Modèles d'environnements
 \& planification de trajectoire

Delaunay (2 séances)

Euler's relation.

$$
n-e+f=2
$$

$n-e+(t+1)=2$
$k+3 t=2 e$

$$
t=\# \text { triangles }
$$

$k=\#$ vertices on the convex hull

$$
\begin{aligned}
& t=2 n-k-2<2 n \\
& e=3 n-k-3<3 n
\end{aligned}
$$

2

Delaunay Triangulation: definition, empty circle property

4-1

Delaunay Triangulation: definition, empty circle property

4-2

Delaunay Triangulation: Nearest Neighbor Graph

Delaunay Triangulation: емST

6

Delaunay Triangulation: max-min angle

Triangulation

Delaunay
smallest angle
second smallest angle

Lemma
 (\forall edge: locally Delaunay $) \Longleftrightarrow$ Delaunay

Delaunay Triangulation: indisk predicate

 Space of circless inside/outside of circle through pqr
\rightsquigarrow plane through $p^{\star} q^{\star} r^{\star}$ above/below s^{\star}

indisk predicate
$\rightsquigarrow 3 D$ orientation predicate

$$
\operatorname{sign}\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
x_{p} & x_{q} & x_{r} & x_{s} \\
y_{p} & y_{q} & y_{r} & y_{s} \\
x_{p}^{2}+y_{p}^{2} & x_{q}^{2}+y_{q}^{2} & x_{r}^{2}+y_{r}^{2} & x_{s}^{2}+y_{s}^{2}
\end{array}\right|
$$

Algorithm: flip!

10

Delaunay Triangulation: Diagonal flipping

 $\begin{array}{ccc}\bullet \bullet & \bullet & \bullet \\ \bullet \bullet & \bullet & \bullet \\ & \bullet & \bullet \\ & \bullet & \end{array}$11-1

Delaunay Triangulation: Diagonal flipping

11-2

Delaunay Triangulation: Diagonal flipping

$11-3$

Delaunay Triangulation: Diagonal flipping

11-4

Delaunay Triangulation: Diagonal flipping

11-5

Delaunay Triangulation: Diagonal flipping

11-6

Delaunay Triangulation: Diagonal flipping

11-7

Delaunay Triangulation: Diagonal flipping

11-8

Delaunay Triangulation: Diagonal flipping

check edges of quadrilateral
11-9

Delaunay Triangulation: Diagonal flipping

$11-10$

Delaunay Triangulation: Diagonal flipping

11-11

Delaunay Triangulation: Diagonal flipping

11-12

Delaunay Triangulation: Diagonal flipping

11-13

Delaunay Triangulation: Diagonal flipping

11-14

Delaunay Triangulation: Diagonal flipping

$11-15$

Delaunay Triangulation: Diagonal flipping

$11-16$

Delaunay Triangulation: Diagonal flipping

11-17

Delaunay Triangulation: Diagonal flipping

11-18

Delaunay Triangulation: Diagonal flipping

11-19

Delaunay Triangulation: Diagonal flipping

$11-20$

Delaunay Triangulation: Diagonal flipping

11-21

Delaunay Triangulation: Diagonal flipping

11-22

Delaunay Triangulation: Diagonal flipping

$11-23$

Delaunay Triangulation: Diagonal flipping

11-24

Delaunay Triangulation: Diagonal flipping

$11-25$

Delaunay Triangulation: Diagonal flipping

$11-26$

Delaunay Triangulation: Diagonal flipping

11-27

Delaunay Triangulation: Diagonal flipping

$11-28$

Delaunay Triangulation: Diagonal flipping

11-29

Delaunay Triangulation: Diagonal flipping

11-30

Delaunay Triangulation: Diagonal flipping

Delaunay is obtained
11-31

Delaunay Triangulation: Diagonal flipping

Complexity ?

12-1

Delaunay Triangulation: Diagonal flipping

Complexity ?

12-2

Delaunay Triangulation: Diagonal flipping

Complexity?

12-3

Delaunay Triangulation: Diagonal flipping

Complexity ?

12-4

Delaunay Triangulation: Diagonal flipping

Complexity ?

Non convex

12-5

Delaunay Triangulation: Diagonal flipping

Complexity ?

Non convex edge

12-6

Delaunay Triangulation: Diagonal flipping

Complexity ?

Non convex

Flip

12-7

Delaunay Triangulation: Diagonal flipping

Complexity ?

Non convex

Flip

12-8

Delaunay Triangulation: Diagonal flipping

Complexity ?

