

Computational Geometry Algorithms Library

Monique Teillaud
www.cgal.org

Outline

(1) Introduction

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels
(2) 2D, 3D Triangulations in CGAL
- Introduction
- Functionalities
- Representation
- Robustness
- Software Design

Introduction

(1) Introduction

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels
(2) 2D, 3D Triangulations in CGAL
- Introduction
- Functionalities
- Representation
- Robustness
- Software Design

Introduction - The CGAL Open Source Project

(1) Introduction

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels
(2) 2D, 3D Triangulations in CGAL
- Introduction
- Functionalities
- Representation
- Robustness
- Software Design

Goals

- Promote the research in Computational Geometry (CG)
- "make the large body of geometric algorithms developed in the field of CG available for industrial applications"

$$
\Rightarrow \text { robust programs }
$$

History

- Development started in 1995

History

- Development started in 1995
- January, 2003: creation of Geometry Factory

INRIA startup
sells commercial licenses, support, customized developments

- November, 2003: Release 3.0 - Open Source Project
- new contributors
- September, 2017: Release 4.11

License

- a few basic packages under LGPL
- most packages under GPLv3+
- free use for Open Source code
- commercial license needed otherwise

Distribution

- from github
- included in Linux distributions (Debian, etc)
- available through macport
- 2009: CGAL triangulations integrated in Matlab
- CGAL-bindings
- CGAL triangulations, meshes, etc, can be used in Java or Python
- implemented with SWIG

CGAL in numbers

- N00,000 lines of C++ code
- several platforms
g++ (Linux MacOS Windows), clang, VC++, etc
- > 1,000 downloads per month
- 50 developers registered on developer list (~ 20 active)

Development process

- New contributions must be submitted to the Editorial board and reviewed.
- Automatic test suites running on all supported compilers/platforms

Users

List of identified users in various fields

- Art
- Architecture, Buildings Modeling, Urban Modeling
- Astronomy
- Computational Geometry and Geometric Computing
- Computer Graphics
- Computational Topology and Shape Matching
- Computer Vision, Image Processing, Photogrammetry
- Games, Virtual Worlds
- Geographic Information Systems
- Geology and Geophysics
- Geometry Processing
- Medical Modeling and Biophysics
- Mesh Generation and Surface Reconstruction
- 2D and 3D Modelers
- Molecular Modeling
- Motion Planning
- Particle Physics, Materials, Nanostructures, Microstructures, Fluid Dynamics
- Peer-to-Peer Virtual Environment
- Sensor Networks

More non-identified users. . .

Customers of Geometry Factory

Introduction - Contents of CGAL

(1) Introduction

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels
(2) 2D, 3D Triangulations in CGAL
- Introduction
- Functionalities
- Representation
- Robustness
- Software Design

Structure

- Kernels
- Various packages
- Support Library

STL extensions, I/O, generators, timers. . .

Some packages

Subdivision

Simplification

Lower Envelope

Arrangement

Intersection Detection

Minkowski Sum

PCA

Introduction - The CGAL Kernels

(1) Introduction

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels
(2) 2D, 3D Triangulations in CGAL
- Introduction
- Functionalities
- Representation
- Robustness
- Software Design
- 2D, 3D, dD "rational" kernels
- 2D circular and 3D spherical kernels

In the kernels

- Elementary geometric objects
- Elementary computations on them

Primitives	Predicates	Constructions
2D,3D, dD	- comparison	• intersection
- Point	- Orientation	• squared distance
- Vector	- InSphere	\ldots
- Triangle	\ldots	
- Circle		

Affine geometry

Point - Origin \rightarrow Vector
Point - Point \rightarrow Vector
Point + Vector \rightarrow Point

Point + Point illegal
$\operatorname{midpoint}(a, b)=a+1 / 2 \times(b-a)$

Kernels and number types

Cartesian representation
Point $\left\lvert\, \begin{aligned} & x=\frac{h x}{h w} \\ & y=\frac{h y}{h w}\end{aligned}\right.$

Homogeneous representation
Point $\left\lvert\, \begin{aligned} & h x \\ & h y \\ & h w\end{aligned}\right.$

Kernels and number types

Cartesian representation
Point $\left\lvert\, \begin{aligned} & x=\frac{h x}{h w} \\ & y=\frac{h y}{h w}\end{aligned}\right.$

Homogeneous representation
Point $\left\lvert\, \begin{aligned} & h x \\ & h y \\ & h w\end{aligned}\right.$

- ex: Intersection of two lines -
$\left\{\begin{array}{l}a_{1} x+b_{1} y+c_{1}=0 \\ a_{2} x+b_{2} y+c_{2}=0\end{array}\right.$
$\left\{\begin{array}{l}a_{1} h x+b_{1} h y+c_{1} h w=0 \\ a_{2} h x+b_{2} h y+c_{2} h w=0\end{array}\right.$
$(x, y)=$
$(h x, h y, h w)=$
$\left(\begin{array}{ll}b_{1} & c_{1} \\ b_{2} & c_{2}\end{array}\left|,-\frac{\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{2} & c_{2}\end{array}\right|}{\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|},-\frac{a_{1}}{b_{1}} \begin{array}{ll}a_{2} & b_{2}\end{array}\right|\right)$

