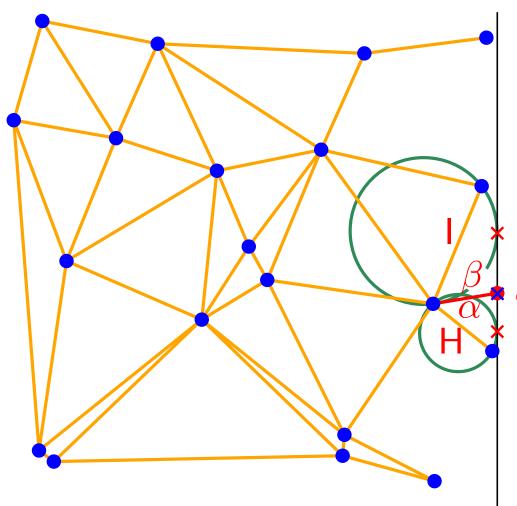
Discover the points from left to right



Discover the points from left to right



Discover the points from left to right



New point

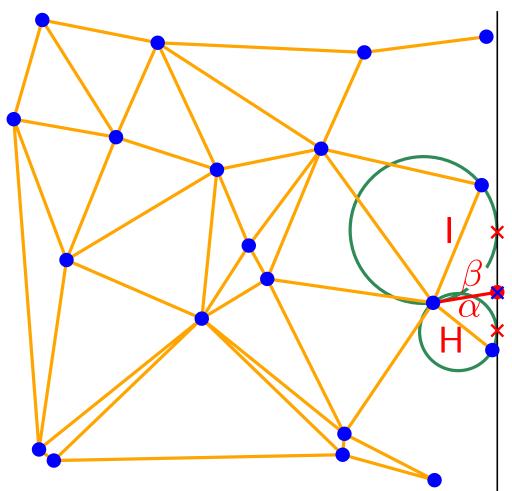
Locate vertically

Create edge

Modify boundary edges

$$\alpha = \beta$$

Discover the points from left to right



New point

Locate vertically

Create edge

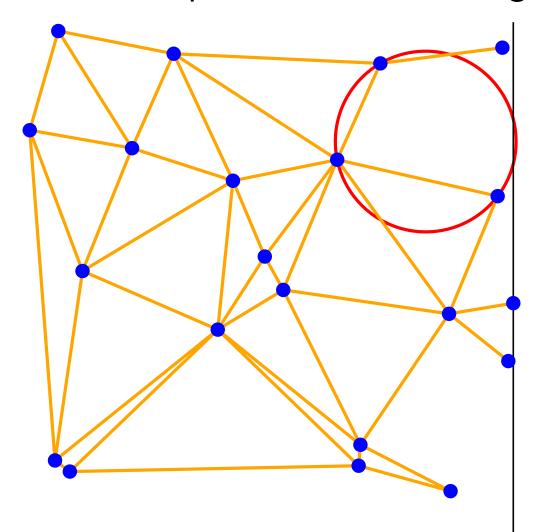
Modify boundary edges

$$\alpha = \beta$$
H

Modify circle events to be defined now

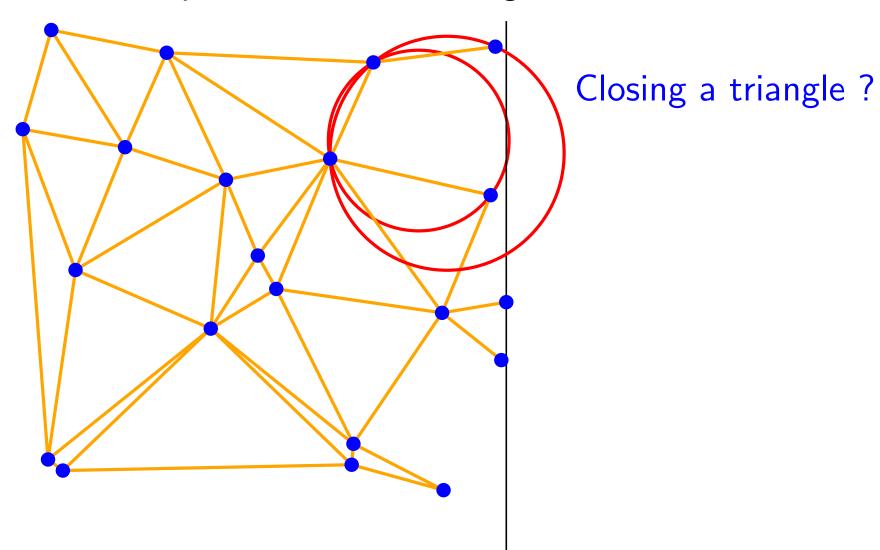
48 - 15

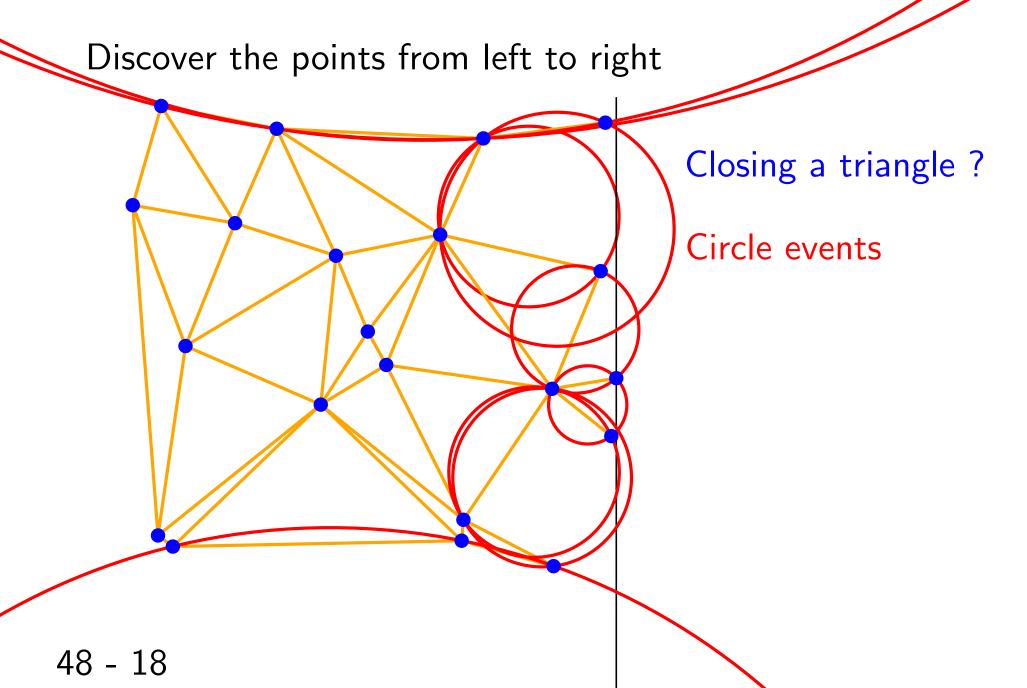
Discover the points from left to right



Closing a triangle?

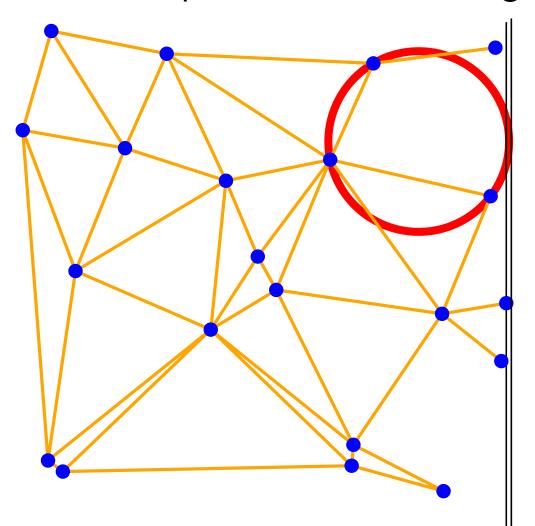
Discover the points from left to right





Discover the points from left to right Closing a triangle? Circle events Next circle event 48 - 19

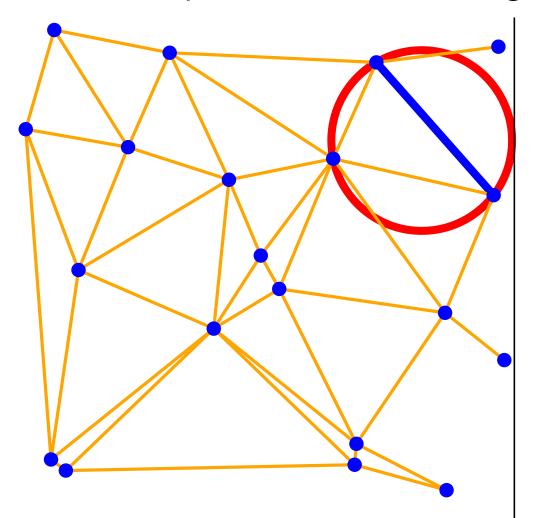
Discover the points from left to right



Closing a triangle?