Non convex

Flip

12-9

Delaunay Triangulation: Diagonal flipping

Complexity ?

Non convex

Flip

12-10

Delaunay Triangulation: Diagonal flipping

Complexity ?

Non convex

Flip

An hidden edge cannot be visible again
Non Delaunay

12-11

Delaunay Triangulation: Diagonal flipping

Complexity ?

Non convex

Flip

An hidden edge cannot be visible again
Non Delaunay
At most $\frac{n(n-1)}{2}$ edges

12-12

Delaunay Triangulation: Diagonal flipping

Complexity ?

Non convex

Flip

An hidden edge cannot be visible again
Non Delaunay
At most $\frac{n(n-1)}{2}$ edges
Complexity of diagonal flipping is $O\left(n^{2}\right)$
12-13

Delaunay Triangulation: Diagonal flipping

Complexity ?

13-1

Delaunay Triangulation: Diagonal flipping

Complexity ?

13-2

Delaunay Triangulation: Diagonal flipping

Complexity ?

13-3

Delaunay Triangulation: Diagonal flipping

Complexity ?

13-4

Delaunay Triangulation: Diagonal flipping

Complexity ?

$13-5$

Delaunay Triangulation: Diagonal flipping

Complexity ?

Delaunay

13-6

Delaunay Triangulation: Diagonal flipping

Complexity ?
Delaunay

13-7

Delaunay Triangulation: Diagonal flipping

Complexity ?
Encoding a triangulation

13-8

Delaunay Triangulation: Diagonal flipping

Complexity ?
Delaunay

1111100000

$13-9$

Delaunay Triangulation: Diagonal flipping

Complexity ?
Encoding a triangulation
Flip

0011101010

swap

Delaunay Triangulation: Diagonal flipping

Complexity ?

13-11

Delaunay Triangulation: Diagonal flipping

Complexity ?

at least $\left(\frac{n}{2}\right)^{2}$ flips
 0000011111)

Delaunay 1111100000

Borne inférieure de complexité

Delaunay Triangulation: Ioner bound

Convex hull

A stupid algorithm for sorting numbers

15

Delaunay Triangulation: Iower bound

Convex hull

A stupid algorithm for sorting numbers

Lower bound on sorting

$$
\Longrightarrow f(n)+O(n) \geq \Omega(n \log n)
$$

15

Point location in Delaunay

16

Delaunay Triangulation: pencils of circles

Power of a point w.r.t a circle

$$
x^{2}+y^{2}-2 a x-2 b y+c
$$

17-1

Delaunay Triangulation: pencils of circles

Power of a point w.r.t a circle

$$
\begin{array}{ll}
& x^{2}+y^{2}-2 a x-2 b y+c \\
=0 & \text { on the circle } \\
<0 & \text { inside the circle } \\
>0 & \text { outside the circle }
\end{array}
$$

