Delaunay Triangulation: Applications

Reconstruction

Meshing

1

From points

From points

to shape

From points

From points

to shape

From points

From points

to shape

Sensor — Point set (no structure or unknown)

Reconstruction Context Medical Images

Reconstruction Context Medical Images

Childbirth simulation

Childbirth simulation

Surgery planning

Radiotherapy planing

Endoscopy simulation

Sensor — Point set (no structure or unknown)

Scanner

Point set (no structure or unknown)

Endoscope is inserted through the mouth into the duodenum

Scanner

Endoscope

Sensor

Biliary duct Duodenum Pancreatic duct

Liver

Endoscope

Cultural heritage

Cultural heritage

4 - 9

Reverse engineering

Reverse engineering

Prototyping (3D print)

Quality control

Sensor — Point set (no structure or unknown)

4 - 16

Geology

4 - 18

Sensor - Point set (no structure or unknown)

Geology

Point set (no structure or unknown)

Point set (no structure or unknown)

Point set (no structure or unknown)

Point set (no structure or unknown)

Point set (no structure or unknown)

Point set (no structure or unknown)

Point set (no structure or unknown)

Abstract 3D problem that we can solve in 2D section

4 - 28
Reconstruction Context

Point set (no structure or unknown)

Abstract 3D problem that we can solve in 2D section

4 - 29

Reconstruction Context

Point set (no structure or unknown)

Abstract 3D problem that we can solve in 2D section

Medial axis of a curve (surface in 3D)

Medial axis of a curve (surface in 3D)

Medial axis of a curve (surface in 3D)

Medial axis of a curve (surface in 3D)

Medial axis of a curve (surface in 3D)

Medial axis of a curve (surface in 3D)

Medial axis of a curve (surface in 3D)

Medial axis of a curve (surface in 3D)

Locus of center of bitangent spheres

5

 ϵ -sample of a curve

Local feature size:

 ϵ -sample of a curve

Local feature size: lfs(x) =

 ϵ -sample of a curve

Local feature size: lfs(x) = distance(x, medial axis)

Reconstruction

Sample is an ϵ -sample of a curve

Local feature size:

Delaunay is a good start

Reconstruction Delaunay is a good start Sample is an ϵ -sample of a curve if $\forall x$, $\text{Disk}(x, \epsilon \cdot \text{lfs}(x)) \cap \text{Sample} \neq \emptyset$

Local feature size: lfs(x) = distance(x, medial axis)

 \forall Disk, Disk \cap Curve has a single connected component or Disk \cap Medial axis $\neq \emptyset$

 $\forall \ \mathsf{Disk}, \ \mathsf{Disk} \cap \mathsf{Curve} \ \mathsf{has} \ \mathsf{a} \ \mathsf{single} \ \mathsf{connected} \ \mathsf{component}$

 $\forall \ \mathsf{Disk}, \ \mathsf{Disk} \cap \mathsf{Curve} \ \mathsf{has} \ \mathsf{a} \ \mathsf{single} \ \mathsf{connected} \ \mathsf{component}$

 \forall Disk, Disk \cap Curve has a single connected component

 \forall Disk, Disk \cap Curve has a single connected component

 $\forall \ \mathsf{Disk}, \ \mathsf{Disk} \cap \mathsf{Curve} \ \mathsf{has} \ \mathsf{a} \ \mathsf{single} \ \mathsf{connected} \ \mathsf{component}$

 $\forall \ \mathsf{Disk}, \ \mathsf{Disk} \cap \mathsf{Curve} \ \mathsf{has} \ \mathsf{a} \ \mathsf{single} \ \mathsf{connected} \ \mathsf{component}$

or $Disk \cap Medial axis \neq \emptyset$

Bh $\mathsf{Disk} \cap \mathsf{Curve}$ has 2 cc A and B a = closest of c on Curve(wlog on A)b = closest of c on BMoving from c to a dist to $B \nearrow$ reach center of bitangent disk

- If Sample is a ϵ -sample, $\epsilon < 1$
- neighboring points along Curve are Delaunay neighbors

- If Sample is a $\epsilon\text{-sample},\ \epsilon<1$
- neighboring points along Curve are Delaunay neighbors

- If Sample is a $\epsilon\text{-sample},\ \epsilon<1$
- neighboring points along Curve are Delaunay neighbors

- If Sample is a $\epsilon\text{-sample},\ \epsilon<1$
- neighboring points along Curve are Delaunay neighbors

- If Sample is a ϵ -sample, $\epsilon < 1$
- neighboring points along Curve are Delaunay neighbors

- If Sample is a $\epsilon\text{-sample},\ \epsilon<1$
- neighboring points along Curve are Delaunay neighbors

- If Sample is a $\epsilon\text{-sample},\ \epsilon<1$
- neighboring points along Curve are Delaunay neighbors

Theorem

- If Sample is a ϵ -sample, $\epsilon < 1$
- neighboring points along Curve are Delaunay neighbors