Kernels and number types

Cartesian representation
Point $\left\lvert\, \begin{aligned} & x=\frac{h x}{h w} \\ & y=\frac{h y}{h w}\end{aligned}\right.$

Homogeneous representation
Point $\left\lvert\, \begin{aligned} & h x \\ & h y \\ & h w\end{aligned}\right.$

- ex: Intersection of two lines -
$\left\{\begin{array}{l}a_{1} x+b_{1} y+c_{1}=0 \\ a_{2} x+b_{2} y+c_{2}=0\end{array}\right.$
$(x, y)=$
$\left(-\left|\begin{array}{ll}b_{1} & c_{1} \\ b_{2} & c_{2}\end{array}\right|,-\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{2} & b_{1} \\ a_{2} & c_{2}\end{array}\right|\right)$
Field operations
$\left\{\begin{array}{l}a_{1} h x+b_{1} h y+c_{1} h w=0 \\ a_{2} h x+b_{2} h y+c_{2} h w=0\end{array}\right.$
$(h x, h y, h w)=$
$\left(\left|\begin{array}{ll}b_{1} & c_{1} \\ b_{2} & c_{2}\end{array}\right|,-\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{2} & c_{2}\end{array}\right|,\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|\right)$

Ring operations

The "rational" Kernels

```
CGAL::Cartesian< FieldType >
CGAL::Homogeneous< RingType >
```

\longrightarrow Flexibility
typedef double
typedef Cartesian< NumberType > Kernel;
typedef Kernel::Point_2 Point;

Arithmetic robustness issues

Rational Kernels:
Predicates $=$ signs of polynomial expressions

Exact Geometric Computation

 \neq exact arithmeticsPredicates evaluated exactly
Filtering Techniques (interval arithmetics, etc) exact arithmetics only when needed

CGAL: :Exact_predicates_inexact_constructions_kernel

Arithmetic robustness issues

```
typedef CGAL::Cartesian<NT> Kernel;
NT sqrt2 = sqrt( NT(2) );
Kernel::Point_2 p(0,0), q(sqrt2,sqrt2);
Kernel::Circle_2 C(p,2); // squared radius 2
```


Arithmetic robustness issues

```
typedef CGAL::Cartesian<NT> Kernel;
NT sqrt2 = sqrt( NT(2) );
Kernel::Point_2 p(0,0), q(sqrt2,sqrt2);
Kernel::Circle_2 C(p,2); // squared radius 2
assert( C.has_on_boundary(q) );
```

> OK if NT gives exact sqrt assertion violation otherwise

The circular/spherical kernels

Circular/spherical kernels

- solve needs for e.g. intersection of circles.
- extend the CGAL (linear) kernels

Exact computations on algebraic numbers of degree 2
$=$ roots of polynomials of degree 2
Algebraic methods reduce comparisons to computations of signs of polynomial expressions

Application of the 2D circular kernel

Computation of arrangements of 2D circular arcs and line segments

Pedro M.M. de Castro, Master internship

Application of the 3D spherical kernel

Computation of arrangements of 3D spheres

Sébastien Loriot, PhD thesis

2D, 3D Triangulations in CGAL

(1) Introduction

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels
(2) 2D, 3D Triangulations in CGAL
- Introduction
- Functionalities
- Representation
- Robustness
- Software Design

2D, 3D Triangulations in CGAL - Introduction

(1) Introduction

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels
(2) 2D, 3D Triangulations in CGAL
- Introduction
- Functionalities
- Representation
- Robustness
- Software Design

Simplicial complex

$=$ set \mathbb{K} of $0,1,2, \ldots d$-faces such that

- each face is a simplex
- $\sigma \in \mathbb{K}, \tau \leq \sigma \Rightarrow \tau \in \mathbb{K}$
- $\sigma, \sigma^{\prime} \in \mathbb{K} \Rightarrow \sigma \cap \sigma^{\prime} \leq \sigma, \sigma^{\prime}$

Various triangulations

2D, 3D, dD Basic triangulations
2D, 3D, dD Delaunay triangulations
2D, 3D, dD Regular triangulations

Basic and Delaunay triangulations

(figures in 2D)

Basic triangulations : incremental construction
Delaunay triangulations: empty sphere property

Regular triangulations

weighted point $p^{(w)}=\left(p, w_{p}\right), p \in \mathbb{R}^{3}, w_{p} \in \mathbb{R}$ $p^{(w)}=\left(p, w_{p}\right) \simeq$ sphere of center p and radius $\sqrt{w_{p}}$. power product between $p^{(w)}$ and $z^{(w)}$

$$
\Pi\left(p^{(w)}, z^{(w)}\right)=\|p-z\|^{2}-w_{p}-w_{z}
$$

$p^{(w)}$ and $z^{(w)}$ orthogonal iff $\Pi\left(p^{(w)}, z^{(w)}\right)=0$

Regular triangulations

Power sphere of 4 weighted points in $\mathbb{R}^{3}=$ unique common orthogonal weighted point.
$z^{(w)}$ is regular iff $\forall p^{(w)}, \Pi\left(p^{(w)}, z^{(w)}\right) \geq 0$

(2D)
Regular triangulations: generalization of Delaunay triangulations to weighted points. Dual of the power diagram.