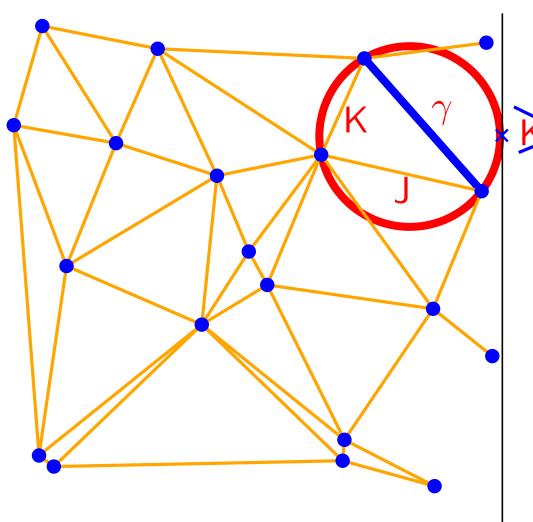
Next circle event

Discover the points from left to right



Next circle event Close triangle

Discover the points from left to right



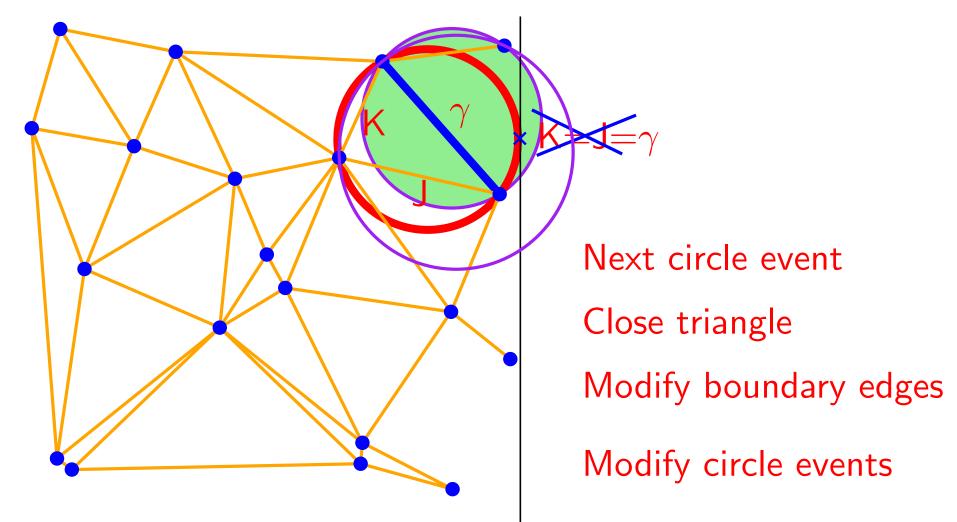
 γ

Next circle event

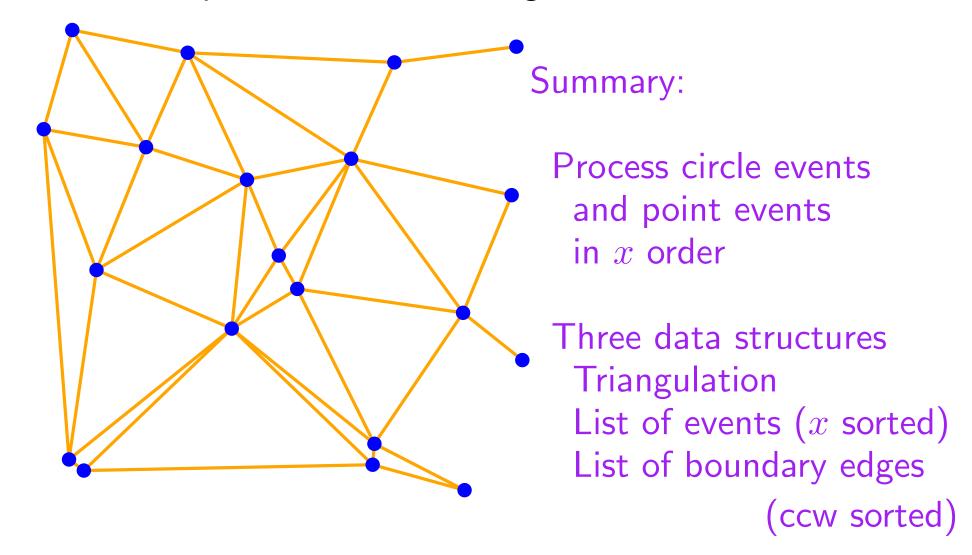
Close triangle

Modify boundary edges

Discover the points from left to right



Discover the points from left to right



Complexity	Circle events	Point events
Number		
Triangulation		
List of events $(x \text{ sorted})$		
List of boundary edges (ccw sorted)		
49 - 1		

Complexity	Circle events processed	Point events
Number		
Triangulation		
List of events $(x \text{ sorted})$		
List of boundary edges (ccw sorted)		
49 - 2		

Complexity	Circle events processed	Point events
Number	2n	n
Triangulation		
List of events $(x \text{ sorted})$		
List of boundary edges (ccw sorted)		
49 - 3		

Complexity	Circle events processed	Point events
Number	2n	n
Triangulation	create 2 triangles per event	create one edge per event
List of events $(x \text{ sorted})$		
List of boundary edges (ccw sorted)		
49 - 4		

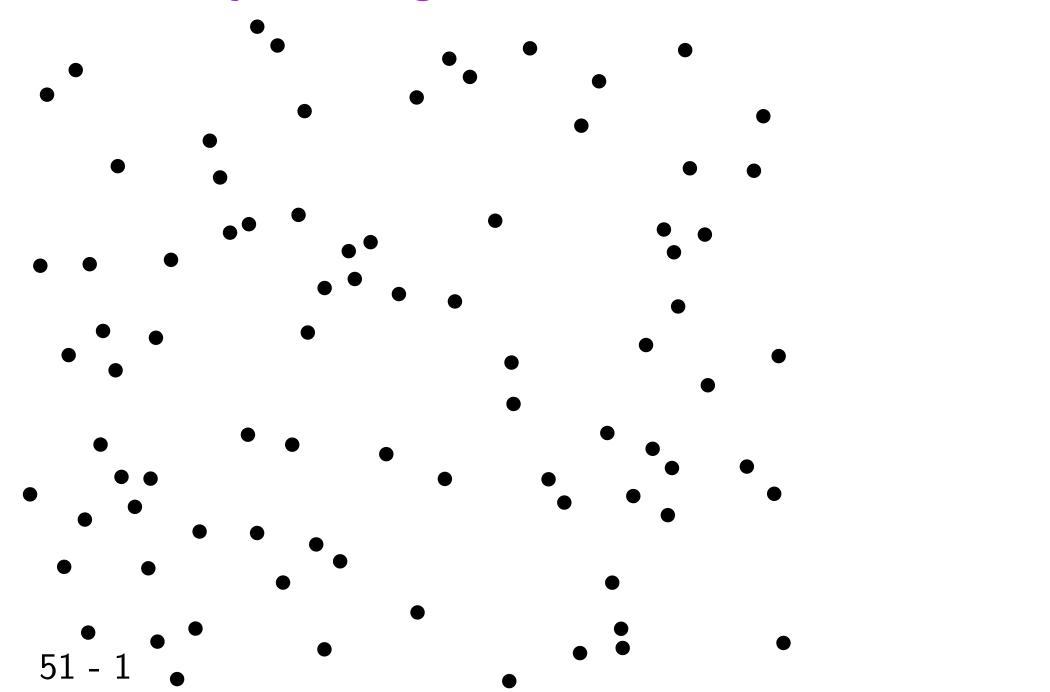
Complexity	Circle events processed	Point events
Number	2n	n
Triangulation	create 2 triangles per event	create one edge per event
List of events $(x \text{ sorted})$	≤ 3 deletions ≤ 2 insertions per event	≤ 2 deletions ≤ 2 insertions per event
List of boundary edges (ccw sorted)		
49 - 5		

