

Computational Geometry Algorithms Library

Monique Teillaud

www.cgal.org

Outline

Introduction

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels
- 2 2D, 3D Triangulations in CGAL
 - Introduction
 - Functionalities
 - Representation
 - Robustness
 - Software Design

Introduction

Introduction

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels
- 2 2D, 3D Triangulations in CGAL
 - Introduction
 - Functionalities
 - Representation
 - Robustness
 - Software Design

Introduction — The CGAL Open Source Project

Introduction

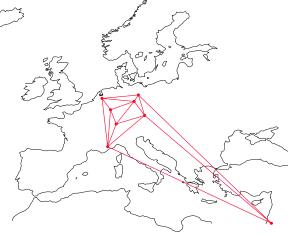
- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels
- 2 2D, 3D Triangulations in CGAL
 - Introduction
 - Functionalities
 - Representation
 - Robustness
 - Software Design

- Promote the research in Computational Geometry (CG)
- "make the large body of geometric algorithms developed in the field of CG available for industrial applications"

 \Rightarrow robust programs

History

• Development started in 1995



History

- Development started in 1995
- January, 2003: creation of Geometry Factory INRIA startup sells commercial licenses, support, customized developments
- November, 2003: Release 3.0 Open Source Project
 new contributors
- September, 2017: Release 4.11

License

- a few basic packages under LGPL
- most packages under GPLv3+
 - \circ free use for Open Source code
 - \circ commercial license needed otherwise

Distribution

- from github
- included in Linux distributions (Debian, etc)
- available through macport
- 2009: CGAL triangulations integrated in Matlab
- CGAL-bindings
 - CGAL triangulations, meshes, etc, can be used in Java or Python
 - implemented with SWIG

CGAL in numbers

- N00,000 lines of C++ code
- several platforms g++ (Linux MacOS Windows), clang, VC++, etc
- ullet > 1,000 downloads per month
- 50 developers registered on developer list (\sim 20 active)

Development process

- New contributions must be submitted to the Editorial board and reviewed.
- Automatic test suites running on all supported compilers/platforms

Users

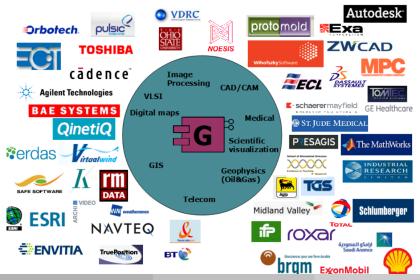
List of identified users in various fields

- Art
- Architecture, Buildings Modeling, Urban Modeling
- Astronomy
- Computational Geometry and Geometric Computing
- Computer Graphics
- Computational Topology and Shape Matching
- Computer Vision, Image Processing, Photogrammetry
- Games, Virtual Worlds
- Geographic Information Systems
- Geology and Geophysics
- Geometry Processing
- Medical Modeling and Biophysics
- Mesh Generation and Surface Reconstruction
- 2D and 3D Modelers
- Molecular Modeling
- Motion Planning
- Particle Physics, Materials, Nanostructures, Microstructures, Fluid Dynamics
- Peer-to-Peer Virtual Environment
- Sensor Networks

More non-identified users...

Customers of Geometry Factory

(2013)



Introduction — Contents of CGAL

Introduction

(1)

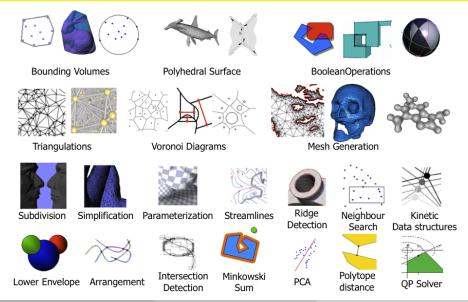
- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels
- 2 2D, 3D Triangulations in CGAL
 - Introduction
 - Functionalities
 - Representation
 - Robustness
 - Software Design

Structure

- Kernels
- Various packages
- Support Library

STL extensions, I/O, generators, timers...

Some packages



Introduction — The CGAL Kernels

Introduction

(1)

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels

2D, 3D Triangulations in CGAL

- Introduction
- Functionalities
- Representation
- Robustness
- Software Design

- 2D, 3D, dD "rational" kernels
- 2D circular and 3D spherical kernels

In the kernels

- Elementary geometric objects
- Elementary computations on them

Primitives 2D, 3D, dD

- Point
- Vector
- Triangle
- Circle

. . .

- InSphere

. . .

Predicates Constructions

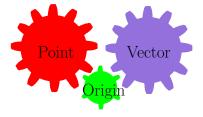
comparison
 intersection

. . .

• Orientation • squared distance

Affine geometry

Point - Origin \rightarrow Vector Point - Point \rightarrow Vector Point + Vector \rightarrow Point



Point + Point illegal

 $midpoint(a,b) = a + 1/2 \times (b-a)$

Kernels and number types

Cartesian representation Point $\begin{vmatrix} x = \frac{hx}{hw} \\ y = \frac{hy}{hw} \end{vmatrix}$

Homogeneous representation Point | hx hy hw

Kernels and number types

Cartesian representationHomogeneous representationPoint
$$x = \frac{hx}{hw}$$

 $y = \frac{hy}{hw}$ Point hx
 hy
 hw - ex: Intersection of two lines - $\begin{cases} a_1x + b_1y + c_1 = 0 \\ a_2x + b_2y + c_2 = 0 \end{cases}$ $\begin{cases} a_1hx + b_1hy + c_1hw = 0 \\ a_2hx + b_2hy + c_2hw = 0 \end{cases}$ $(x, y) =$ $\begin{pmatrix} b_1 & c_1 \\ b_2 & c_2 \\ \hline a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$ $(hx, hy, hw) =$ $\begin{pmatrix} \left| \begin{array}{c} b_1 & c_1 \\ b_2 & c_2 \\ \hline a_1 & b_1 \\ a_2 & b_2 \end{array}\right|$ $(hx, hy, hw) =$ $\begin{pmatrix} \left| \begin{array}{c} b_1 & c_1 \\ b_2 & c_2 \\ \hline a_1 & b_1 \\ a_2 & b_2 \end{array}\right|$ $(hx, hy, hw) =$ $\begin{pmatrix} \left| \begin{array}{c} b_1 & c_1 \\ b_2 & c_2 \\ \hline a_1 & b_1 \\ a_2 & b_2 \end{array}\right|$ $(hx, hy, hw) =$ $\begin{pmatrix} \left| \begin{array}{c} b_1 & c_1 \\ b_2 & c_2 \\ \hline a_1 & b_1 \\ a_2 & b_2 \end{array}\right|$ $(hx, hy, hw) =$

Kernels and number types

Cartesian representationHomogeneous representationPoint
$$x = \frac{hx}{hw}$$

 $y = \frac{hy}{hw}$ Point hx
 hy
 hw - ex: Intersection of two lines - $\begin{cases} a_1x + b_1y + c_1 = 0 \\ a_2x + b_2y + c_2 = 0 \end{cases}$ $\begin{cases} a_1hx + b_1hy + c_1hw = 0 \\ a_2hx + b_2hy + c_2hw = 0 \end{cases}$ $(x, y) =$
 $\begin{pmatrix} b_1 & c_1 \\ b_2 & c_2 \\ \hline a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$ $(hx, hy, hw) =$
 $\begin{pmatrix} \begin{pmatrix} b_1 & c_1 \\ b_2 & c_2 \\ \hline a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$ $(hx, hy, hw) =$
 $\begin{pmatrix} \begin{pmatrix} b_1 & c_1 \\ b_2 & c_2 \\ \hline a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$

Field operations

Ring operations

The "rational" Kernels

```
CGAL::Cartesian< FieldType >
CGAL::Homogeneous< RingType >
```

\longrightarrow Flexibility

typedef double NumberType; typedef Cartesian< NumberType > Kernel; typedef Kernel::Point_2 Point;

Arithmetic robustness issues

Rational Kernels: Predicates = signs of polynomial expressions

Exact Geometric Computation \neq exact arithmetics

Predicates evaluated exactly

Filtering Techniques (interval arithmetics, etc) exact arithmetics only when needed

CGAL::Exact_predicates_inexact_constructions_kernel

Arithmetic robustness issues

```
typedef CGAL::Cartesian<NT> Kernel;
NT sqrt2 = sqrt( NT(2) );
```

```
Kernel::Point_2 p(0,0), q(sqrt2,sqrt2);
Kernel::Circle_2 C(p,2); // squared radius 2
```