The power sphere of all simplices is regular.

2D, 3D Triangulations in CGAL - Functionalities

(1) Introduction

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels
(2) 2D, 3D Triangulations in CGAL
- Introduction
- Functionalities
- Representation
- Robustness
- Software Design

General functionalities

- Traversal of a 2D (3D) triangulation
- passing from a face (cell) to its neighbors
- iterators to visit all faces (cells) of a triangulation
- circulators (iterators) to visit all faces (cells) incident to a vertex
- circulators to visit all cells around an edge

General functionalities

- Traversal of a 2D (3D) triangulation
- passing from a face (cell) to its neighbors
- iterators to visit all faces (cells) of a triangulation
- circulators (iterators) to visit all faces (cells) incident to a vertex
- circulators to visit all cells around an edge
- Point location query
- Insertion, removal, flips

General functionalities

- Traversal of a 2D (3D) triangulation
- passing from a face (cell) to its neighbors
- iterators to visit all faces (cells) of a triangulation
- circulators (iterators) to visit all faces (cells) incident to a vertex
- circulators to visit all cells around an edge
- Point location query
- Insertion, removal, flips
- is valid
checks local validity (sufficient in practice) not global validity

Traversal of a 3D triangulation

Iterators

All_cells_iterator
All_faces_iterator
All_edges_iterator
All_vertices_iterator
Circulators
Cell_circulator: cells incident to an edge
Facet_circulator : facets incident to an edge

```
All_vertices_iterator vit;
for (vit = T.all_vertices_begin();
    vit != T.all_vertices_end(); ++vit)
```


Traversal of a 3D triangulation

```
Around a vertex
incident cells and facets, adjacent vertices
template < class OutputIterator >
OutputIterator
    t.incident_cells
        ( Vertex_handle v, OutputIterator cells)
```


Point location, insertion, removal

basic triangulation:

Delaunay triangulation:

3D Flip

if convex position

Additional functionalities for Delaunay triangulations

Nearest neighbor queries
Voronoi diagram

2D, 3D Triangulations in CGAL - Representation

(1) Introduction

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels
(2) 2D, 3D Triangulations in CGAL
- Introduction
- Functionalities
- Representation
- Robustness
- Software Design

The main algorithm

Incremental algorithm

- fully dynamic (point insertion, vertex removal)
- any dimension
- easier to implement
- efficient in practice
...

Needs

Walking in a triangulation
Access to

- vertices of a simplex
- neighbors of a simplex in constant time

2D - Representation based on faces

Vertex

Face_handle v_face

Face

Vertex_handle vertex[3]
Face_handle neighbor[3]

2D - Representation based on faces

Vertex

Face_handle v_face

Face

Vertex_handle vertex[3]
Face_handle neighbor[3]

Edges are implicit: std::pair< f,i> where $f=$ one of the two incident faces.
more efficient than half-edges
From one face to another
$\mathrm{n}=\mathrm{f} \rightarrow$ neighbor (i)
$\mathrm{j}=\mathrm{n} \rightarrow$ index(f)

3D - Representation based on cells

Vertex

$$
\text { Cell_handle } \quad \text { v_cell }
$$

Cell
Vertex_handle vertex[4]
Cell_handle neighbor[4]

Faces are implicit: std::pair< c,i> where $c=$ one of the two incident cells.

Edges are implicit: std::pair< $u, v>$
where $u, v=$ vertices.

3D - Representation based on cells

Vertex

Cell_handle v_cell

Cell
Vertex_handle vertex[4]
Cell_handle neighbor[4]

From one cell to another

$$
\begin{aligned}
& \mathrm{n}=\mathrm{c} \rightarrow \text { neighbor }(\mathrm{i}) \\
& \mathrm{j}=\mathrm{n} \rightarrow \text { index }(\mathrm{c})
\end{aligned}
$$

The infinite region

Triangulation of a set of points $=$ partition of the convex hull into simplices.

The infinite region has non-constant size

Add a bounding box?

The infinite region

Triangulation of a set of points $=$ partition of the convex hull into simplices.

The infinite region has non-constant size

Add a bounding box?

- requires to know points in advance

The infinite region

Triangulation of a set of points $=$ partition of the convex hull into simplices.

The infinite region has non-constant size

Add a bounding box?

- requires to know points in advance
- creates ugly simplices

The infinite region

Triangulation of a set of points $=$ partition of the convex hull into simplices.

Add an infinite vertex
\longrightarrow "triangulation" of the infinite region

- Every cell is a "simplex".
- Any facet is incident to two cells.

The infinite region

Triangulation of a set of points $=$ partition of the convex hull into simplices.

Add an infinite vertex
\longrightarrow "triangulation" of the infinite region

- Every cell is a "simplex".
- Any facet is incident to two cells.

Triangulation of \mathbb{R}^{d}
\simeq
Triangulation of the topological sphere \mathbb{S}^{d}.