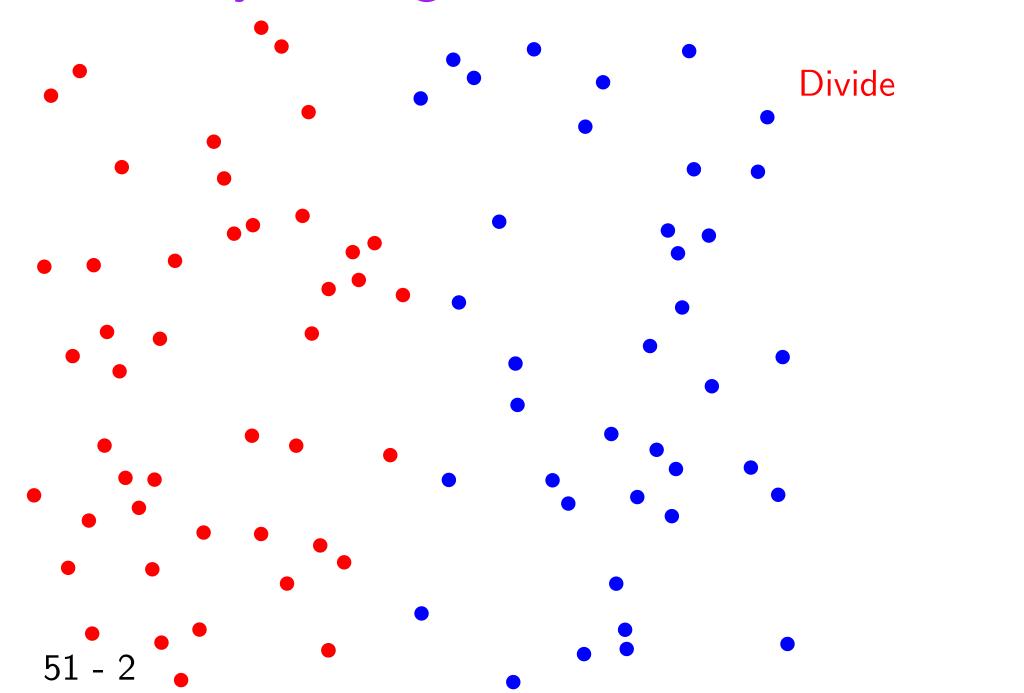
Complexity Number	Circle events processed $2n$	Point events n
Triangulation	create 2 triangles per event	create one edge per event
List of events $(x \text{ sorted})$	≤ 3 deletions ≤ 2 insertions per event	≤ 2 deletions ≤ 2 insertions per event
List of boundary edges (ccw sorted) 49 - 6	replace 2 edges by 1 per event	locate, then insert 2 edges per event

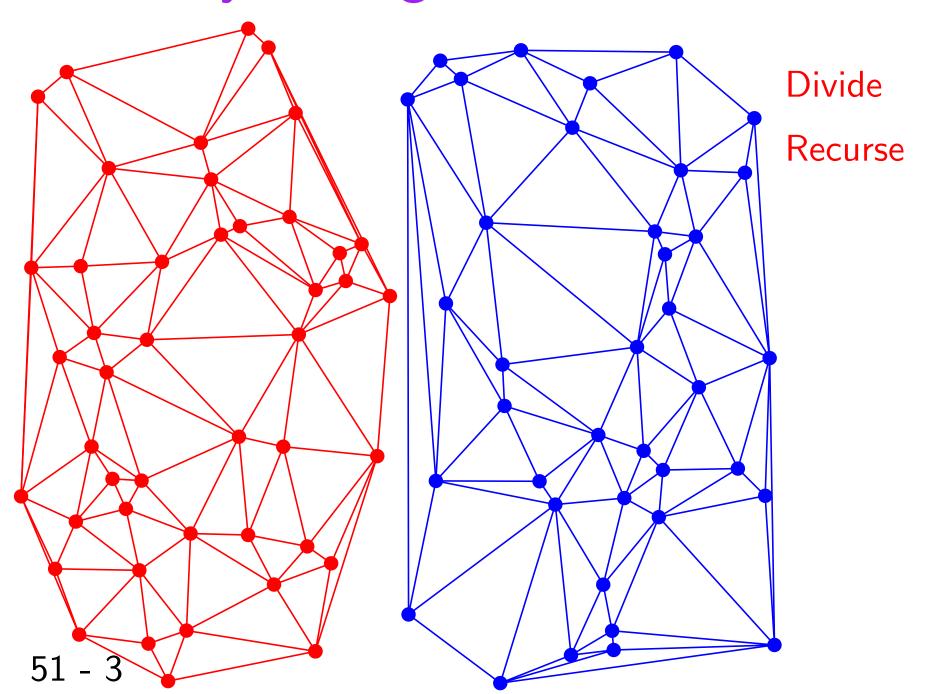
Complexity Number	Circle events processed $2n$	Point events n
TriO(1) per operation	create 2 triangles per event	create one edge per event
O(log m) per operation sorted)	≤ 3 deletions ≤ 2 insertions per event	≤ 2 deletions ≤ 2 insertions per event
List of bound operation $O(\log n)$ per operation (ccw sorted) $49 - 7$	replace 2 edges by 1 per event	locate, then insert 2 edges per event

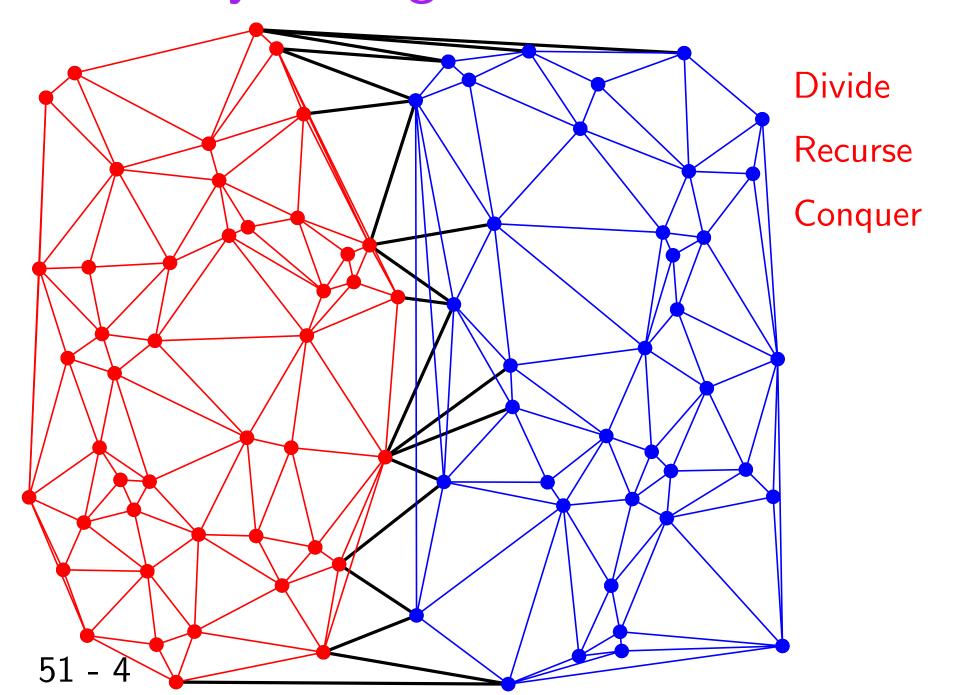
Complexity Number	Circle events processed $2n$	Point events n
riQ(1) per operation	create 2 triangles	create one edge
O(log m) per operation sorted	$O(n \log n)$	
40(10844)	per event	per event
List of bound operation $O(\log n)$ per operation (ccw sorted) $49 - 8$	replace 2 edges by 1 per event	locate, then insert 2 edges per event