Arithmetic robustness issues

```
typedef CGAL::Cartesian<NT> Kernel;
NT sqrt2 = sqrt( NT(2) );
Kernel::Point_2 p(0,0), q(sqrt2,sqrt2);
Kernel::Circle_2 C(p,2); // squared radius 2
assert( C.has_on_boundary(q) );
```

OK if NT gives exact sqrt assertion violation otherwise

The circular/spherical kernels

Circular/spherical kernels

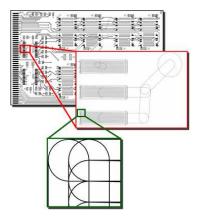
- solve needs for e.g. intersection of circles.
- extend the CGAL (linear) kernels

Exact computations on algebraic numbers of degree 2 = roots of polynomials of degree 2

Algebraic methods reduce comparisons to computations of signs of polynomial expressions

Application of the 2D circular kernel

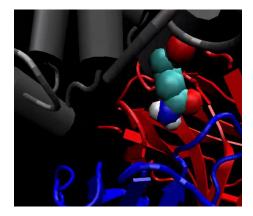
Computation of arrangements of 2D circular arcs and line segments



Pedro M.M. de Castro, Master internship

Application of the 3D spherical kernel

Computation of arrangements of 3D spheres



Sébastien Loriot, PhD thesis

2D, 3D Triangulations in CGAL

1) Introduction

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels

2 2D, 3D Triangulations in CGAL

- Introduction
- Functionalities
- Representation
- Robustness
- Software Design

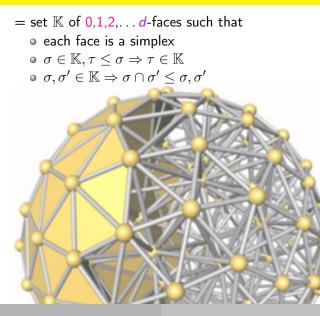
Introduction

2D, 3D Triangulations in CGAL — Introduction

- The CGAL Kernels

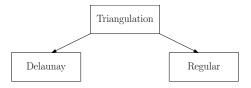
2D, 3D Triangulations in CGAL 2 Introduction

Simplicial complex



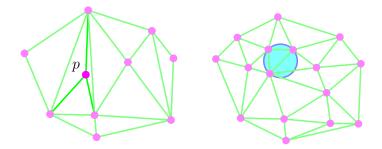
Various triangulations

2D, 3D, *d*D Basic triangulations 2D, 3D, *d*D Delaunay triangulations 2D, 3D, *d*D Regular triangulations



Basic and Delaunay triangulations

(figures in 2D)



Basic triangulations : incremental construction

Delaunay triangulations: empty sphere property

Introduction

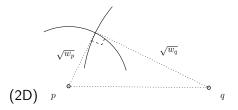
Regular triangulations

weighted point
$$p^{(w)} = (p, w_p), p \in \mathbb{R}^3, w_p \in \mathbb{R}$$

 $p^{(w)} = (p, w_p) \simeq$ sphere of center p and radius $\sqrt{w_p}$.
power product between $p^{(w)}$ and $z^{(w)}$

$$\Pi(p^{(w)}, z^{(w)}) = \|p - z\|^2 - w_p - w_z$$

 $p^{(w)}$ and $z^{(w)}$ orthogonal iff $\Pi(p^{(w)}, z^{(w)}) = 0$



Regular triangulations

Power sphere of 4 weighted points in \mathbb{R}^3 = unique common orthogonal weighted point. $z^{(w)}$ is regular iff $\forall p^{(w)}, \Pi(p^{(w)}, z^{(w)}) \ge 0$



Regular triangulations: generalization of Delaunay triangulations to weighted points. Dual of the power diagram.

The power sphere of all simplices is regular.

2D, 3D Triangulations in CGAL — Functionalities

1) Introduction

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels

2 2D, 3D Triangulations in CGAL

Introduction

Functionalities

- Representation
- Robustness
- Software Design

Functionalities

General functionalities

- Traversal of a 2D (3D) triangulation
- passing from a face (cell) to its neighbors
- iterators to visit all faces (cells) of a triangulation
- circulators (iterators) to visit all faces (cells) incident to a vertex
- circulators to visit all cells around an edge

Functionalities

General functionalities

- Traversal of a 2D (3D) triangulation
- passing from a face (cell) to its neighbors
- iterators to visit all faces (cells) of a triangulation
- circulators (iterators) to visit all faces (cells) incident to a vertex
- circulators to visit all cells around an edge
- Point location guery
- Insertion, removal, flips

General functionalities

- Traversal of a 2D (3D) triangulation
- passing from a face (cell) to its neighbors
- iterators to visit all faces (cells) of a triangulation
- circulators (iterators) to visit all faces (cells) incident to a vertex
- circulators to visit all cells around an edge
- Point location guery
- Insertion, removal, flips
- is valid

checks local validity (sufficient in practice) not global validity

Functionalities

Traversal of a 3D triangulation

Iterators

All_cells_iterator All_faces_iterator All_edges_iterator All_vertices_iterator

```
Finite_cells_iterator
Finite_faces_iterator
Finite_edges_iterator
Finite_vertices_iterator
```

Circulators

Cell_circulator : cells incident to an edge Facet_circulator : facets incident to an edge

```
All_vertices_iterator vit;
for (vit = T.all_vertices_begin();
    vit != T.all_vertices_end(); ++vit)
    ...
```

Traversal of a 3D triangulation

Around a vertex

incident cells and facets, adjacent vertices

```
template < class OutputIterator >
OutputIterator
    t.incident_cells
```

(Vertex_handle v, OutputIterator cells)

Functionalities

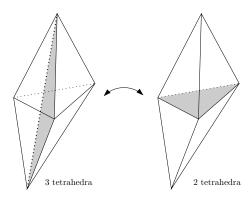
Point location, insertion, removal

basic triangulation:

Delaunay triangulation :

3D Flip

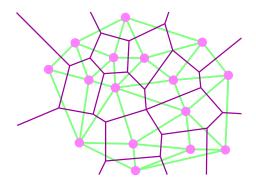
if convex position



Functionalities

Additional functionalities for Delaunay triangulations

Nearest neighbor queries Voronoi diagram



2D, 3D Triangulations in CGAL - Representation

1) Introduction

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels

2D, 3D Triangulations in CGAL

- Introduction
- Functionalities

Representation

- Robustness
- Software Design

The main algorithm

Incremental algorithm

- fully dynamic (point insertion, vertex removal)
- any dimension
- easier to implement
- efficient in practice
- . . .

Representation

Needs

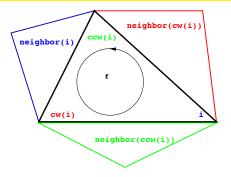
Walking in a triangulation

Access to

- vertices of a simplex
- neighbors of a simplex

in constant time

2D - Representation based on faces



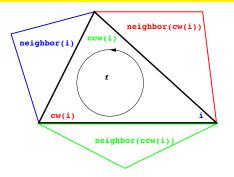
Vertex

Face_handle v_face

Face

Vertex_handle vertex[3] Face_handle neighbor[3]

2D - Representation based on faces



Vertex

Face_handle v_face

Face

Vertex_handle vertex[3] Face_handle neighbor[3]

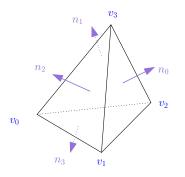
Edges are implicit: std::pair< f, i > where f = one of the two incident faces.

more efficient than half-edges

From one face to another

- n = f \rightarrow neighbor(i)
- j = n \rightarrow index(f)

3D - Representation based on cells



Vertex Cell_handle v_cell

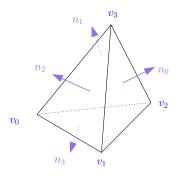
Cell

Vertex_handle vertex[4] Cell_handle neighbor[4]

Faces are implicit: std::pair< c, i > where c = one of the two incident cells.

Edges are implicit: std::pair< u, v > where u, v = vertices.