Geometry vs. combinatorics

Each finite vertex stores a point

Geometry vs. combinatorics

Each finite vertex stores a point

There is NO point in the infinite vertex
infinite simplex $=$ half-space

Dimensions in a 3D triangulation

Dimensions

Adding a point outside the current affine hull:
From $d=1$ to $d=2$

2D, 3D Triangulations in CGAL - Robustness

(1) Introduction

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels
(2) 2D, 3D Triangulations in CGAL
- Introduction
- Functionalities
- Representation
- Robustness
- Software Design

Arithmetic robustness

see above

Benchmarks
2.3 GHz, 16 GByte workstation
3.9 (Release mode)

Arithmetic robustness

see above

Benchmarks
2.3 GHz, 16 GByte workstation
3.9 (Release mode)

Delaunay triangulation - 10 Mpoints

Kernel	2 D	3 D
Cartesian < double >	9.7 sec	75 sec
Exact_predicates_inexact_constructions_kernel	10.6 sec	82 sec

Arithmetic robustness

see above

Benchmarks
2.3 GHz, 16 GByte workstation
3.9 (Release mode)

Delaunay triangulation - 10 Mpoints

Kernel	2D	3D
Cartesian < double > $>$ Exact_predicates_inexact_constructions_kernel	10.6 sec	82 sec

Degenerate cases

Cospherical points

Any triangulation is a Delaunay triangulation

Degenerate cases

Vertex removal

1- remove the tetrahedra incident to $v \longrightarrow$ hole

Degenerate cases

Vertex removal

1- remove the tetrahedra incident to $v \longrightarrow$ hole
2 - retriangulate the hole

Degenerate cases

Vertex removal
Cocircular points
Several possible Delaunay triangulations of a facet of the hole

Triangulation of the hole must be compatible with the rest of the triangulation

Degenerate cases

Remark on the general question:
H given polyhedron with triangulated facets.
Find a Delaunay triangulation of H keeping its facets?
Not always possible:

Degenerate cases

Allowing flat tetrahedra? k cocircular points on a facet

2D triangulation of the facet induced by tetrahedra in the hole

$$
\text { sequence of } O\left(k^{2}\right) \text { edge flips }
$$

2D triangulation of the facet induced by tetrahedra outside the hole edge flip \longleftrightarrow flat tetrahedron

Degenerate cases

Allowing flat tetrahedra? k cocircular points on a facet

2D triangulation of the facet induced by tetrahedra in the hole

$$
\text { sequence of } O\left(k^{2}\right) \text { edge flips }
$$

2D triangulation of the facet induced by tetrahedra outside the hole edge flip \longleftrightarrow flat tetrahedron

Unacceptable

Degenerate cases

Symbolic perturbation of in_sphere predicate

- Algorithm working even in degenerate situations
- No flat tetrahedra
- Perturbed predicate easy to code

CGAL : only publicly available software proposing a fully dynamic 3D Delaunay/regular triangulation.

Robustness

Dassault Systèmes

Robustness

Pictures by Pierre Alliez

2D, 3D Triangulations in CGAL - Software Design

(1) Introduction

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels
(2) 2D, 3D Triangulations in CGAL
- Introduction
- Functionalities
- Representation
- Robustness
- Software Design

Traits class

Triangulation_2<Traits, TDS $>$
Geometric traits classes provide:
Geometric objects + predicates + constructors
Flexibility:

- The Kernel can be used as a traits class for several algorithms
- Otherwise: Default traits classes provided
- The user can plug his/her own traits class

Traits class

Generic algorithms

Delaunay_Triangulation_ $2<$ Traits, TDS $>$

Traits parameter provides:

- Point
- orientation test, in_circle test

Traits class

2D Kernel used as traits class

typedef CGAL::Exact_predicates_inexact_constructions_kernel K; typedef CGAL: :Delaunay_triangulation_2<K > Delaunay;

- 2D points: coordinates (x, y)
- orientation, in_circle

Traits class

```
Changing the traits class
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Projection_traits_xy_3< K > Traits;
typedef CGAL::Delaunay_triangulation_2< Traits > Terrain;
```

- 3D points: coordinates (x, y, z)
- orientation, in_circle:
on x and y coordinates only

Layers

Triangulation_3< Traits, TDS >

Triangulation_data_structure_3< Vb, Cb> ; Vb and Cb have default values.

Layers

The base level
Concepts VertexBase and CellBase.
Provide

- Point + access function + setting
- incidence and adjacency relations (access and setting)

Several models, parameterised by the traits class.