Delaunay Triangulation: pencils of circles

Power of a point w.r.t a circle

$$
\left(x^{2}+y^{2}-2 a^{\prime} x-2 b^{\prime} y+c^{\prime}\right)
$$

$$
-\left(x^{2}+y^{2}-2 a x-2 b y+c\right)
$$

power wrt black is smaller
17-3
power wrt blue is smaller

Delaunay Triangulation: incremental algorithm

18-1

Delaunay Triangulation: incremental algorithm

 New point

18-2

Delaunay Triangulation: incremental algorithm

 New pointLocate

18-3

Delaunay Triangulation: incremental algorithm

 New pointLocate

e.g.: straight walk

18-4

Delaunay Triangulation: incremental algorithm

 New pointLocate

e.g.: straight walk

18-5

Delaunay Triangulation: incremental algorithm

 New pointLocate

e.g.: straight walk

18-6

Delaunay Triangulation: incremental algorithm

 New pointLocate

e.g.: straight walk

18-7

Delaunay Triangulation: incremental algorithm

 New pointLocate

e.g.: straight walk

18-8

Delaunay Triangulation: incremental algorithm

 New pointLocate

e.g.: straight walk

18-9

Delaunay Triangulation: incremental algorithm

 New pointLocate

e.g.: visibility walk

18-10

Delaunay Triangulation: incremental algorithm

 New pointLocate

e.g.: visibility walk

18-11

Delaunay Triangulation: incremental algorithm

 New pointLocate

e.g.: visibility walk

18-12

Delaunay Triangulation: incremental algorithm

 New pointLocate

e.g.: visibility walk

18-13

Delaunay Triangulation: incremental algorithm

 New pointLocate

e.g.: visibility walk

18-14

Delaunay Triangulation: incremental algorithm

 New pointLocate

e.g.: visibility walk

18-15

Delaunay Triangulation: incremental algorithm

New point
Locate

e.g.: visibility walk

18-16

Delaunay Triangulation: incremental algorithm

 New pointLocate

e.g.: visibility walk

18-17

Delaunay Triangulation: incremental algorithm

 New pointLocate

e.g.: visibility walk

18-18

Delaunay Triangulation: incremental algorithm

 New pointLocate

e.g.: visibility walk

18-19

Delaunay Triangulation: incremental algorithm Visibility walk terminates

Delaunay Triangulation: incremental algorithm Visibility walk terminates

18-21

Delaunay Triangulation: incremental algorithm Visibility walk terminates

$18-22$

Delaunay Triangulation: incremental algorithm Visibility walk terminates

Delaunay Triangulation: incremental algorithm

 Visibility walk terminates18-24
Delaunay Triangulation: pencils of circles
Power of a point w.r.t a circle
$\lambda\left(x^{2}+y^{2}-2 a^{\prime} x-2 b^{\prime} y+c^{\prime}\right)$

$$
+(1-\lambda)\left(x^{2}+y^{2}-2 a x-2 b y+c\right)=0
$$

Delaunay Tkiangulation: incremental algorithm

 Visibility walk terminates

18-25

Delaunay Tkiangulation: incremental algorithm

 Visibility walk terminates

Green power $<$ Red power
$18-26$

Delaunay Tkiangulation: incremental algorithm

 Visibility walk terminates

Green power < Red power
Power decreases
18-27

Delaunay Tkiangulation: incremental algorithm

 Visibility walk terminates

Green power $<$ Red power
Power decreases
18-28
Visibility walk terminates

Algorithm: incremental

19

Delaunay Triangulation: incremental algorithm

New point
Locate
Search conflicts

20-1

Delaunay Triangulation: incremental algorithm

 New pointLocate
Search conflicts

20-2

Delaunay Triangulation: incremental algorithm

 New pointLocate
Search conflicts

$20-3$

Delaunay Triangulation: incremental algorithm

 New pointLocate
Search conflicts

20-4

Delaunay Triangulation: incremental algorithm

 New pointLocate
Search conflicts

20-5

Delaunay Triangulation: incremental algorithm

 New pointLocate
Search conflicts

20-6

Delaunay Triangulation: incremental algorithm

New point
Locate
Search conflicts

20-7

Delaunay Triangulation: incremental algorithm

 New pointLocate
Search conflicts

20-8

Delaunay Triangulation: incremental algorithm

 New pointLocate
Search conflicts

20-9

Delaunay Triangulation: incremental algorithm

 New pointLocate
Search conflicts

20-10

Delaunay Triangulation: incremental algorithm

 New pointLocate
Search conflicts

20-11

Delaunay Triangulation: incremental algorithm

 New pointLocate
Search conflicts

20-12

Delaunay Triangulation: incremental algorithm

 New pointLocate
Search conflicts

20-13

Delaunay Triangulation: incremental algorithm

New point

20-14

Delaunay Triangulation: incremental algorithm

New point

20-15

Delaunay Triangulation: incremental algorithm

Complexity

Locate

Search conflicts

21-1

Delaunay Triangulation: incremental algorithm

Complexity

Locate

Search conflicts $\quad \sharp$ triangles in conflict

\# triangles neighboring triangles in conflict

21-2

Delaunay Triangulation: incremental algorithm

Complexity

Locate

Search conflicts $\quad \sharp$ triangles in conflict

\sharp triangles neighboring triangles in conflict
degree of new point in new triangulation

$$
<n
$$

$21-3$

Delaunay Triangulation: incremental algorithm

Complexity

Locate
Walk may visit all triangles
$<2 n$

Search conflicts

degree of new point in new triangulation

$$
<n
$$

21-4

Delaunay Triangulation: incemenenta algorithm

Complexity

Locate
$O(n)$ per insertion

Search conflicts

21-5

Delaunay Triangulation: incremental algorithm

Complexity

Locate
$O(n)$ per insertion
Search conflicts
$O\left(n^{2}\right)$ for the whole construction
$21-6$