3D - Representation based on cells



From one cell to another

$$n = c \rightarrow neighbor(i)$$

 $j = n \rightarrow index(c)$

Vertex

Cell_handle v_cell

Cell

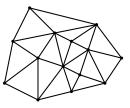
Vertex_handle vertex[4] Cell_handle neighbor[4]

The infinite region

Triangulation of a set of points = partition of the convex hull into simplices.

The infinite region has non-constant size

Add a bounding box?



The infinite region

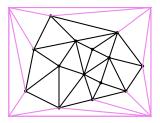
Triangulation of a set of points = partition of the convex hull into simplices.

- The infinite region has non-constant size
- Add a bounding box?
 - requires to know points in advance

The infinite region

Triangulation of a set of points = partition of the convex hull into simplices.

- The infinite region has non-constant size
- Add a bounding box?
 - requires to know points in advance
 - creates ugly simplices

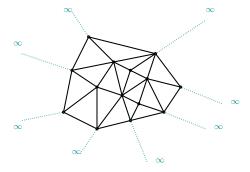


Representation

The infinite region

Triangulation of a set of points = partition of the convex hull into simplices.

- Add an infinite vertex \rightarrow "triangulation"
 - of the infinite region
- Every cell is a "simplex".Any facet is incident to two cells.

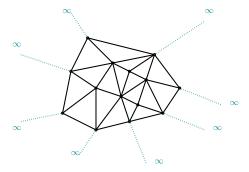


Representation

The infinite region

Triangulation of a set of points = partition of the convex hull into simplices.

- Add an infinite vertex \rightarrow "triangulation" of the infinite region
- Every cell is a "simplex".Any facet is incident to two cells.



Triangulation of \mathbb{R}^d

Triangulation of the topological sphere \mathbb{S}^d .

Geometry vs. combinatorics

Each finite vertex stores a point

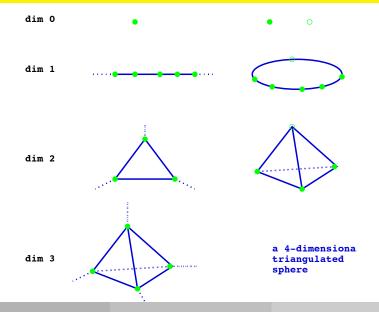
Geometry vs. combinatorics

Each finite vertex stores a point

There is **NO** point in the infinite vertex

infinite simplex = half-space

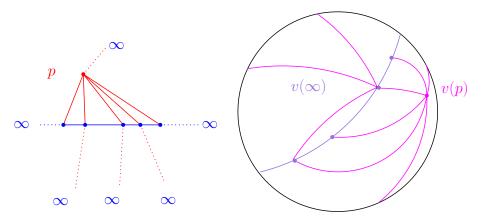
Dimensions in a 3D triangulation



Representation

Dimensions

Adding a point outside the current affine hull: From d = 1 to d = 2



2D, 3D Triangulations in CGAL — Robustness

- The CGAL Kernels

2D, 3D Triangulations in CGAL 2

Robustness

Arithmetic robustness

see above

Benchmarks

2.3 GHz, 16 GByte workstation

CGAL 3.9 (Release mode)

Arithmetic robustness

see above

Benchmarks

2.3 GHz, 16 GByte workstation

CGAL 3.9 (Release mode)

Delaunay triangulation - 10 Mpoints

Kernel	2D	3D
Cartesian < double >	9.7 sec	75 sec
Exact_predicates_inexact_constructions_kernel	10.6 sec	82 sec

Arithmetic robustness

see above

Benchmarks

2.3 GHz, 16 GByte workstation

CGAL 3.9 (Release mode)

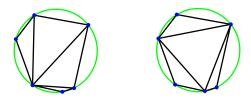
Delaunay triangulation - 10 Mpoints

Kernel	2D	3D
Cartesian < double > may loop (or crash) !		
Exact_predicates_inexact_constructions_kernel	10.6 sec	82 sec

Degenerate cases

Cospherical points

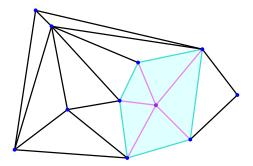
Any triangulation is a Delaunay triangulation



Degenerate cases

Vertex removal

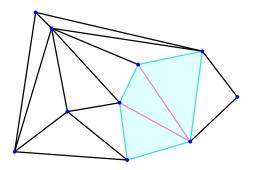
1- remove the tetrahedra incident to $v \rightarrow hole$



Degenerate cases

Vertex removal

- 1- remove the tetrahedra incident to $v \rightarrow hole$
- 2- retriangulate the hole

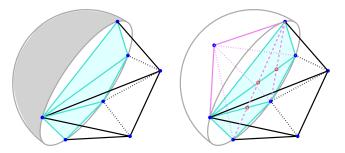


Degenerate cases

Vertex removal

Cocircular points

Several possible Delaunay triangulations of a facet of the hole



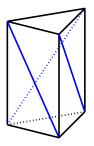
Triangulation of the hole must be compatible with the rest of the triangulation

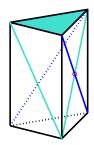
Degenerate cases

Remark on the general question:

H given polyhedron with triangulated facets. Find a Delaunay triangulation of H keeping its facets ?

Not always possible:





Degenerate cases

Allowing flat tetrahedra?

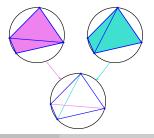
k cocircular points on a facet

2D triangulation of the facet induced by tetrahedra in the hole

sequence of $O(k^2)$ edge flips

2D triangulation of the facet induced by tetrahedra outside the hole

edge flip \longleftrightarrow flat tetrahedron



Degenerate cases

Allowing flat tetrahedra?

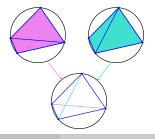
k cocircular points on a facet

2D triangulation of the facet induced by tetrahedra in the hole

sequence of $O(k^2)$ edge flips

2D triangulation of the facet induced by tetrahedra outside the hole

Unacceptable



Degenerate cases

Symbolic perturbation of in_sphere predicate

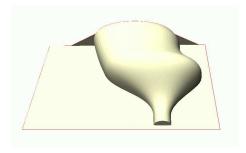
see course robustness

- Algorithm working even in degenerate situations
- No flat tetrahedra
- Perturbed predicate easy to code

CGAL : only publicly available software proposing a fully dynamic 3D Delaunay/regular triangulation.

Robustness

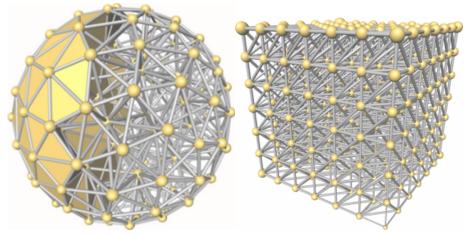
Robustness



Dassault Systèmes

Robustness

Robustness



Pictures by Pierre Alliez

1) Introduction

- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels

2D, 3D Triangulations in CGAL

- Introduction
- Functionalities
- Representation
- Robustness
- Software Design

Triangulation_2<Traits, TDS>

Geometric traits classes provide:

Geometric objects + predicates + constructors

Flexibility:

- The Kernel can be used as a traits class for several algorithms
- Otherwise: Default traits classes provided
- The user can plug his/her own traits class

Generic algorithms

Delaunay_Triangulation_2<Traits, TDS>

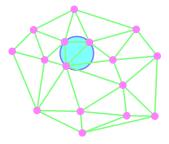
Traits parameter provides:

- Point
- orientation test, in _circle test

2D Kernel used as traits class

typedef CGAL::Exact_predicates_inexact_constructions_kernel K; typedef CGAL::Delaunay_triangulation_2< K > Delaunay;

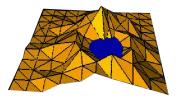
- 2D points: coordinates (x, y)
- orientation, in _circle



Changing the traits class

typedef CGAL::Exact_predicates_inexact_constructions_kernel K; typedef CGAL::Projection_traits_xy_3< K > Traits; typedef CGAL::Delaunay_triangulation_2< Traits > Terrain;

3D points: coordinates (x, y, z)
orientation, in circle: on x and y coordinates only



Layers

Triangulation $_3$ < Traits, TDS >

Triangulation Geometry <i>location</i>	Vertex C	ell
Data Structure Combinatorics insertion		
Geometric information Additional information	Vertex Cell -base -base	•

 $\label{eq:triangulation_data_structure_3 < Vb, Cb> ; \\ Vb \ and \ Cb \ have \ default \ values. \\$

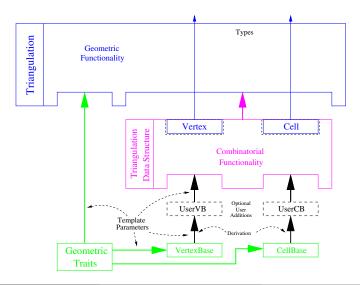
The base level Concepts VertexBase and CellBase.