Changing the Vertex_base and the Cell_base

Changing the Vertex_base and the Cell_base

 First option: Triangulation_vertex_base_with_info_3When the additional information does not depend on the TDS

```
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
#include <CGAL/IO/Color.h>
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Triangulation_vertex_base_with_info_3
    <CGAL::Color,K> Vb;
typedef CGAL::Triangulation_data_structure_3<Vb> Tds;
typedef CGAL::Delaunay_triangulation_3<K, Tds> Delaunay;
typedef Delaunay::Point Point;
```


Changing the Vertex_base and the Cell_base

 First option: Triangulation_vertex_base_with_info_3When the additional information does not depend on the TDS

```
int main()
{
    Delaunay T;
    T.insert(Point(0,0,0)); T.insert(Point(1,0,0));
    T.insert(Point(0,1,0)); T.insert(Point(0,0,1));
    T.insert(Point(2,2,2)); T.insert(Point(-1,0,1));
```

 // Set the color of finite vertices of degree 6 to red.
 Delaunay::Finite_vertices_iterator vit;
 for (vit = T.finite_vertices_begin();
 vit != T.finite_vertices_end(); ++vit)
 if (T.degree(vit) == 6)
 vit->info() = CGAL::RED;
 return 0;
 \}

Changing the Vertex_base and the Cell_base
Third option: write new models of the concepts

Changing the Vertex_base and the Cell_base

 Second option: the "rebind" mechanism- Vertex and cell base classes:
initially given a dummy TDS template parameter:
dummy TDS provides the types that can be used by the vertex and cell base classes (such as handles).
- inside the TDS itself,
vertex and cell base classes are rebound to the real TDS type
\rightarrow the same vertex and cell base classes are now parameterized with the real TDS instead of the dummy one.

Changing the Vertex_base and the Cell_base

 Second option: the "rebind" mechanism

Changing the Vertex_base and the Cell_base

 Second option: the "rebind" mechanism```
template< class GT, class Vb= Triangulation_vertex_base<GT> >
class My_vertex : public Vb
{
 typedef typename Vb::Point Point;
 typedef typename Vb::Cell_handle Cell_handle;
 template < class TDS2 >
 struct Rebind_TDS {
 typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
 typedef My_vertex<GT, Vb2> Other;
 };
 My_vertex() {}
 My_vertex(const Point&p) : Vb(p) {}
 My_vertex(const Point&p, Cell_handle c) : Vb(p, c) {}
```

\}

## Changing the Vertex_base and the Cell_base

 Second option: the "rebind" mechanism```
Example
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_3.h>
```


Changing the Vertex_base and the Cell_base

Second option: the "rebind" mechanism

```
Example
template < class GT, class Vb=CGAL::Triangulation_vertex_base_3<GT> >
class My_vertex_base : public Vb {
    typedef typename Vb::Vertex_handle Vertex_handle;
    typedef typename Vb::Cell_handle Cell_handle;
    typedef typename Vb::Point Point;
    template < class TDS2 > struct Rebind_TDS {
    typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
    typedef My_vertex_base<GT, Vb2> Other; };
    My_vertex_base() {}
    My_vertex_base(const Point& p) : Vb(p) {}
    My_vertex_base(const Point& p, Cell_handle c) : Vb(p, c) {}
    Vertex_handle vh;
    Cell_handle ch;
};
```


Changing the Vertex_base and the Cell_base

 Second option: the "rebind" mechanism```
Example
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::
 Triangulation_data_structure_3< My_vertex_base<K> > Tds;
typedef CGAL::
 Delaunay_triangulation_3< K, Tds > Delaunay;
typedef Delaunay::Vertex_handle Vertex_handle;
typedef Delaunay::Point Point;
int main()
{ Delaunay T;
 Vertex_handle v0 = T.insert(Point(0,0,0));
 ... v1; v2; v3; v4; v5;
 // Now we can link the vertices as we like.
 v0->vh = v1; v1->vh = v2;
 v2->vh = v3; v3->vh = v4;
 v4->vh = v5; v5->vh = v0;
 return 0;
```

2

## Algorithms



Basic incremental algorithm
Locate by walk
Locate using randomized data structures
Vertex removal in 2D
Conclusions


## Algorithms



## Basic incremental algorithm

Locate by walk
Locate using randomized data structures
Vertex removal in 2D
Conclusions

2


3-1


3-2


3-3

Find conflicts


3-4


3-6

## Algorithms



## Basic incremental algorithm

Locate by walk

Straight walk

Visibility walk
Structural filtering
Walk shape
Locate using randomized data structures
Vertex removal in 2D
Conclusions


## Algorithms



Basic incremental algorithm
Locate by walk

> Straight walk
> Visibility walk
> Structural filtering Walk shape

Locate using randomized data structures
Vertex removal in 20
Conclusions


## Algorithms

Locate by walk
straight walk


## Algorithms

straight walk


## Algorithms

Locate by walk
straight walk


## Exit edge ? <br> One orientation predicate

6-7


## End of walk ?

A second orientation predicate
$6-9$


## Algorithms

straight walk

Locate by walk degeneracies


## Algorithms

straight walk

Locate by walk degeneracies


## Algorithms



Basic incremental algorithm
Locate by walk

Straight walk

Visibility walk
Structural filtering Walk shape

Locate using randomized data structures
Vertex removal in 2D
Conclusions

7

visibility walk

visibility walk

visibility walk

visibility walk

visibility walk

visibility walk





## Algorithms

Visibility vs straight walk

Visibility vs straight walk 2D and 3D
fewer predicates per crossed edge
similar number of crossed edges experimental / theoretical

## Algorithms

## Visibility vs straight walk

## Speed improvement?

Visibility vs straight walk

Walk in Delaunay 1 Mpoints
Straight: $324 \mu \mathrm{~s}$
Visibility: $285 \mu \mathrm{~s}$

3D: $97 \mu \mathrm{~s}$

Visibility vs straight walk

$$
\text { 3D: } 97 \mu \mathrm{~s}
$$

Much easier to code
no degeneracies to handle!