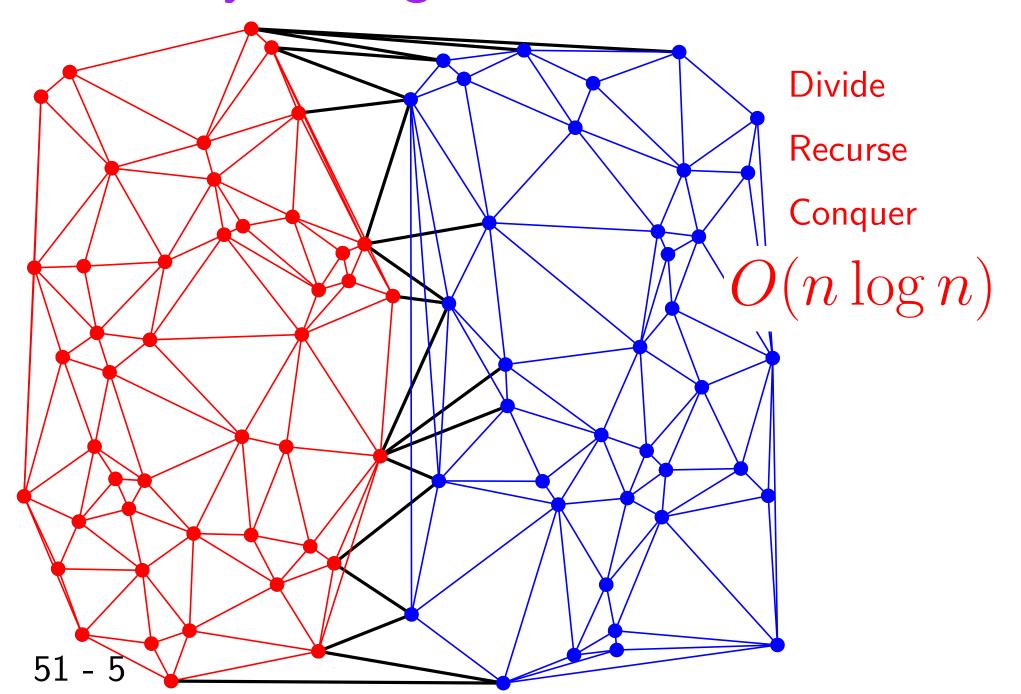
Algorithm: divide and conquer

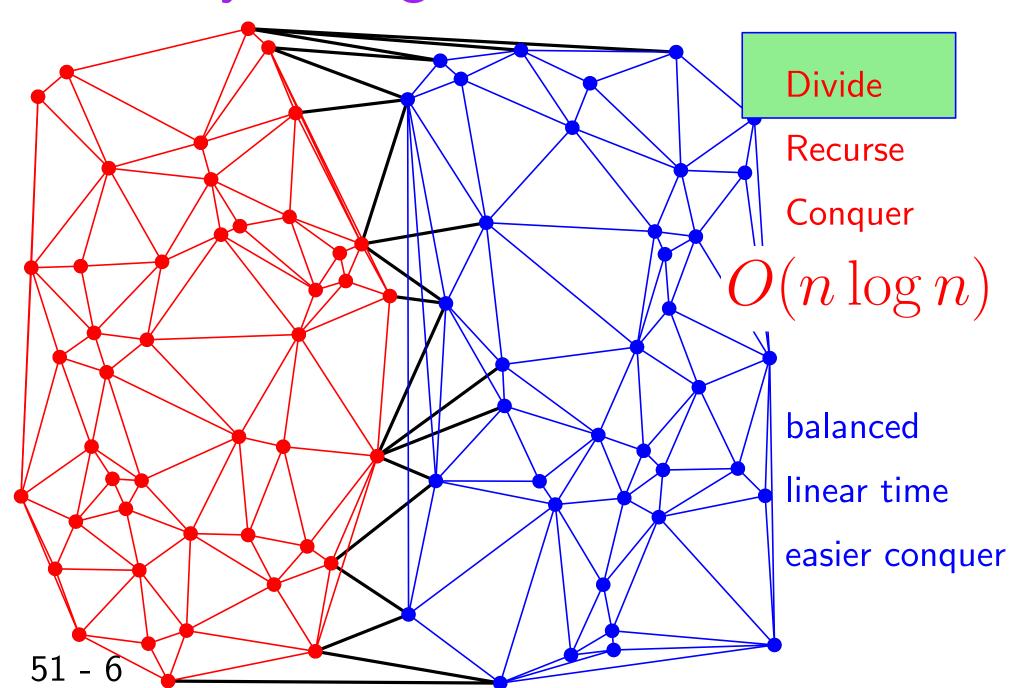








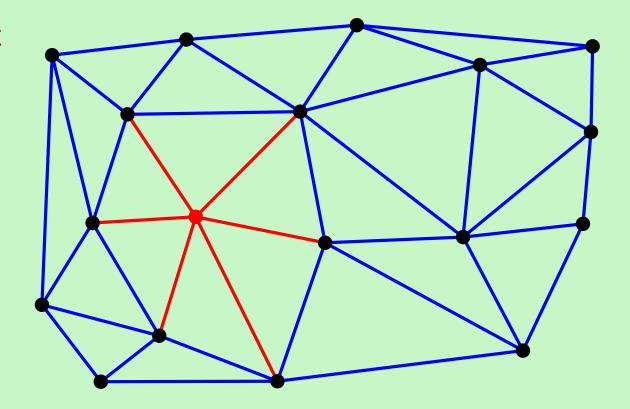


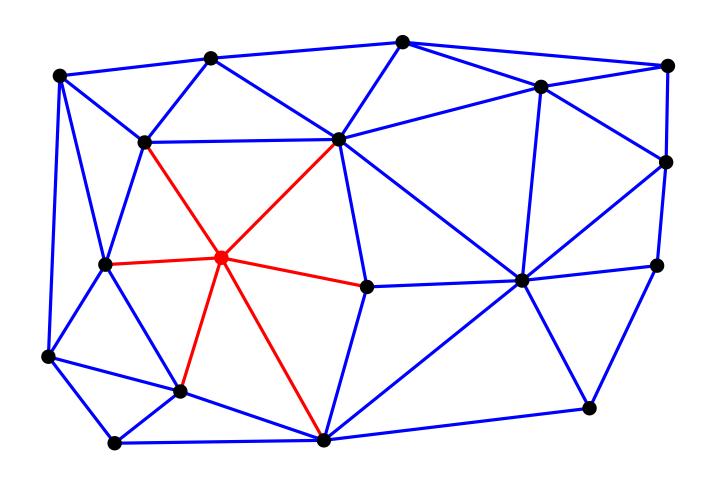


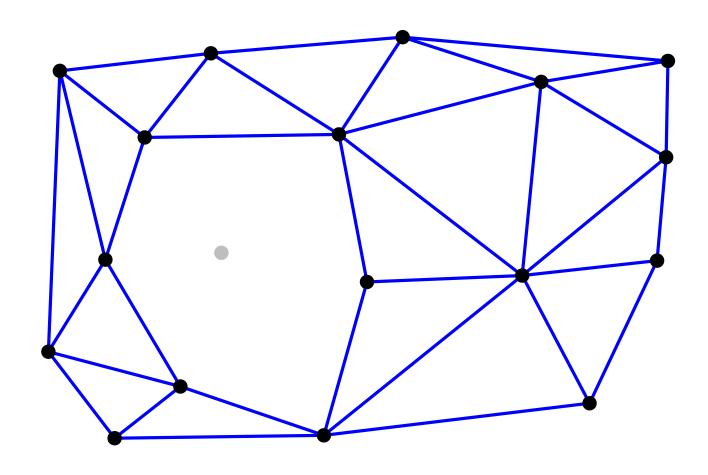
Deleting a point

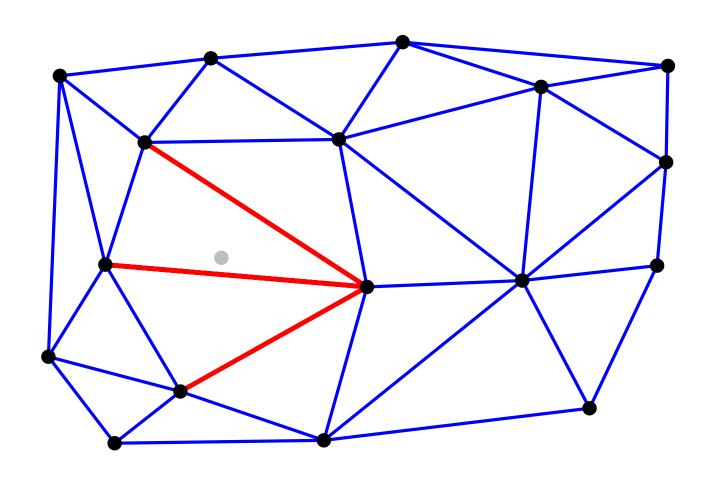
Delaunay Triangulation: incremental algorithm