Delaunay Triangulation: incremenental agorithm

Complexity

Locate
Search conflicts
half-parabola and circle

21-7

Delaunay Triangulation: incremenental agorithm

Complexity

Locate
Search conflicts
half-parabola and circle
Delaunay triangle

Delaunay Triangulation: incemenental agorithm

Complexity
Locate
Search conflicts

21-9

Delaunay Triangulation: incremental algorithm

Complexity
Locate
Search conflicts

Insertion: $\Omega(n)$
Whole construction: $\Omega\left(n^{2}\right)$
$21-10$

Delaunay Triangulation: incremental algorithm

Complexity
Locate
Search conflicts Randomized

In practice

Many possibilities (walk, Delaunay hierarchy)

21-11

Algorithm: sweep line

22

Delaunay Triangulation: sweepline algorithm

Discover the points from left to right

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

23-2

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Boundary edges

23-7

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Boundary edges

23-8

Delauhay Triangulation: sweep-line algorithm
 Discover the points from/eft to jight

Boundary edges
Empty circles
tangent to sweep line

Delaufay Triangulation: sweep-line algorithm

Discover the points from/eft to fight

Delaunay Triangulation: sweep-line algorithm
 Discover the points from/eft to kight

 New pointEmpty circles
tangent to sweep line

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

New point
Locate vertically

23-12

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

New point
Locate vertically
Create edge
$23-13$

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Locate vertically
Create edge
Modify boundary edges

23-14

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Closing a triangle ?

23-16

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Delaunay Triangulation: sweep-line algorithy

Discover the points from left to right

Closing a triangle ?
Circle events

23-18

Delaunay Triangulation: sweep-line algorithy

Discover the points from left to right

Closing a triangle ?
Circle events
Next circle event

23-19

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Closing a triangle ?

Next circle event

23-20

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Next circle event
Close triangle

23-21

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Next circle event
Close triangle
Modify boundary edges

23-22

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Close triangle Modify boundary edges

Modify circle events
$23-23$

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Summary:
Process circle events and point events in x order

Three data structures
Triangulation List of events (x sorted) List of boundary edges
(ccw sorted)
23-24

Delaunay Triangulation: sweep-line algorithm

Complexity
Number

Circle events Point events

Delaunay Triangulation: sweep-line algorithm

Complexity
Circle events Point events processed

Triangulation

List of events (x sorted)

List of boundary edges
(ccw sorted)
24-2

Delaunay Triangulation: sweep-line algorithm

Complexity
Number

-

|
Point events processed $2 n$ n

List of boundary edges
(caw sorted)
24-3

Delaunay Triangulation: sweep-line algorithm

Complexity

List of events (x sorted)

List of boundary edges
(ccw sorted)
24-4

Delaunay Triangulation: sweep -line algorithm

Complexity
Number

Tr as

Triangulation

List of events (x sorted)

List of boundary edges
(caw sorted)
24-5
≤ 3 deletions
≤ 2 insertions ≤ 2 insertions
per event
≤ 2 deletions
≤ 2 insertions
per event

Point events processed $2 n$
create
2 triangles per event per event

Delaunay Triangulation: sweep-line algorithm

Complexity
Number

Circle events \mid Point events processed $2 n$
create
2 triangles per event
≤ 3 deletions ≤ 2 deletions
≤ 2 insertions ≤ 2 insertions per event per event
replace
2 edges by 1 per event
locate, then insert 2 edges per event

Delaunay Triangulation: sweep-line algorithm

Complexity

Number

Delaunay Triangulation: sweep-line algorithm

Complexity
Number

Circle events Point events processed $2 n$ n
create create
2 trianoles one edoe $O(n \log n)$
replace
2 edges by 1 per event
locate, then insert 2 edges per event

Algorithm: divide and conquer

25

Delaunay Triangulation: divide \& conquer (sketch)

Deleting a point

27

Delaunay Triangulation: deletion algorithm (sketch)

28-1

Delaunay Triangulation: deletion algorithm (sketch)

Delaunay Triangulation: incremental algorithm
New point

28-2

Delaunay Triangulation: deletion algorithm (sketch)

28-3

Delaunay Triangulation: deletion algorithm (sketch)

28-4

Delaunay Triangulation: deletion algorithm (sketch)

28-5

Delaunay Triangulation: deletion algorithm (sketch)

Extract hole

28-6

Delaunay Triangulation: deletion algorithm (sketch)

Extract hole
Triangulate

Delaunay Triangulation: deletion algorithm (sketch)

Extract hole
Triangulate

28-8

Delaunay Triangulation: deletion algorithm (sketch)

Extract hole
Triangulate

28-9

Delaunay Triangulation: deletion algorithm (sketch)

Extract hole
Triangulate
and sew

28-10

Delaunay Triangulation: deletion algorithm (sketch)