```
#include
 <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Triangulation_3.h>
#include <iostream> #include <fstream>
#include <cassert>
#include <list> #include <vector>
typedef
 CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Triangulation_3<K> Triangulation;
typedef Triangulation::Cell_handle Cell_handle;
typedef Triangulation::Vertex_handle Vertex_handle;
typedef Triangulation::Locate_type Locate_type;
typedef Triangulation::Point Point;
10-1
```

```
int main()
{
std::list<Point> L;
L.push_front(Point(0,0,0));
L.push_front(Point(1,0,0));
L.push_front(Point(0,1,0));
Triangulation T(L.begin(), L.end());
int n = T.number_of_vertices();
std::vector<Point> V(3);
V[0] = Point(0,0,1);
V[1] = Point(1,1,1);
V[2] = Point(2,2,2);
n = n + T.insert(V.begin(), V.end());
assert(n == 6);
assert(T.is_valid());
10-2
```

```
Locate_type lt;
int li, lj;
Point p(0,0,0);
Cell_handle c = T.locate(p, lt, li, lj);
assert(lt == Triangulation::VERTEX);
assert(c->vertex(li)->point() == p);
Vertex_handle v = c->vertex((li+1)&3);
Cell_handle nc = c->neighbor(li);
int nli;
assert(nc->has_vertex(v, nli));
```

```
std::ofstream oFileT("output",std::ios::out);
oFileT << T;
Triangulation T1;
std::ifstream iFileT("output",std::ios::in);
iFileT >> T1;
assert(T1.is_valid());
assert(T1.number_of_vertices() == T.number_of_vertices());
assert(T1.number_of_cells() == T.number_of_cells());
return 0;
```


## Algorithms



Basic incremental algorithm
Locate by walk

> Straight walk
> Visibility walk
> Structural filtering
Walk shape

Locate using randomized data structures
Vertex removal in 2D
Conclusions

11


## Algorithms

Locate by walk
visibility walk - structural filtering


## Algorithms

Locate by walk
visibility walk - structural filtering


## Algorithms

Locate by walk
visibility walk - structural filtering


## Algorithms

Locate by walk
visibility walk - structural filtering


## Algorithms

Locate by walk
visibility walk - structural filtering


## Algorithms

Locate by walk
visibility walk - structural filtering



## Orientation predicates

Certify all along the walk
285 useconds $97 \mu$ seconds
Certify after a while, just in case
$220 \mu s e c o n d s \quad 81 \mu$ seconds
2D 3D
$12-8$
Walk in Delaunay 1 Mpoints

## Algorithms



Basic incremental algorithm
Locate by walk

> Straight walk
> Visibility walk
> Structural filtering

Walk shape
Locate using randomized data structures
Vertex removal in 2D
Conclusions

13

visibility walk - walk shape


## Algorithms

Locate by walk
visibility walk - walk shape


## Turn counterclockwise from previous



15-1

## Turn clockwise from previous



15-2

## Balance left and right turns


first with proba $\frac{2}{3}$
15-3
visibility walk - walk shape
Walk in Delaunay 1 Mpoints

Leftmost $220 \mu$ seconds<br>Balanced $188 \mu$ seconds

15-4

Walk in Delaunay 1 Mpoints

Straight walk
Visibility walk $\quad 285 \mu$ seconds
Structural filtering $220 \mu$ seconds
Balanced walk
$188 \mu$ seconds

## Algorithms



Basic incremental algorithm
Locate by walk
Locate using randomized data structures
The Delaunay tree
The Delaunay hierarchy
Biased randomized insertion order
Vertex removal in 2D
Conclusions


## Algorithms



Basic incremental algorithm
Locate by walk
Locate using randomized data structures
The Delaunay tree
The Delaunay hierarchy
Biased randomized insertion order

## Vertex removal in 2D

Conclusions

18







## Algorithms

Locate using data structures the Delaunay tree




## Algorithms

Locate using data structures the Delaunay tree


## Algorithms

Locate using data structures the Delaunay tree


locate based on incircle predicate

$\sharp$ triangles in the Delaunay tree


19-12





locate based on incircle predicate

$\sharp$ triangles in the Delaunay tree

$$
=6 n(\text { randomized })
$$



## Algorithms



Basic incremental algorithm
Locate by walk
Locate using randomized data structures
The Delaunay tree
The Delaunay hierarchy
Biased randomized insertion order

## Vertex removal in 2D

Conclusions

20
 the Delaunay hierarchy


## Algorithms

Locate using data structures the Delaunay hierarchy
 the Delaunay hierarchy


## Algorithms

Locate using data structures the Delaunay hierarchy


## Algorithms

Locate using data structures the Delaunay hierarchy


## Algorithms

Locate using data structures the Delaunay hierarchy
 the Delaunay hierarchy


## The Delaunay tree

locate based on incircle predicate
$\sharp$ triangles in the Delaunay tree
$=6 n$ (randomized)

## The Delaunay hierarchy

based on orientation predicate
$\sharp$ triangles in the hierarchy
can be chosen

$$
=1.03 \times 2 n(\text { expected })
$$

## The Delaunay tree

locate based on incircle predicate
$\sharp$ triangles in the Delaunay tree
$=6 n($ randomized $)$

## The Delaunay hierarchy

based on orientation predicate
$\#$ triangles in the hierarchy
can be chosen

$$
=1.03 \times 2 n(\text { expected })
$$

## The Delaunay tree

locate based on incircle predicate
$\sharp$ triangles in the Delaunay tree
$=6 n($ randomized $)$

$$
O(n \log n)
$$

## The Delaunay hierarchy

based on orientation predicate
$\sharp$ triangles in the hierarchy
can be chosen

$$
=1.03 \times 2 n(\text { expected })
$$

## The Delaunay tree

locate based on incircle predicate
$\sharp$ triangles in the Delaunay tree

$$
=6 n \text { (randomized) }
$$

## 2.3 seconds

## 17 seconds

50000 random points (original benchmarks in 2000).