Provide

- Point + access function + setting
- incidence and adjacency relations (access and setting)

Several models, parameterised by the traits class.

Changing the Vertex base and the Cell base



Changing the Vertex_base and the Cell_base First option: Triangulation_vertex_base_with_info_3

When the additional information does not depend on the TDS

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
#include <CGAL/IO/Color.h>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Triangulation_data_structure_3<Vb> Tds; typedef CGAL::Delaunay_triangulation_3<K, Tds> Delaunay;

```
typedef Delaunay::Point Point;
```

Changing the Vertex_base and the Cell_base First option: Triangulation_vertex_base_with_info_3

When the additional information does not depend on the TDS

```
int main()
ł
 Delaunay T;
 T.insert(Point(0,0,0));
                          T.insert(Point(1,0,0));
 T.insert(Point(0,1,0)); T.insert(Point(0,0,1));
 T.insert(Point(2,2,2));
                          T.insert(Point(-1,0,1));
     // Set the color of finite vertices of degree 6 to red.
 Delaunay::Finite_vertices_iterator vit;
 for (vit = T.finite_vertices_begin();
                  vit != T.finite_vertices_end(); ++vit)
     if (T.degree(vit) == 6)
          vit->info() = CGAL::RED;
```

return 0;

}

Changing the Vertex base and the Cell base

Third option: write new models of the concepts

Changing the Vertex_base and the Cell_base

Second option: the "rebind" mechanism

• Vertex and cell base classes:

initially given a dummy TDS template parameter:

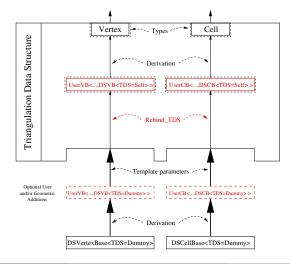
dummy TDS provides the types that can be used by the vertex and cell base classes (such as handles).

 inside the TDS itself, vertex and cell base classes are rebound to the real TDS type

 \rightarrow the same vertex and cell base classes are now parameterized with the real TDS instead of the dummy one.

Changing the Vertex base and the Cell base

Second option: the "rebind" mechanism



Changing the Vertex_base and the Cell_base

Second option: the "rebind" mechanism

```
template< class GT, class Vb= Triangulation_vertex_base<GT> >
class My_vertex : public Vb
ſ
typedef typename Vb::Point
                                      Point;
typedef typename Vb::Cell_handle
                                      Cell_handle;
template < class TDS2 >
struct Rebind TDS {
 typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
 typedef My_vertex<GT, Vb2>
                                                         Other:
};
My_vertex() {}
My_vertex(const Point&p)
                                          : Vb(p) {}
My_vertex(const Point&p, Cell_handle c) : Vb(p, c) {}
. . .
}
```

Changing the Vertex_base and the Cell_base

Second option: the "rebind" mechanism

Example

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_3.h>

Changing the Vertex_base and the Cell_base

Second option: the "rebind" mechanism

Example

template < class GT, class Vb=CGAL::Triangulation_vertex_base_3<GT> >
class My_vertex_base : public Vb {
 typedef typename Vb::Vertex_handle Vertex_handle;
 typedef typename Vb::Cell_handle Cell_handle;
 typedef typename Vb::Point Point;

```
template < class TDS2 > struct Rebind_TDS {
  typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
  typedef My_vertex_base<GT, Vb2> Other; };
```

```
My_vertex_base() {}
My_vertex_base(const Point& p) : Vb(p) {}
My_vertex_base(const Point& p, Cell_handle c) : Vb(p, c) {}
```

Vertex_handle vh; Cell_handle ch; };

Changing the Vertex base and the Cell base

Second option: the "rebind" mechanism

Example

```
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::
      Triangulation_data_structure_3< My_vertex_base<K> > Tds;
typedef CGAL::
      Delaunay_triangulation_3< K, Tds >
                                                      Delaunay;
typedef Delaunay::Vertex_handle Vertex_handle;
typedef Delaunay::Point
                                   Point;
int main()
{ Delaunav T;
  Vertex_handle v0 = T.insert(Point(0,0,0));
  .... v1; v2; v3; v4; v5;
  // Now we can link the vertices as we like.
 v0 - vh = v1; v1 - vh = v2;
 v2 - vh = v3; v3 - vh = v4;
 v4 - vh = v5; v5 - vh = v0;
 return 0:
```