8 - 8

Delaunay is a good start

Given a sampling

- Given a sampling
- Compute Delaunay

- Given a sampling
- Compute Delaunay

Search the good sequence of edges there

Delaunay is a good start

1-sample is not enough

1-sample is not enough

10 - 2

1-sample is not enough

10 - 3

Reconstruction Crust 2D

Algorithm

Reconstruction

Crust 2D \

Algorithm

Keep Voronoi vertices

Compute Delaunay triangulation

Reconstruction

Crust 2D 🔪

Algorithm

Keep Voronoi vertices

Compute Delaunay triangulation

Keep edges between original points

Keep edges between original points

Reconstruction Crust 2D

Algorithm

12 -

Reconstruction Crust 2D

Algorithm

12 -

ReconstructionCrust 2D $0.4 \text{ sample} \Rightarrow \text{ wanted result } \subset \text{ crust}$ Theorem: $0.4 \text{ sample} \Rightarrow \text{ wanted result } \subset \text{ crust}$

x, x' two neighboring points on Curve Circle thru x and x' centered on Curve

Reconstruction $Crust \ 2D \quad \text{ 0.4 sample} \Rightarrow \mathsf{wanted} \ \mathsf{result} \subset \mathsf{crust}$ 0.4 sample \Rightarrow wanted result \subset crust Theorem: x, x' two neighboring points on Curve Circle thru x and x' centered on Curve By contradiction assume $v \in (\bullet)$) intersects another cc of curve Curve (by Lemma) \mathcal{X}

ReconstructionCrust 2D $0.4 \text{ sample} \Rightarrow \text{ wanted result } \subset \text{ crust}$ Theorem: $0.4 \text{ sample} \Rightarrow \text{ wanted result } \subset \text{ crust}$

ReconstructionCrust 2D $0.25 \text{ sample} \Rightarrow \text{crust} \subset \text{ wanted result}$ Theorem: $0.25 \text{ sample} \Rightarrow \text{crust} \subset \text{wanted result}$

ReconstructionCrust 2D $0.25 \text{ sample} \Rightarrow \text{crust} \subset \text{ wanted result}$ Theorem: $0.25 \text{ sample} \Rightarrow \text{crust} \subset \text{wanted result}$

 $Reconstruction \qquad Crust 2D \quad 0.25 \text{ sample} \Rightarrow crust \subset wanted result}$

Theorem: 0.25 sample \Rightarrow crust \subset wanted result

Assume empty circle

 \mathcal{X}

ReconstructionCrust 2D $0.25 \text{ sample} \Rightarrow \text{crust} \subset \text{wanted result}$ Theorem: $0.25 \text{ sample} \Rightarrow \text{crust} \subset \text{wanted result}$

X

 \mathcal{X}

Assume empty circle

No Voronoi vertices there

Difficulty: sliver

Which triangle belongs to reconstruction ?

Crust: Voronoi vertices may kill useful triangles

Meshing

Discretize space to solve (differential) equations

Finite elements

Finite differences

Discretize space to solve (differential) equations

Finite elements

Finite differences

Good mesh:

Control shape of elements (no small angles) Control size of elements (adjust to function variability) Minimize number of elements

Meshing

Gallery

Structured meshes (advancing front, deformation) Delaunay mesh refinement [Ruppert] protecting small angles off-centers Delaunay mesh optimization

3D

Meshing

20

Regular grid

Regular grid

Regular grid

Shape

Deform

to fit the grid in the shape

Shape

Shape

Advancing front

Shape

Advancing front

Shape

Advancing front

Shape

Meshing

Shape

Add grid

23 - 3

Triangulate

Add grid

Shape

Structured meshes

Shape

Structured meshes

Triangulate

Uniform mesh

Shape

Shape

Structured meshes

Adaptive mesh

24 - 4

Delaunay mesh refinement [Ruppert]

Unstructured mesh

Use Delaunay (good angles property)

Add vertices

Def: Edge encroached by vertex

if inside diametral circle

Small angles means $<\alpha<20^\circ$

Theorem: algorithm terminates with mesh of size O(optimal)

Delaunay mesh optimization

Delaunay mesh optimization

Delaunay mesh optimization

Delaunay mesh optimization

LLoyd iteration Move to barycenter

Clip by some boundary

Delaunay mesh optimization

Delaunay mesh optimization

Delaunay mesh optimization

Delaunay mesh optimization

LLoyd iteration Reach a nice point distribution

Delaunay mesh optimization

Alternate

Delaunay mesh refinement

Lloyd smooting or different kind of smoothing

39

Delaunay mesh optimization

Figure 1.6: CVT mesh optimization. In 2D (top), (left) a 2D Delaunay mesh M_2 generated by Delaunay refinement, (center) M_2 optimized with CVT, and (right) M_2 's Voronoi diagram. In 3D (bottom), (left) a 3D Delaunay mesh M_3 generated by Delaunay refinement, (center) M_3 optimized with CVT, and (right) M_3 's slivers (tetrahedra with dihedral angles smaller than 5°).

Delaunay mesh optimization

39 - 3

Delaunay mesh optimization

Constraints: edges and faces

Point to insert may be encroached by edges or faces