```
#include
 <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Random.h>
#include <vector>
#include <cassert>
typedef
 CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Delaunay_triangulation_3<K,
 CGAL::Fast_location> Delaunay;
typedef Delaunay::Point Point;
```

22-1

```
int main()
{ Delaunay T;
 std::vector<Point> P;
 for (int z=0 ; z<20 ; z++)
 for (int y=0 ; y<20 ; y++)
 for (int x=0 ; x<20 ; x++)
 P.push_back(Point(x,y,z));
 Delaunay T(P.begin(), P.end());
 assert(T.number_of_vertices() == 8000);
 for (int i=0; i<10000; ++i)
 T.nearest_vertex
 (Point(CGAL::default_random.get_double(0,20),
 CGAL::default_random.get_double(0,20),
 CGAL::default_random.get_double(0,20)));
22-- return 0; }
```


## Algorithms



Basic incremental algorithm
Locate by walk
Locate using randomized data structures


Biased randomized insertion order

## Vertex remóval in 2D

Conclusions

23


Efficiency of incremental algorithms depends on the order of insertion


## Efficiency of incremental algorithms

 depends on the order of insertion

Algorithms
Locate using data structures



## Algorithms

## biased random insertion order


biased random insertion order

$\Longrightarrow$ point location

- previous cell in cache memory
$\rightarrow$ faster start
- previous point close
$\Longrightarrow$ memory locality improved

biased random insertion order

biased random insertion order

biased random insertion order




Delaunay 2D 1M random points
locate using Delaunay hierarchy
random order
$x$-order
Hilbert order
Biased order (Spatial sorting) 0.7 seconds
3 seconds
0,8 seconds

## Delaunay 2D 100K parabola points

locate using Delaunay hierarchy 0.3 seconds
random order
$x$-order
Hilbert order
Biased order (Spatial sorting)

128 seconds
632 seconds
46 seconds
0.3 seconds

24-14

## Construction of Delaunay 10 M random points

## Delaunay tree $\sim 10 \mathrm{mn}$ (estimate) <br> Delaunay hierarchy 90 seconds

Biased random order 10.6 seconds

## Algorithms



## Basic incremental algorithm <br> Locate by walk

Locate using randomized data structures
Vertex removal in 2D

Conclusions

26

27-1

$27-2$

$27-3$


27-4

## Algorithms



## Basic incremental algorithm

Locate by walk
Locate using randomized data structures
Vertex removal in 2D
Boundary expansion
Triangulate and sew
Flip the hole
Low degree ontimization
Conclusions

28
boundary expansion

release 3.5, 2D implementation


29-1
boundary expansion

release 3.5, 2D implementation


29 holeboundary = queue
boundary expansion

release 3.5, 2D implementation


29nd ngo incident triangle in linear time
boundary expansion

release 3.5, 2D implementation


29-4

# boundary expansion 

release 3.5, 2D implementation

$29-5$

## Algorithms



Basic incremental algorithm
Locate by walk
Locate using randomized data structures
Vertex removal in 2D
Boundary expansion
Triangulate and sew
Flip the hole
Low degree optimization
Conclusions

30

current $\mathbb{C} \mathbb{A} \mathbb{E}$ implementation in 3D

$31-1$
current $\mathbb{C} \mathbb{A} \mathbb{E}$ implementation in 3D


31 Delaunay of neighbors
current $\mathbb{C} \mathbb{A} \mathbb{E}$ implementation in 3D


31 delete extra triangles and sew
current $\mathbb{C} \mathbb{A} \mathbb{E}$ implementation in 3D


31 delete extra triangles and sew

## Algorithms



## Basic incremental algorithm

Locate by walk
Locate using randomized data structures
Vertex removal in 2D
Boundary expansion
Triangulate and sew
Flip the hole
Low degree optímization
Conclusions

32
flip the hole


33-1
flip the hole


33triangulate from any vertex
flip the hole


33quezue of edges to be checked
flip the hole


33-4
flip the hole


33-5
flip the hole


33-6
flip the hole


33-7
flip the hole


33-8
flip the hole


33-9
flip the hole


33-10

## Algorithms



Basic incremental algorithm
Locate by walk
Locate using randomized data structures
Vertex removal in 2D
Boundary expansion
Triangulate and sew
Flip the hole
Low degree optimization
Conclusions

34


$35-1$


35-2

just one incircle test to decide

36-2
low degree optimization
degree 5

$37-1$
low degree optimization
degree 5


37 "star" the pentagon from the right vertex
low degree optimization
degree 5

$37-3$ star" the pentagon from the right vertex
low degree optimization
degree 5

$37-4$ star" the pentagon from the right vertex

$37-5$ "star" the pentagon from the right vertex
low degree optimization
degree 5


37 "star" the pentagon from the right vertex
low degree optimization
degree 5

$37-{ }_{-}^{\prime 2}$ " " the pentagon from the right vertex
low degree optimization
degree 5
Decision tree
$38-1$
low degree optimization degree 5


Decision tree


38-2
low degree optimization
degree 6


39-1
low degree optimization
degree 6


39-2


39-3
low degree optimization
degree 6


39-4
low degree optimization
degree 6

$39-5$

$39-6$
low degree optimization
degree 6

$39^{14}-7^{\text {results }}$
low degree optimization

degree 6<br>Decision tree

40-1
low degree optimization


40-2
low degree optimization


40-3

low degree optimization


| degree | 3 | 4 | 5 | 6 | 7 | $8^{\star}$ | 9 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\sharp$ results | 1 | 2 | 5 | 14 | 42 | 132 | 429 |
| $\sharp$ leaves | 1 | 2 | 6 | 24 | 130 | $\simeq 500$ |  |
| $\left\lceil\log _{2} \sharp\right.$ results $\rceil$ | 0 | 1 | 3 | 4 | 6 | 8 | 9 |
| tree height | 0 | 1 | 3 | 6 | 10 | $\simeq 14$ |  |
| $\sharp$ lines of code | 30 | 40 | 90 | 280 | 700 | $\simeq 2500$ |  |

* not implemented. The sizes of the tree and the code are estimated
low degree optimization


## Remarks on implementation

limited memory allocation, use old faces "in place"
re-use as many neighbor links as possible

43-1

## Algorithms

low degree optimization

## Remarks on implementation

## limited memory allocation, use old faces "in place"

re-use as many neighbor links as possible
tree implementation