Basic incremental algorithm

Locate by walk

Locate using randomized data structures

Vertex removal in 2D

Conclusions

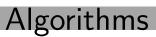
Basic incremental algorithm

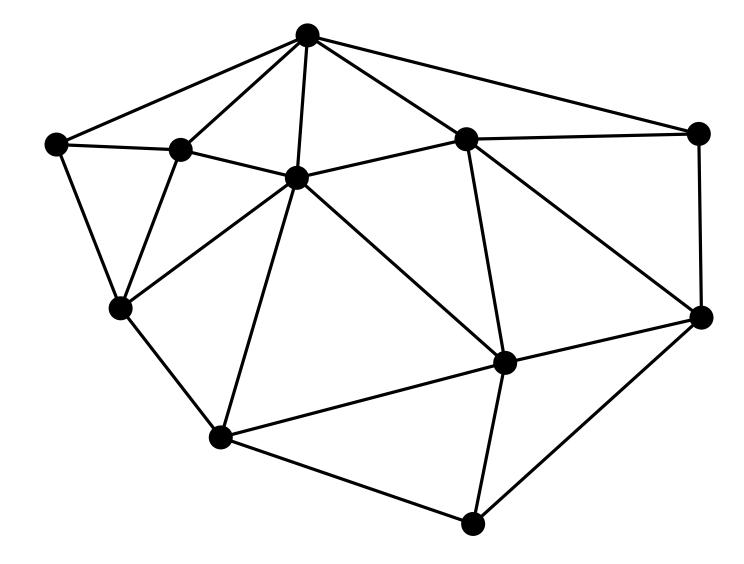
Locate using randomized data structures

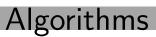
Vertex removal in 2D

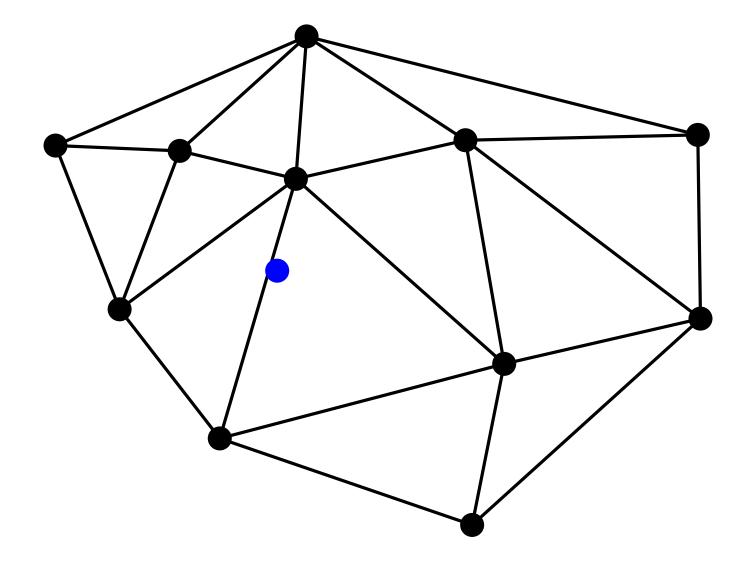
Locate by walk

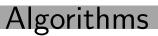
Conclusions

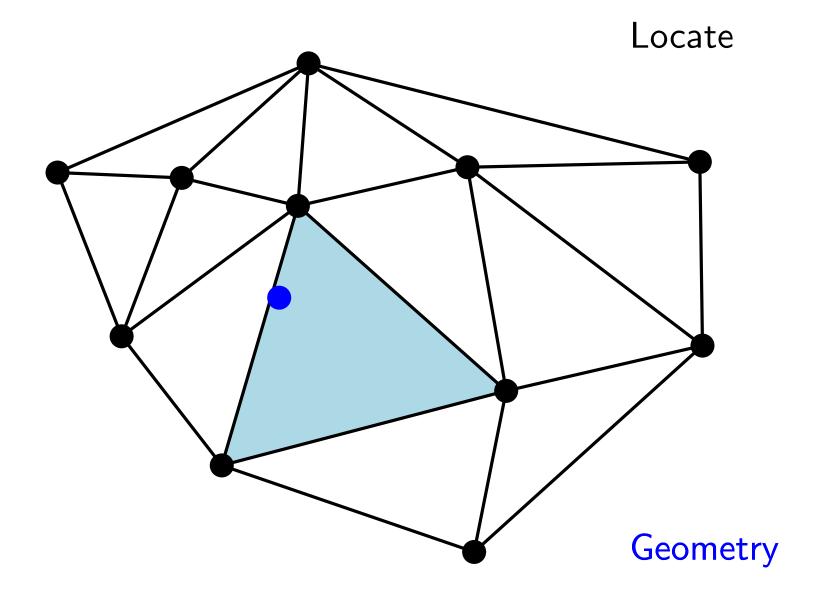