New point

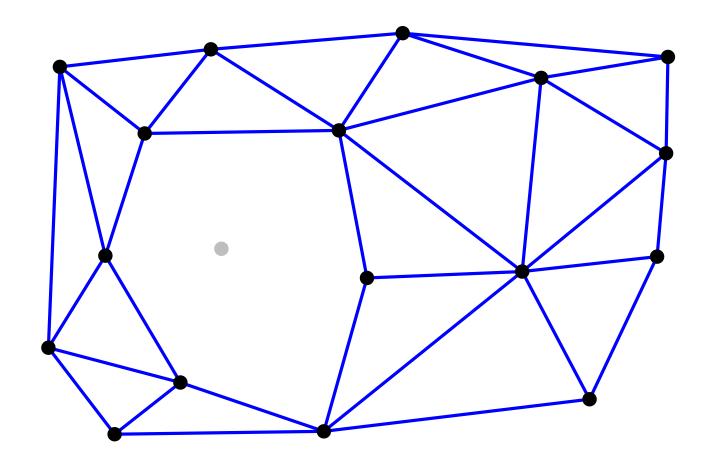


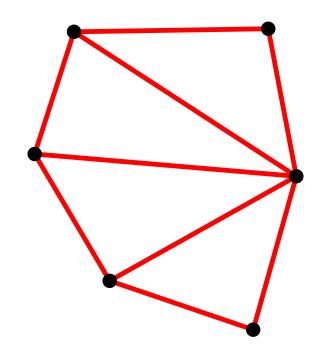






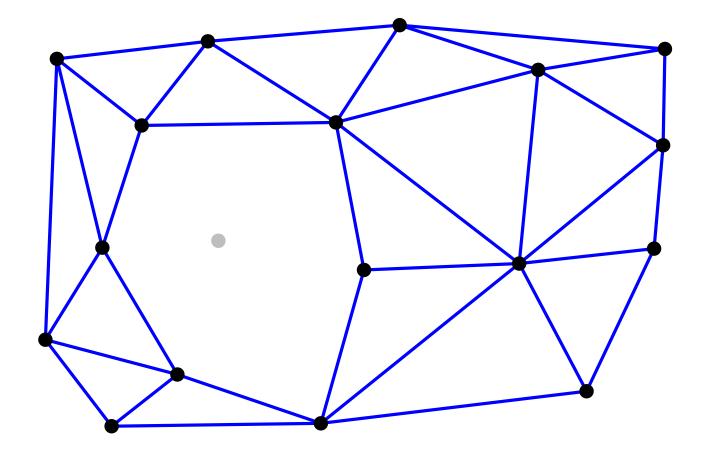
Extract hole

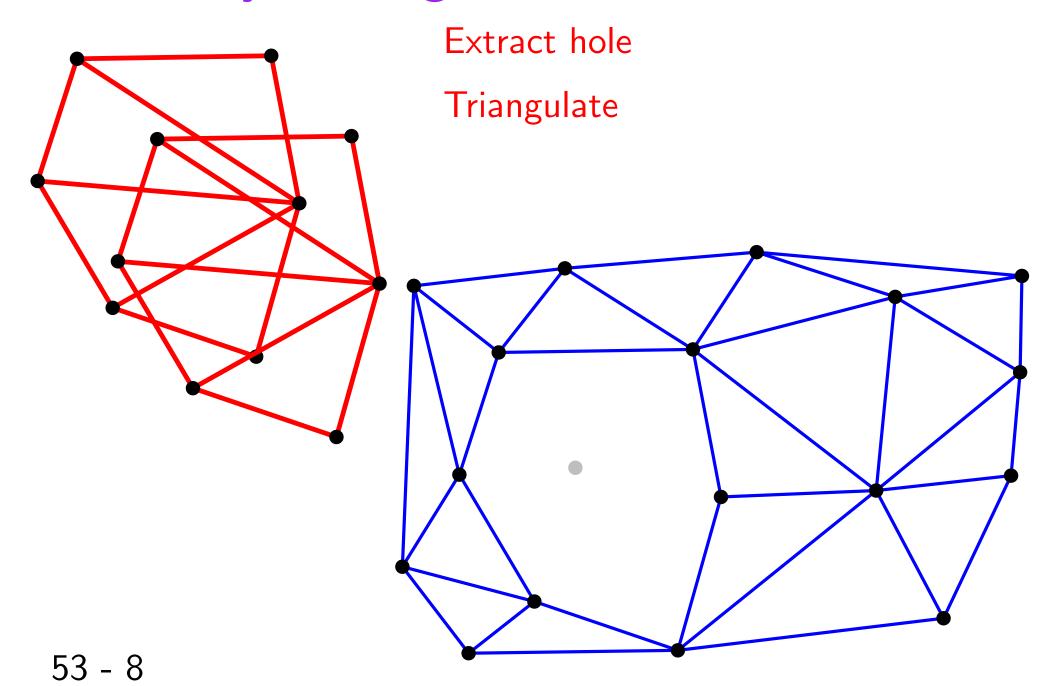


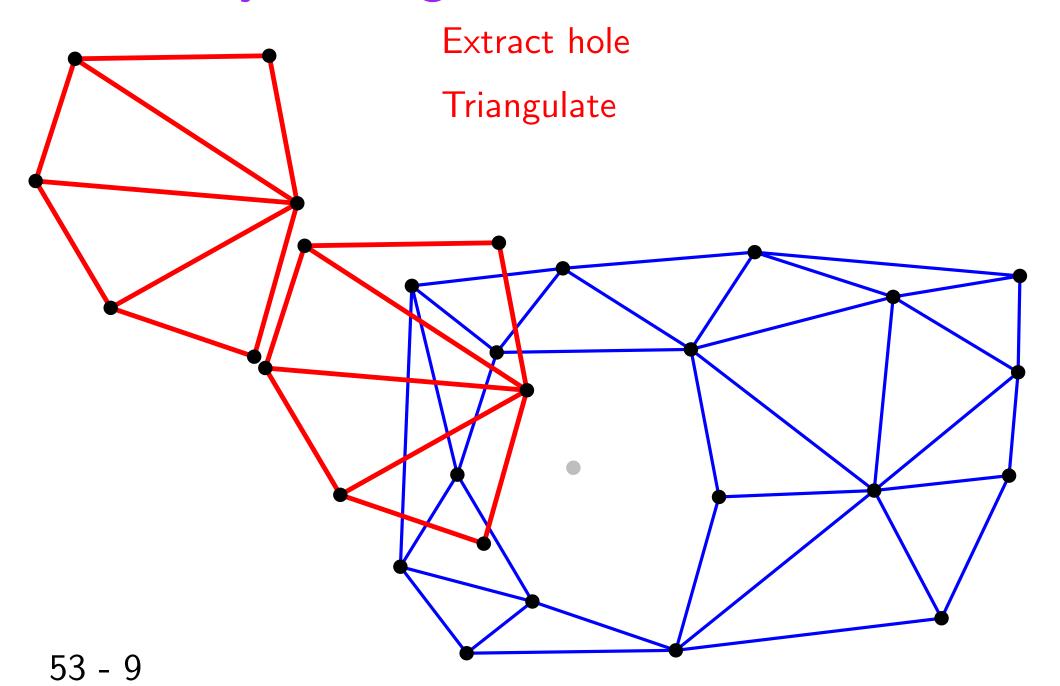


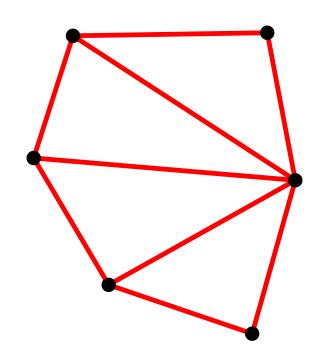
Extract hole

Triangulate





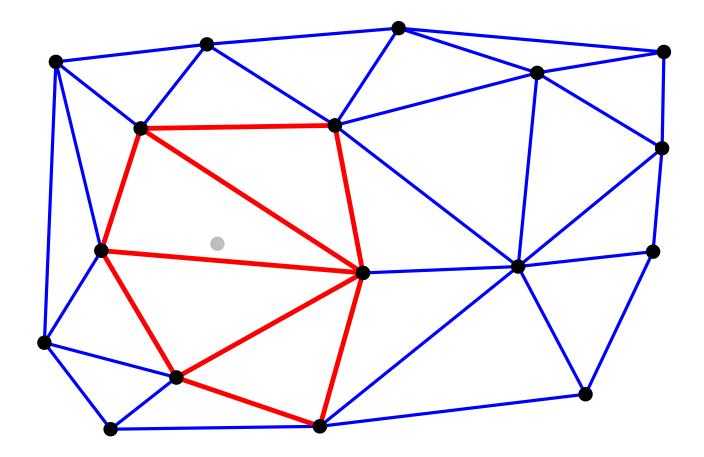




Extract hole

Triangulate

and sew



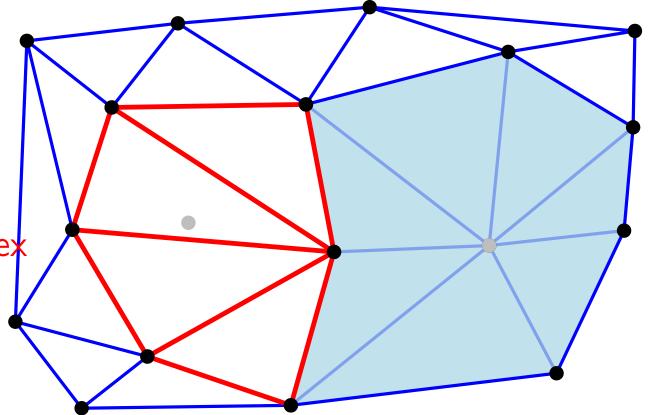
Extract hole

Triangulate

and sew

Be careful

Hole may be not convex



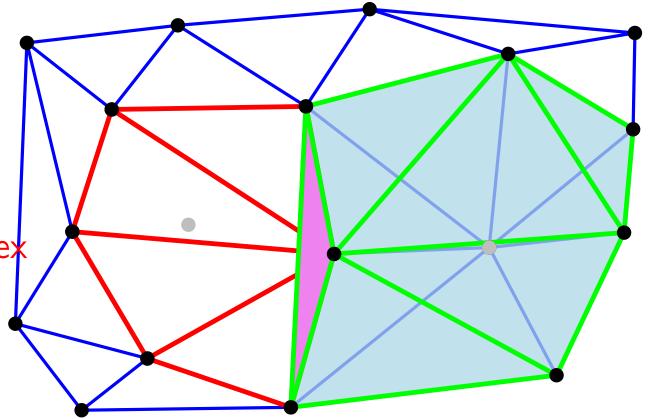
Extract hole

Triangulate

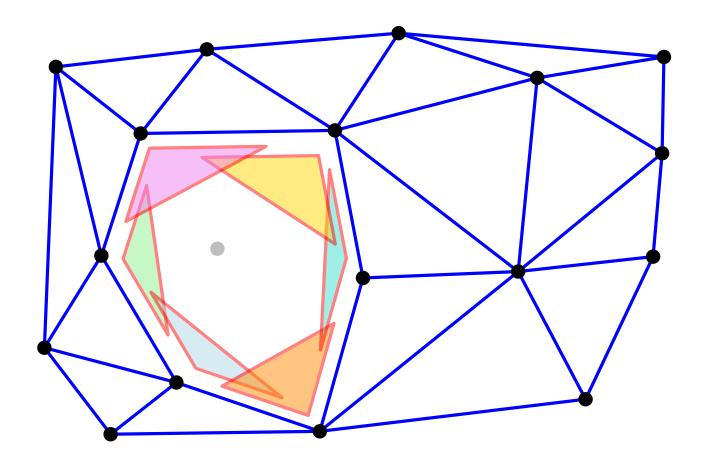
and sew

Be careful

Hole may be not convex