Extract hole
Triangulate
and sew

Be careful
Hole may be not conver

28-11

Delaunay Triangulation: deletion algorithm (sketch)

Be careful
Hole may be not conver

28-12
Extract hole
Triangulate
and sew

Delaunay Triangulation: deletion algorithm (sketch)

Ear queue

$28-13$

Delaunay Triangulation: deletion algorithm (sketch)

Ear queue
Ear with largest power is added

Delaunay Triangulation: deletion algorithm (sketch)

Ear queue
Ear with largest power is added
$28-15$

Delaunay Triangulation: deletion algorithm (sketch)

Ear queue
Ear with largest power is added
Iterate

Delaunay Triangulation: deletion algorithm (sketch)

Ear queue
Ear with largest power is added
Iterate

Delaunay Triangulation: deletion algorithm (sketch)

 Triangulate and flip

Delaunay Triangulation: deletion algorithm (sketch)

 Triangulate and flip

Delaunay Triangulation: deletion algorithm (sketch)

 Triangulate and flip

Delaunay Triangulation: deletion algorithm (sketch)

 Decision tree for small holesCGAL for degree ≤ 7 28-21

Delaunay Triangulation: deletion algorithm (sketch)

 Decision tree for small holesdegree 3
nothing to do
 for degree ≤ 7

28-22

Delaunay Triangulation: deletion algorithm (sketch)

 Decision tree for small holes

Delaunay Triangulation: deletion algorithm (sketch)

 Decision tree for small holes
Delaunay Triangulation: deletion algorithm (sketch)

 Decision tree for small holesdegree 5

for degree ≤ 7

28-25

Delaunay Triangulation: deletion algorithm (sketch)

Decision tree for small holes

for degree ≤ 7
28-26

Delaunay Triangulation: deletion algorithm (sketch)

Decision tree for small holes

28-27

Delaunay Triangulation: 3D

 Same as 2DDual Voronoi diagram
Empty sphere property
Triangle \longrightarrow Tetrahedron
Duality with 4D convex hull
Incremental algorithm (find the hole and star)

29-1

Delaunay • Convex hull

Dehn Sommerville relations $\quad f_{i}=\sharp($ faces of $\operatorname{dim} i)$
Same as 2 [
Euler: $\quad f_{0}-f_{1}+f_{2}-\ldots f_{d-1}=(-1)^{d-1}+1$
Dual

$$
\sum_{j}=k^{d-1}-1^{j}\binom{j+1}{k+1} f_{j}=(-1)^{d-1} f_{k}
$$

Empt

$$
-1 \leq k \leq d-2 \quad f_{-1}=f_{d}=1
$$

Tri $\quad\left\lfloor\frac{d+1}{2}\right\rfloor$ independent equations
Duality with 4D convex hull
Incremental algorithm (find the hole and star)

29-2

Delaunay • Convex hull

Dehn Sommerville relations $\quad f_{i}=\sharp($ faces of $\operatorname{dim} i)$
Same as 2 [
Euler: $\quad f_{0}-f_{1}+f_{2}-\ldots f_{d-1}=(-1)^{d-1}+1$
Dual

$$
\sum_{j}=k^{d-1}-1^{j}\binom{j+1}{k+1} f_{j}=(-1)^{d-1} f_{k}
$$

Empt

$$
-1 \leq k \leq d-2 \quad f_{-1}=f_{d}=1
$$

$$
\text { Tri } \quad\left\lfloor\frac{d+1}{2}\right\rfloor \text { independent equations }
$$

Duality with 4D convex hull

Delaunay Triangulation: 3D

Quadratic examples

30-1

Delaunay Triangulation: 3D

Quadratic examples

30-2

Delaunay Triangulation: 3D

Quadratic examples

$30-3$

Delaunay Triangulation: 3D

Quadratic examples

30-4

Delaunay Triangulation: 3D

Quadratic examples

30-5

Delaunay Triangulation: 3D

Quadratic examples

30-6

Delaunay Triangulation: 3D

Algorithms

4D convex hull duality

Incremental

Delaunay Triangulation: 3D

Algorithms

4D convex hull duality

Incremental
$O\left(f \log n+n^{\frac{4}{3}}\right)$ or $\Theta\left(n^{2}\right)$
$\Theta\left(n^{3}\right)$
practical

31-2

Delaunay Triangulation:higher dimensions

$d+1$ convex hull duality $O\left(n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)$

Incremental
practical
$O(n)$ for random points
coeff exponential in d