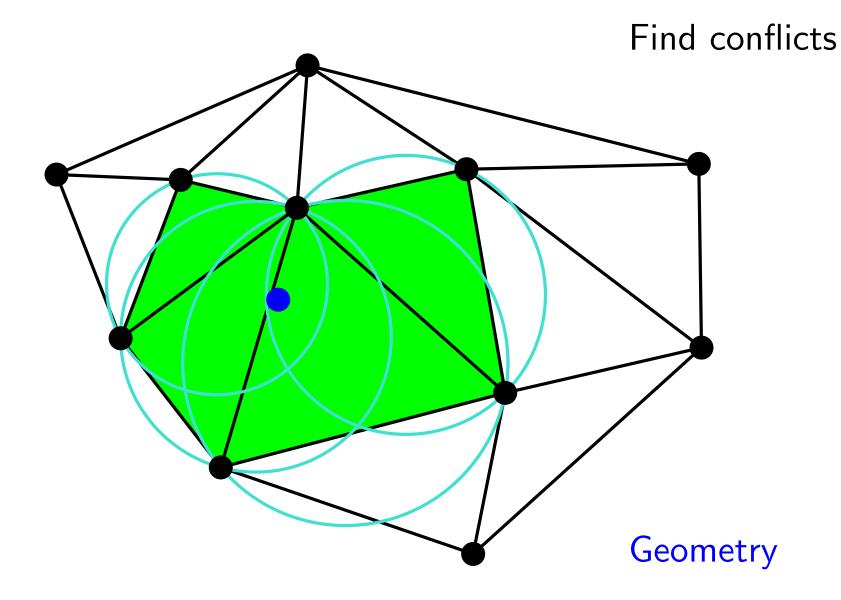


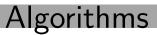


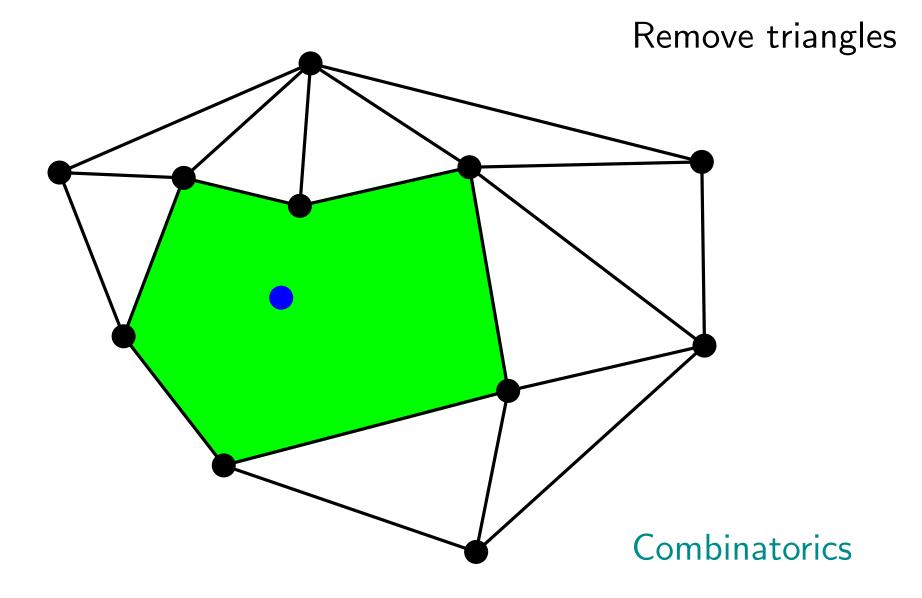


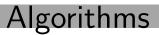


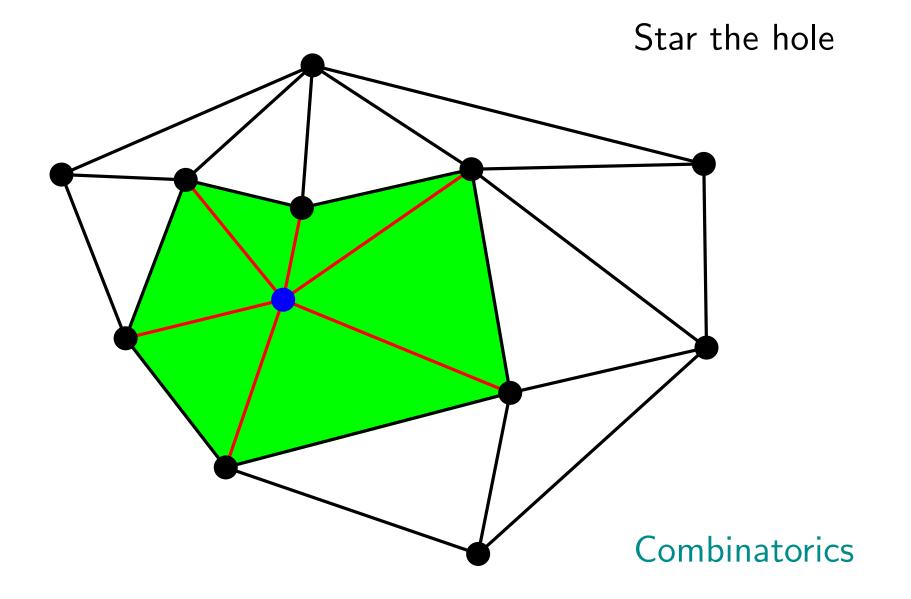












Basic incremental algorithm

Locate by walk

Straight walk

Visibility walk

Structural filtering

Walk shape

Locate using randomized data structures

Vertex removal in 2D

Conclusions

Basic incremental algorithm

Locate by walk