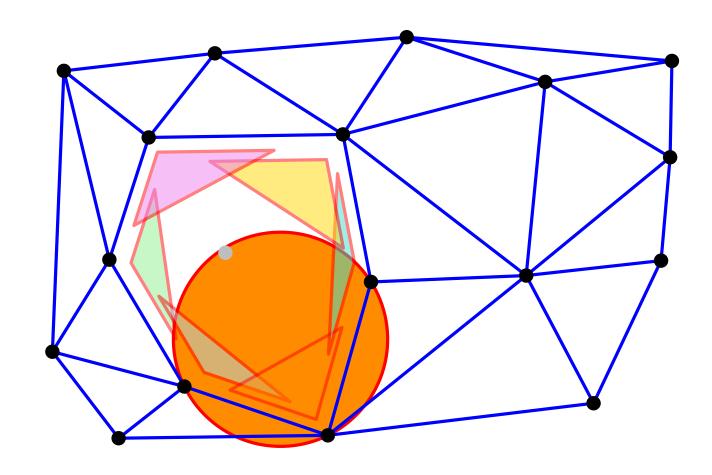


Ear queue



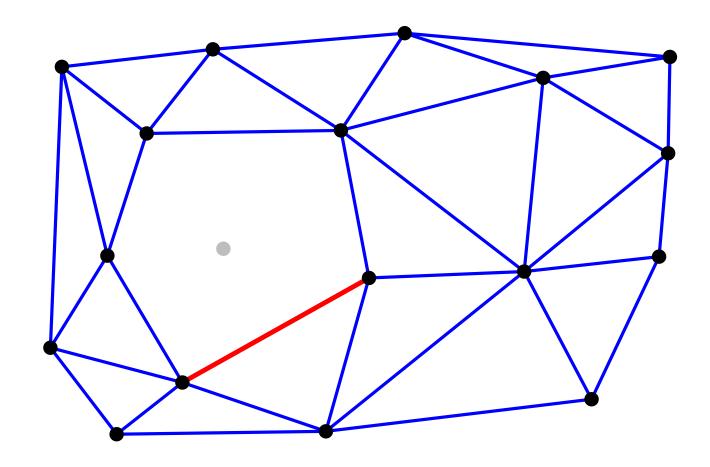
Ear queue

Ear with largest power is added



Ear queue

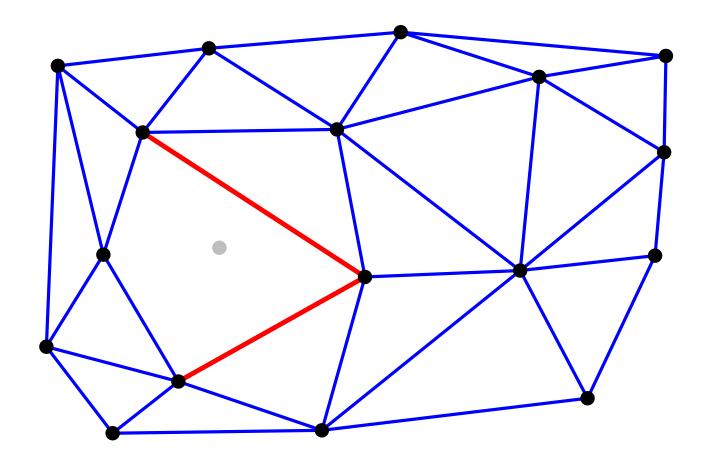
Ear with largest power is added



Ear queue

Ear with largest power is added

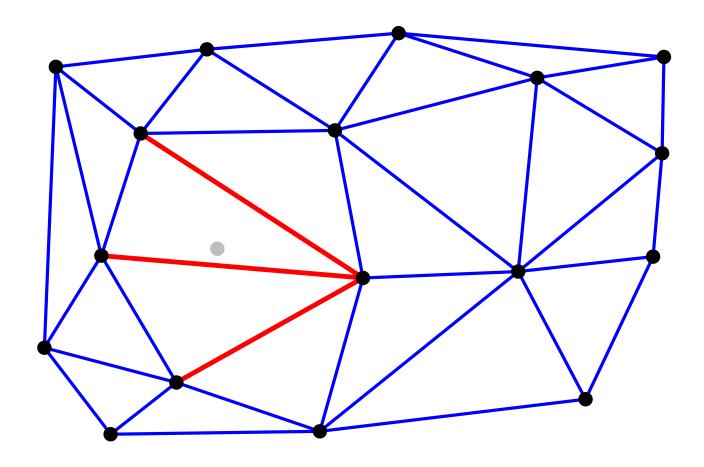
Iterate



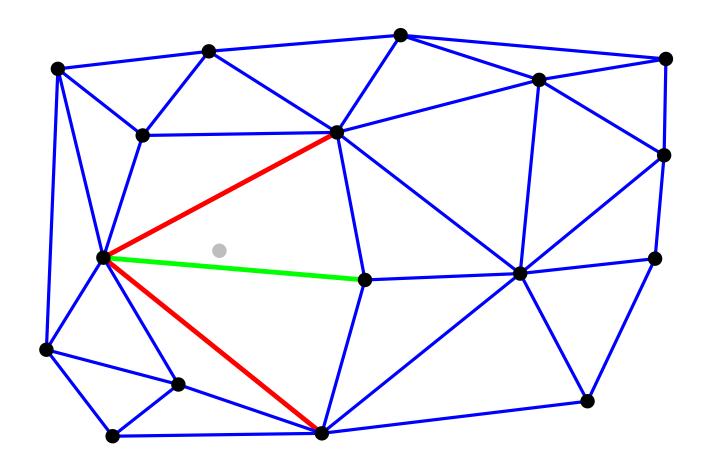
Ear queue

Ear with largest power is added

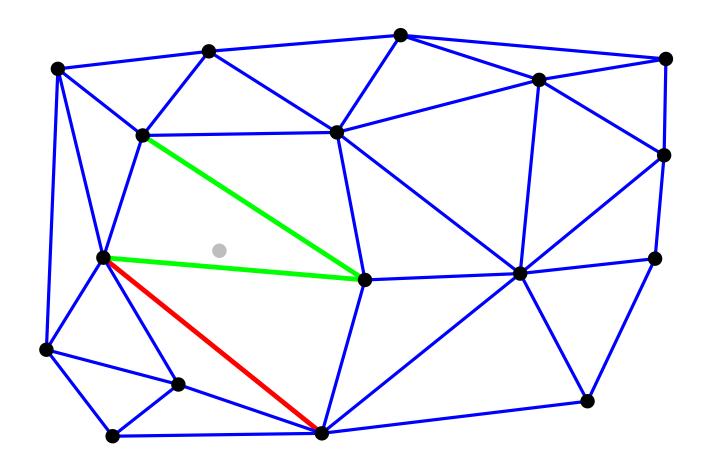
Iterate



Triangulate and flip

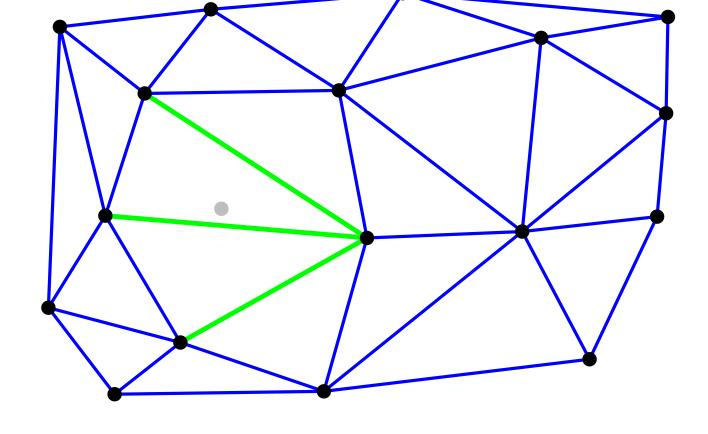


Triangulate and flip



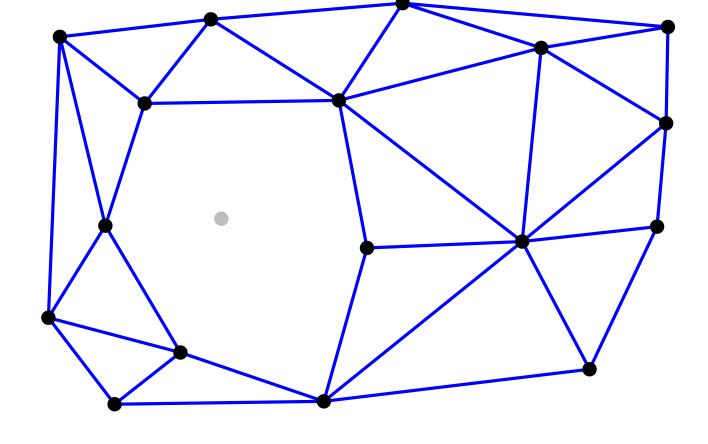
Triangulate and flip

for degree ≥ 8



Decision tree for small holes

for degree ≤ 7

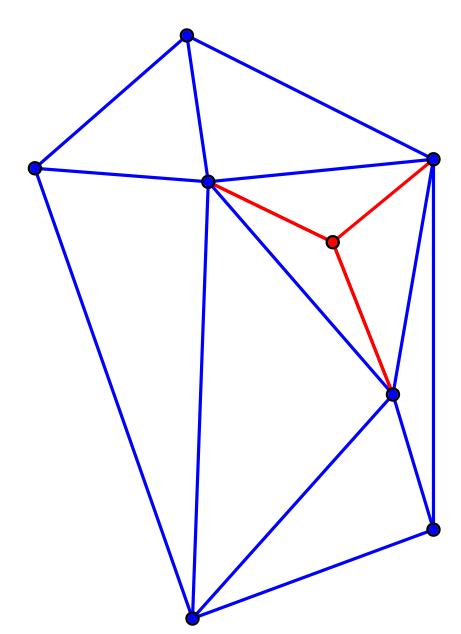