```
if incircle(...)
 if incircle(...)
 if incircle(...) use_this_shape(face0,face1,face2...)
 else use_other_shape(face2,face3,face4...)
```

43-2
$\left\{\begin{array}{l}\text { deletion time per vertex } \\ 10 \mu \mathrm{~s} \\ \underbrace{\quad} \text { Boundary expansion }\end{array}\right.$ degree
$\left\{\begin{array}{l}\text { deletion time per vertex } \\ 10 \mu \mathrm{~s} \\ \text { Boundary expansion }\end{array}\right.$
$\left\{\begin{array}{l}\text { deletion time per vertex } \\ 10 \mu \mathrm{~s} \\ \text { Boundary expansion }\end{array}\right.$


## Algorithms



Basic incremental algorithm
Locate by walk

Locate using randomized data structures

Vertex removal in 2D
Conclusions



## Algorithms

## $\mathbb{C} \mathbb{A} \mathbb{A}$

Conclusions

## $\simeq 8 \mu$ s per point

CGAL $\geq$ 4.5: multicore option 10 cores $\mapsto$ speed up factor $\simeq 9$

## Algorithmic choices

Theoretical efficiency


48-2

Practical efficiency
Theoretical efficiency $\Delta$ Algorithmic choices

Practical efficiency
Theoretical efficiency


Robustness issues

48-4

Practical efficiency
Theoretical efficiency


Algorithmic choices
Modularity traits classes data structures geometry

Robustness issues

48-5

Practical efficiency
Theoretical efficiency


Algorithmic choices
Robustness issues
Minimal requirements
e.g. do not use strange predicates

Usable software subsumes

- clean mathematical foundations
- good algorithms
- adapted programming choices
- (some programming tricks)
- requires people with various skills
- raises interesting research questions

Practical vs worst case size of Delaunay 3D

49-1

Practical vs worst case size of Delaunay 3D
Known results
$\Theta\left(n^{2}\right)$ worst case
$\Theta(n)$ random in ball
$\Omega(n) O(n \log n)$ random on polyhedron
$O(n \log n)$ good sample of smooth generic surface
$\Theta(n \log n)$ random on cylinder

Practical vs worst case size of Delaunay 3D

## Known results

$\theta\left(n^{2}\right)$ worst case
Find good models of practical data $\Theta(n)$ random in ball
(Smooth analysis)
$\Omega(n) O(n \log n)$ random on polyhedron
$O(n \log n)$ good sample of smooth generic surface
$\Theta(n \log n)$ random on cylinder
49-3

Practical vs worst case size of Delaunay 3D
Better algorithm for 3D deletion
$10 \mu \mathrm{~s}$ to insert
$100 \mu \mathrm{~s}$ to delete

Practical vs worst case size of Delaunay 3D
Better algorithm for 3D deletion
One billion points
Needs memory efficient algorithms
Cache effects are already important

## (7) (4) A A

## demos

web site wwW .cgal. org