Straight walk

Visibility walk

Walk shape

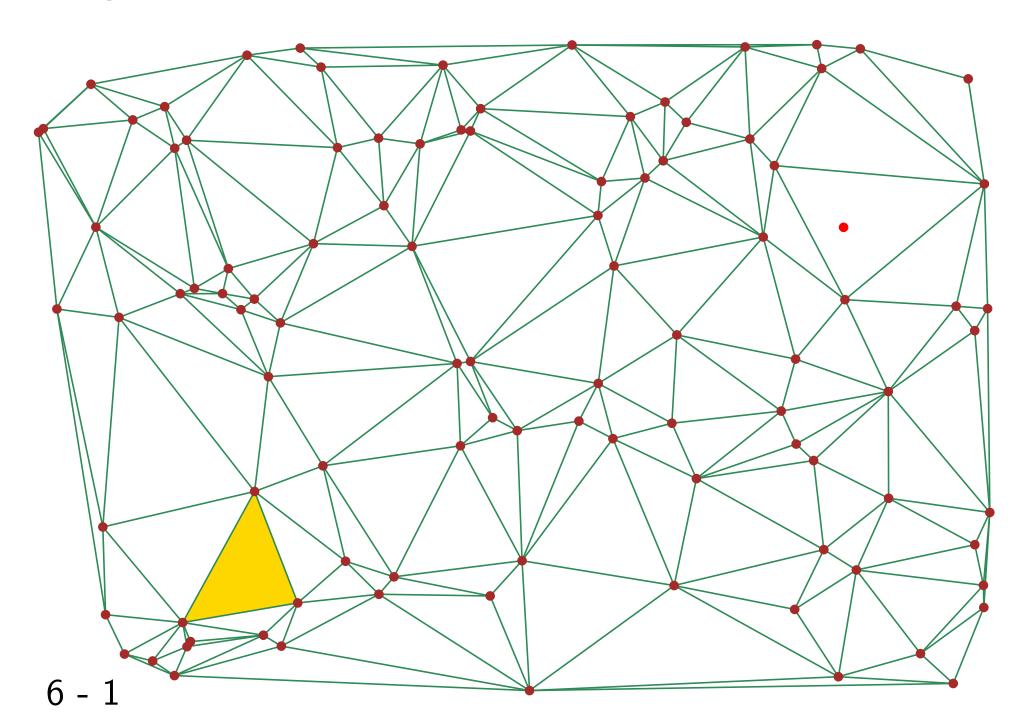
Structural filtering

Locate using randomized data structures

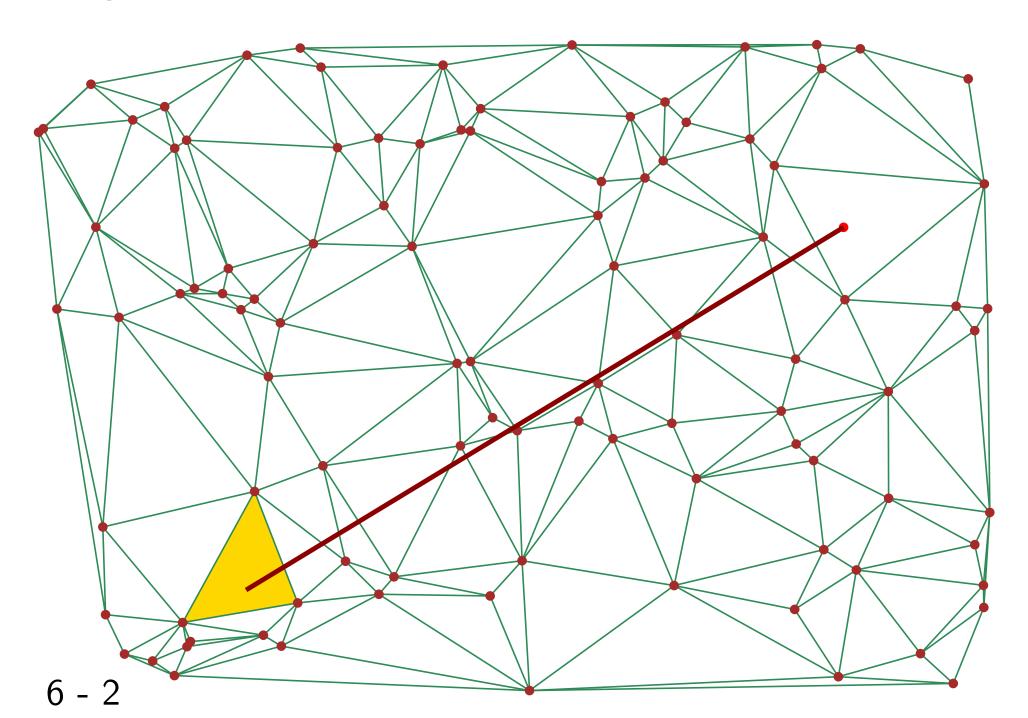
Vertex removal in 2D

Conclusions

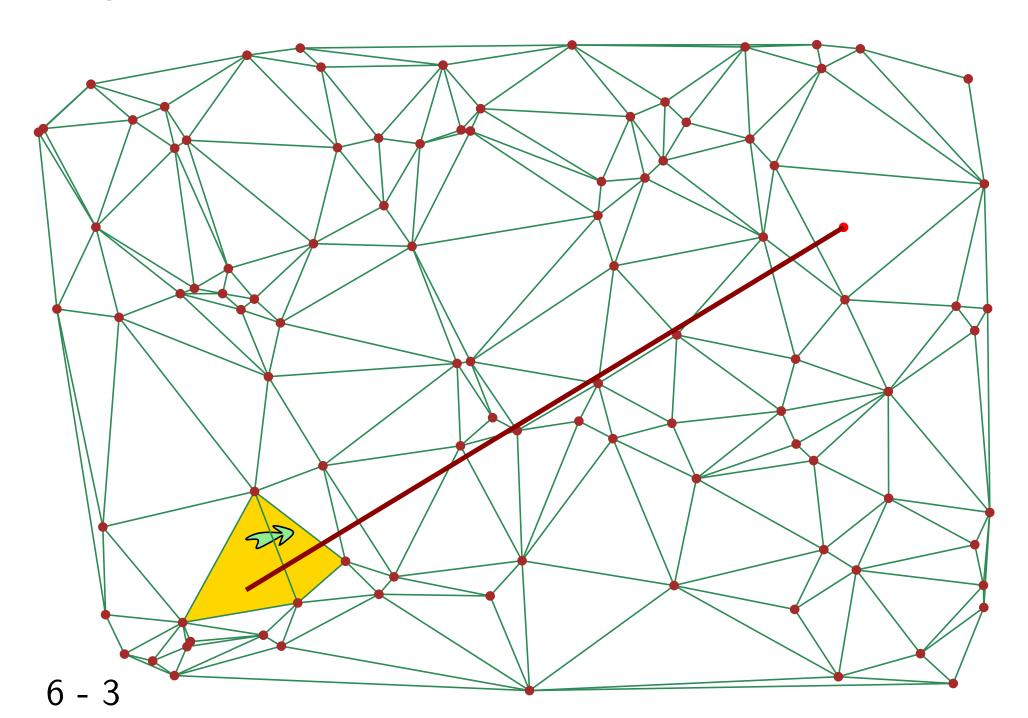
Locate by walk



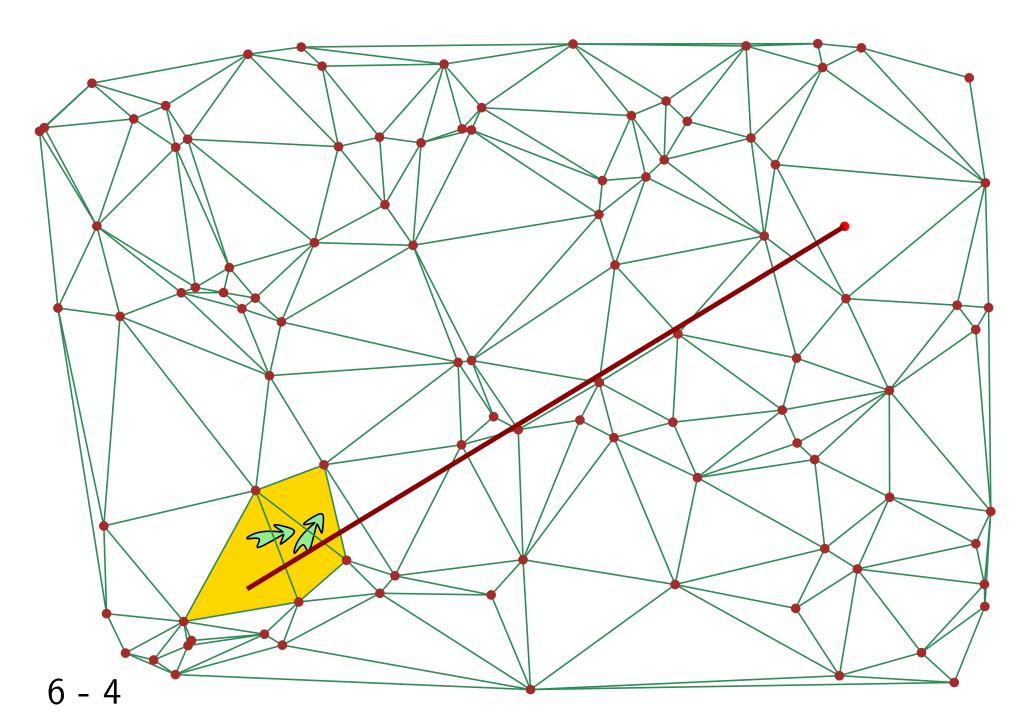
Locate by walk



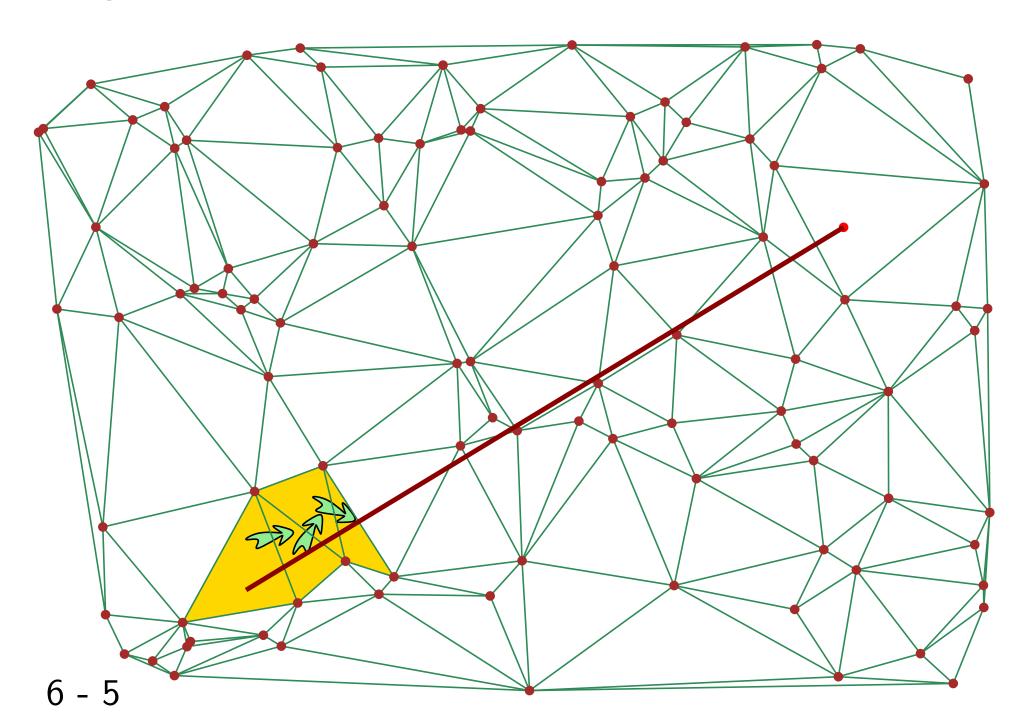
Locate by walk



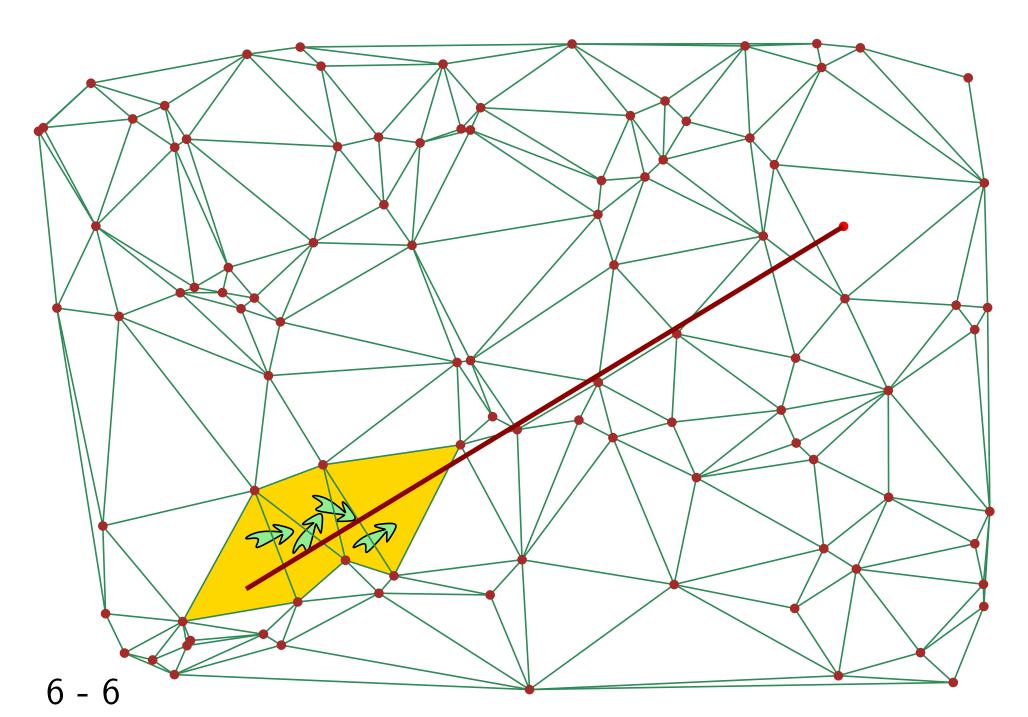
Locate by walk