Decision tree for small holes

degree 3

nothing to do

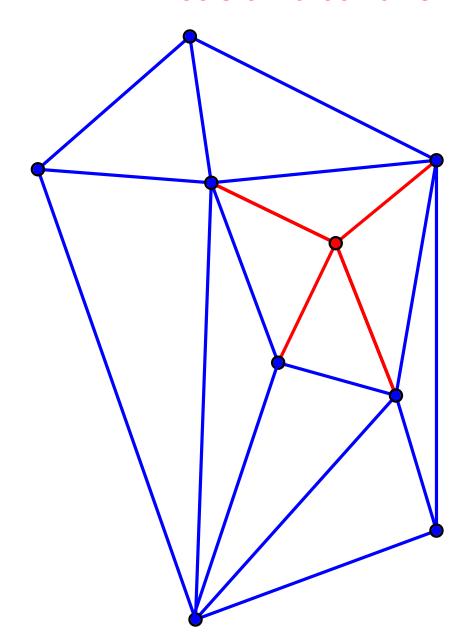
for degree ≤ 7



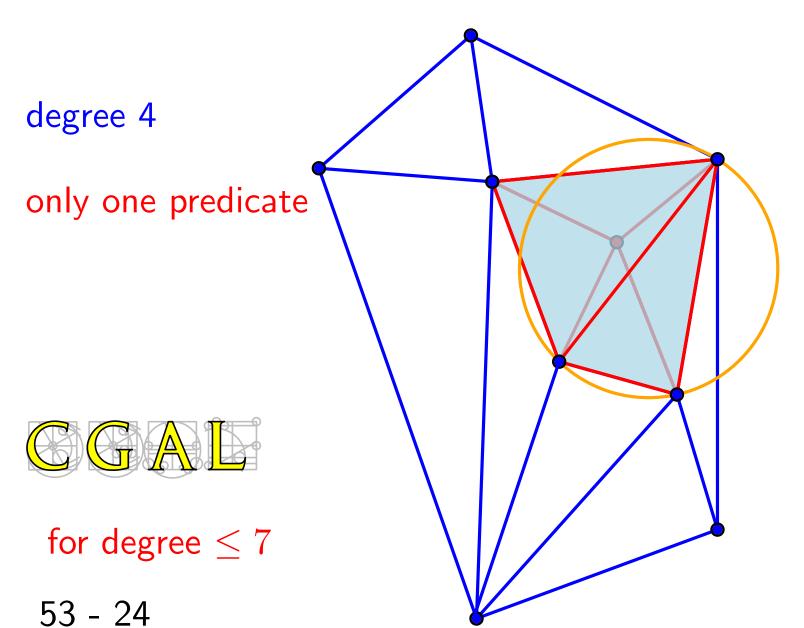
Decision tree for small holes

degree 4

for degree ≤ 7



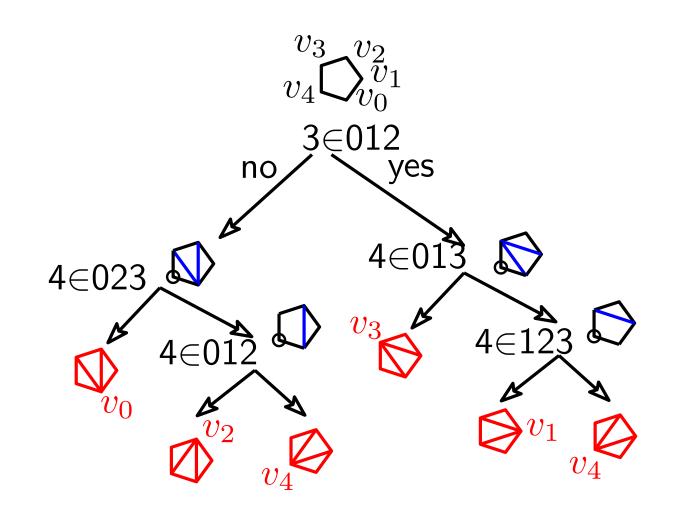
Decision tree for small holes



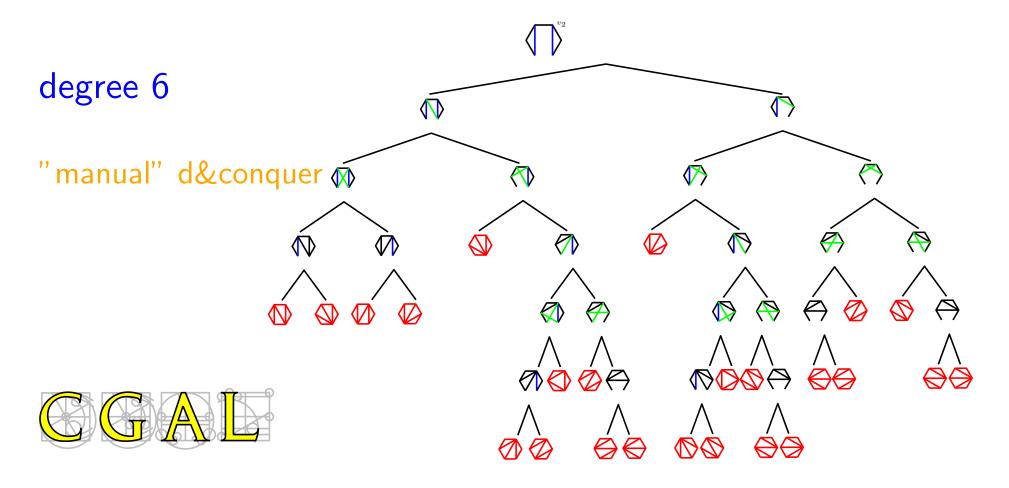
Decision tree for small holes

degree 5

for degree ≤ 7

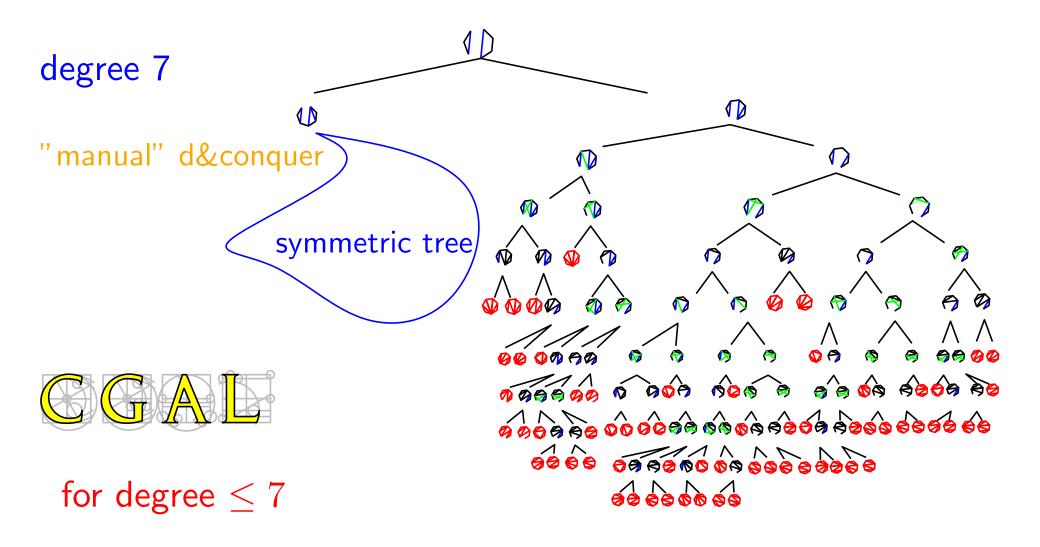


Decision tree for small holes



for degree ≤ 7

Decision tree for small holes



Same as 2D

Dual Voronoi diagram

Empty sphere property

Triangle → Tetrahedron

Duality with 4D convex hull

Incremental algorithm (find the hole and star)

Delaunay

Convex hull

Higher dimensions

Dehn Sommerville relations

$$f_i = \sharp(\mathsf{faces}\ \mathsf{of}\ \mathsf{dim}\ i)$$

Same as 2[

$$f_0 - f_1 + f_2 - \dots f_{d-1} = (-1)^{d-1} + 1$$

Dual

$$\sum_{j} = k^{d-1} - 1^{j} \begin{pmatrix} j+1 \\ k+1 \end{pmatrix} f_{j} = (-1)^{d-1} f_{k}$$

Empt

$$-1 \le k \le d - 2$$

$$f_{-1} = f_d = 1$$

Tri

$$\left| \frac{d+1}{2} \right|$$
 independent equations

Duality with 4D convex hull

Incremental algorithm (find the hole and star)

Delaunay

Convex hull

Higher dimensions

Dehn Sommerville relations

$$f_i = \sharp(\mathsf{faces}\ \mathsf{of}\ \mathsf{dim}\ i)$$

Same as 2[

Euler:

$$f_0 - f_1 + f_2 - \dots f_{d-1} = (-1)^{d-1} + 1$$

Dual

$$\sum_{j} = k^{d-1} - 1^{j} \begin{pmatrix} j+1 \\ k+1 \end{pmatrix} f_{j} = (-1)^{d-1} f_{k}$$

Empt

$$-1 \le k \le d - 2$$

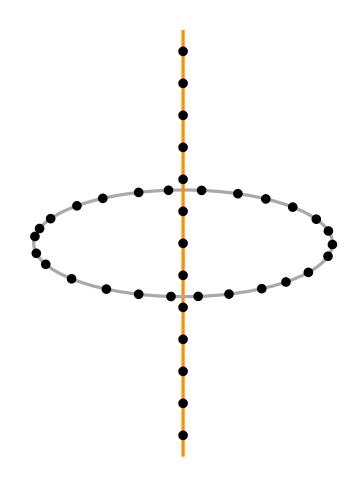
$$f_{-1} = f_d = 1$$

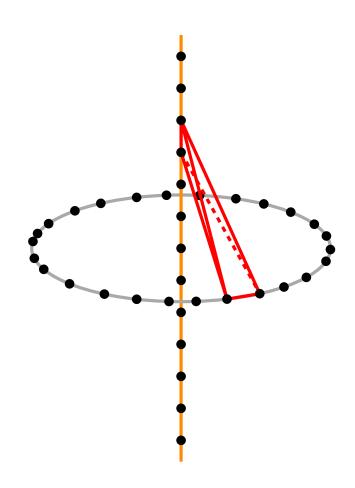
Tri

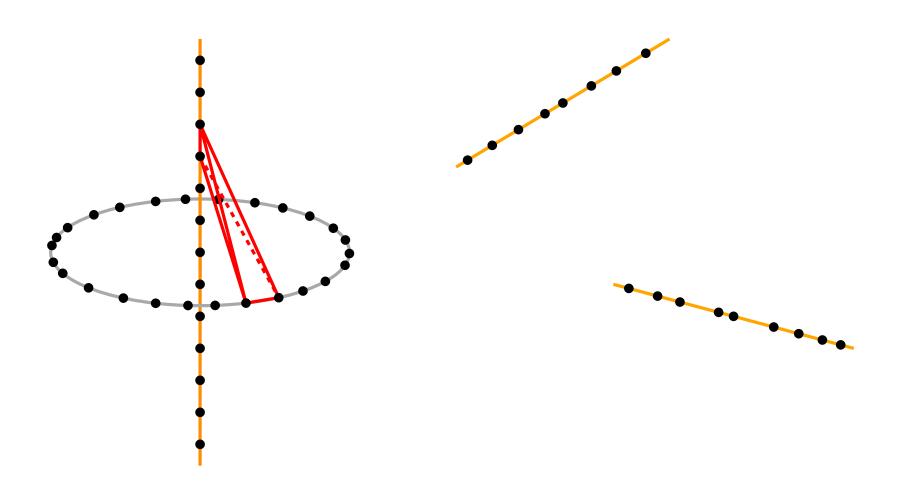
$$\left| \frac{d+1}{2} \right|$$
 independent equations

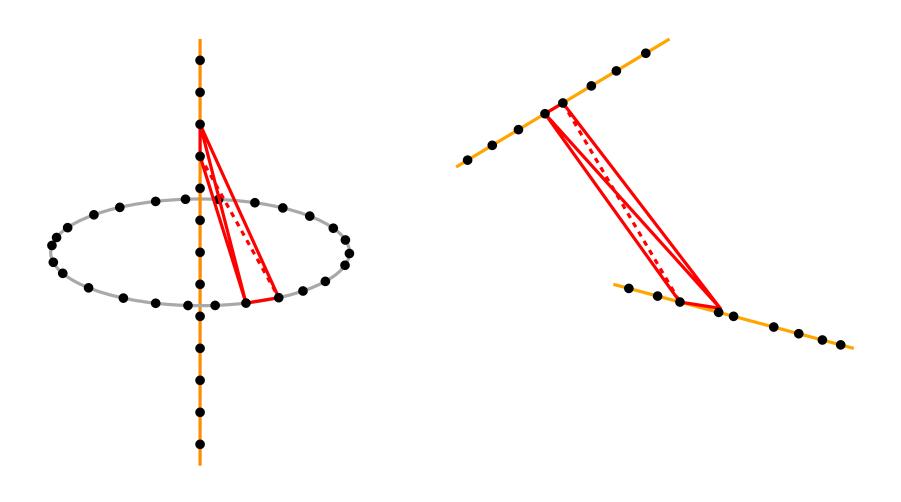
Duality with 4D convex hull

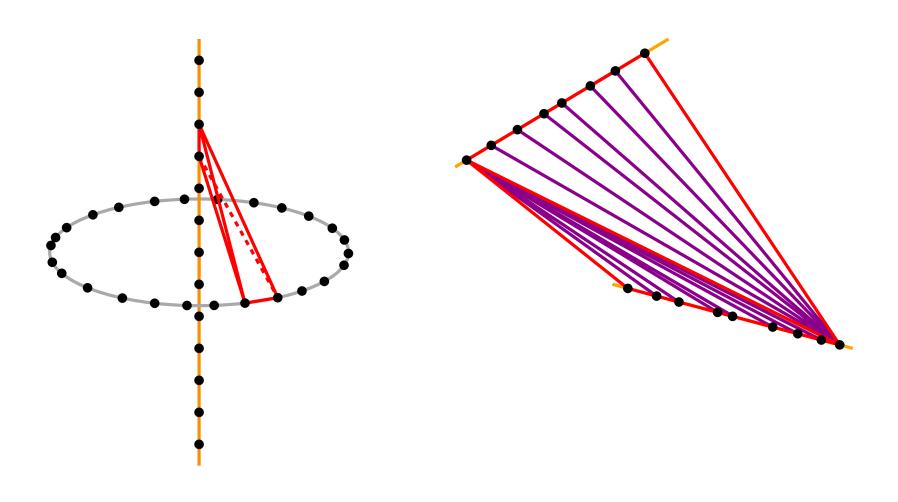
Incremental algorithm (find the hole and star)

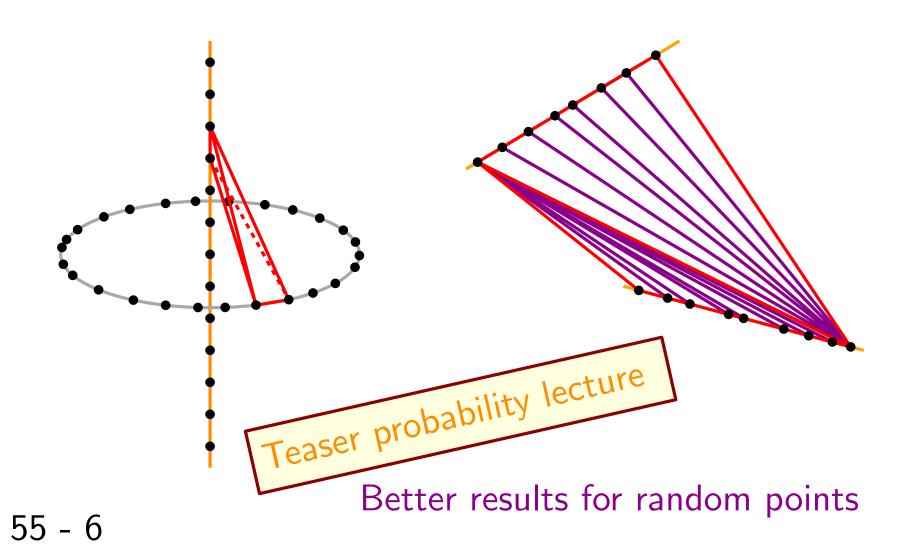












Algorithms

4D convex hull duality

Incremental

Algorithms

4D convex hull duality

 $O(f \log n + n^{\frac{4}{3}})$ or $\Theta(n^2)$

Incremental

 $\Theta(n^3)$

Teaser randomization lecture

Delaunay Triangulation: higher dimensions

$$d+1$$
 convex hull duality

$$O\left(n^{\lfloor \frac{d+1}{2} \rfloor}\right)$$

Incremental

practical

O(n) for random points

coeff exponential in d