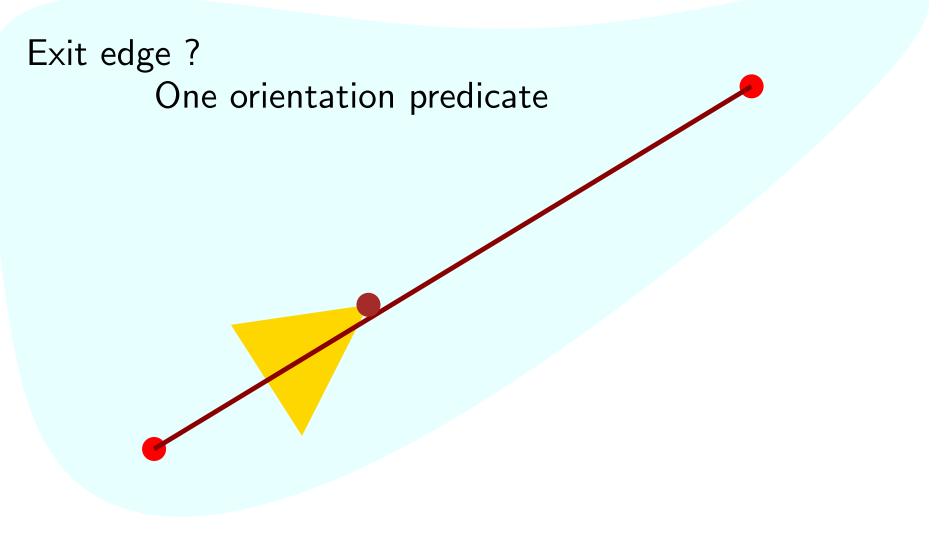
Locate by walk



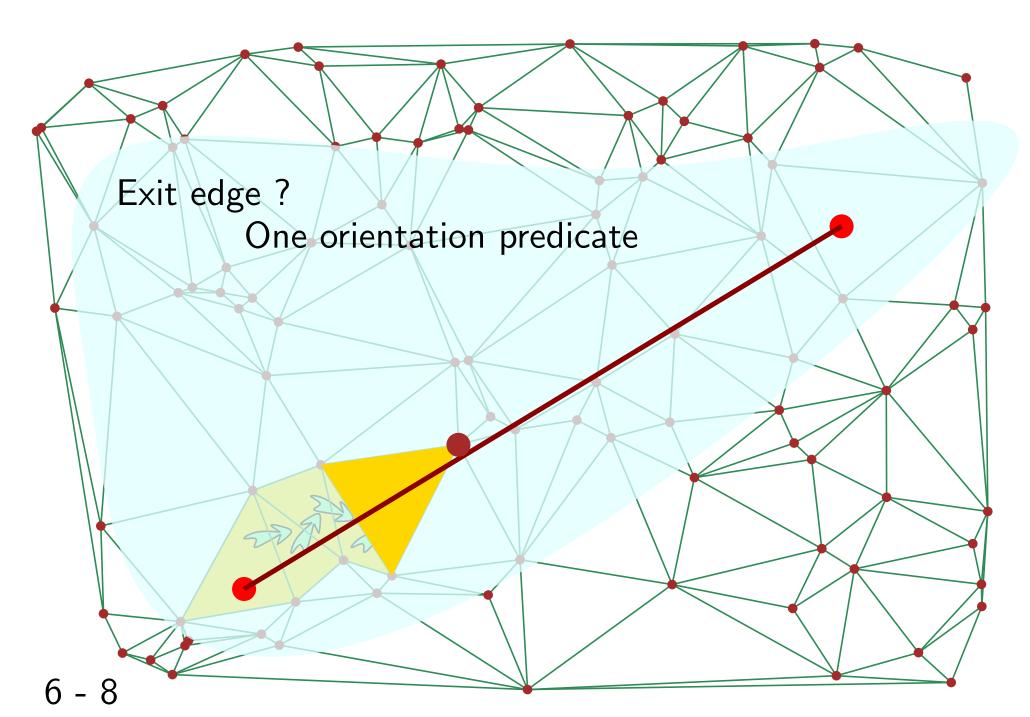
Locate by walk



Locate by walk



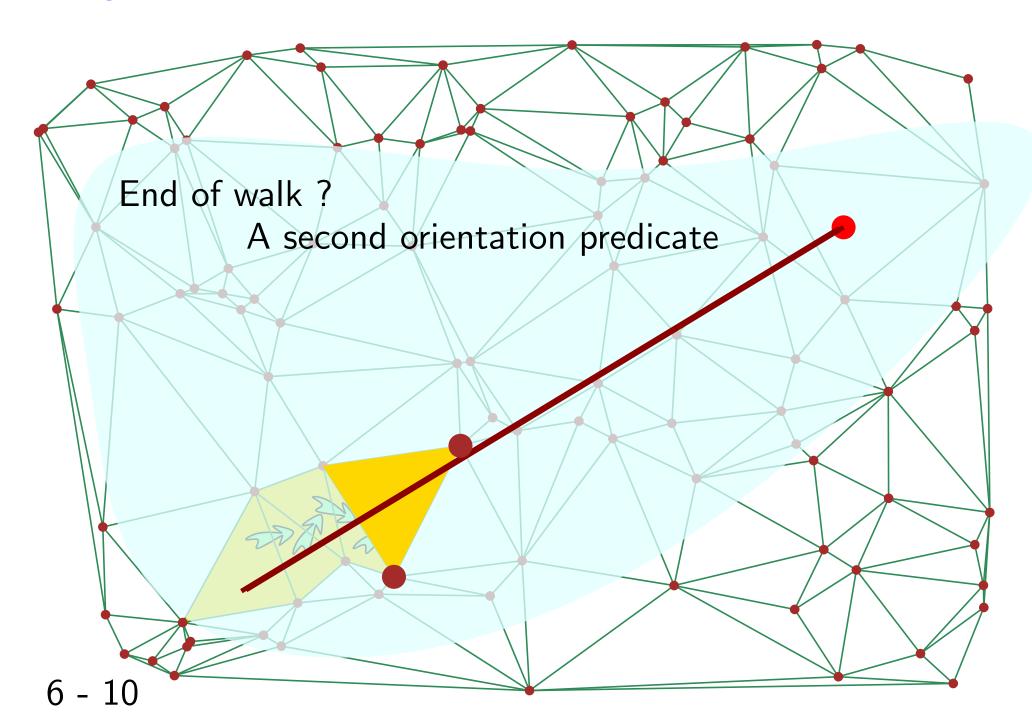
Locate by walk



Locate by walk

straight walk

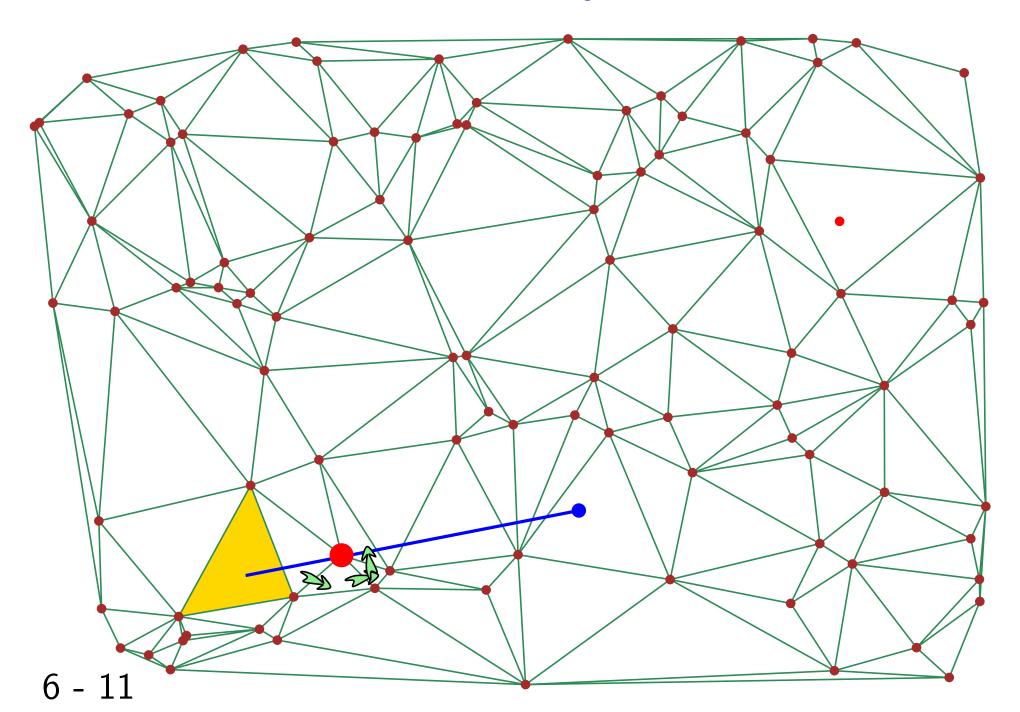
End of walk ? A second orientation predicate

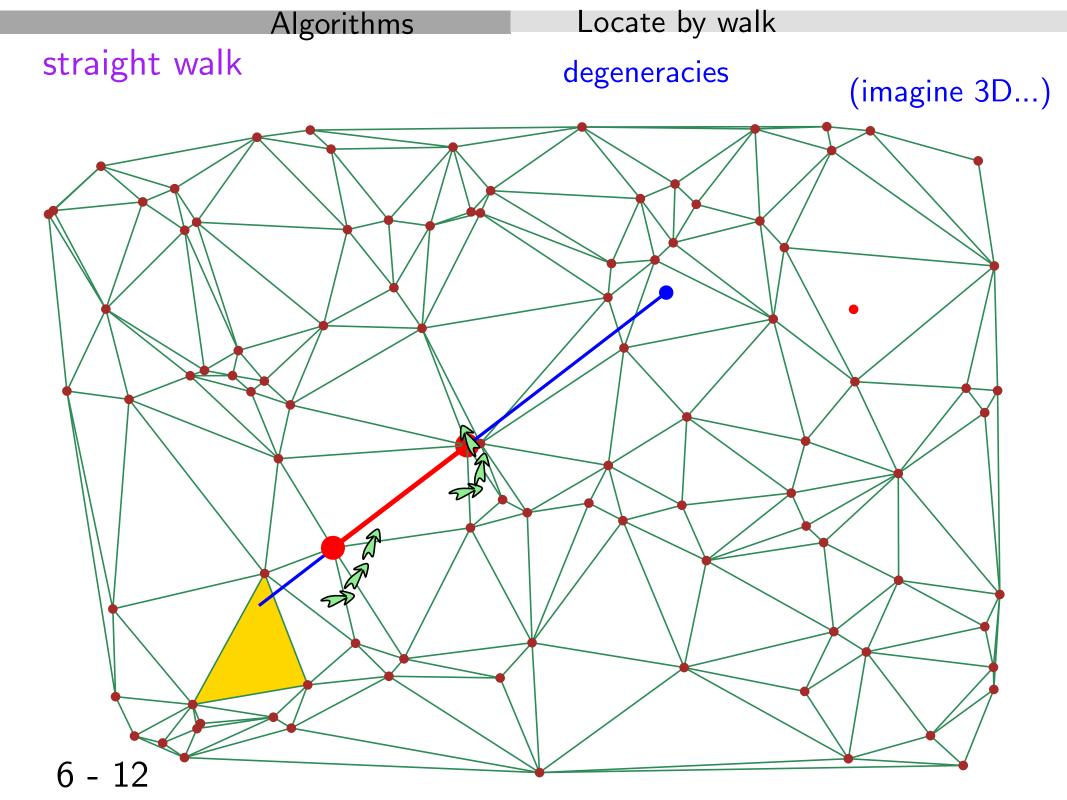


Locate by walk

straight walk

degeneracies





Basic incremental algorithm

Locate by walk

Visibility walk

Walk shape

Straight walk

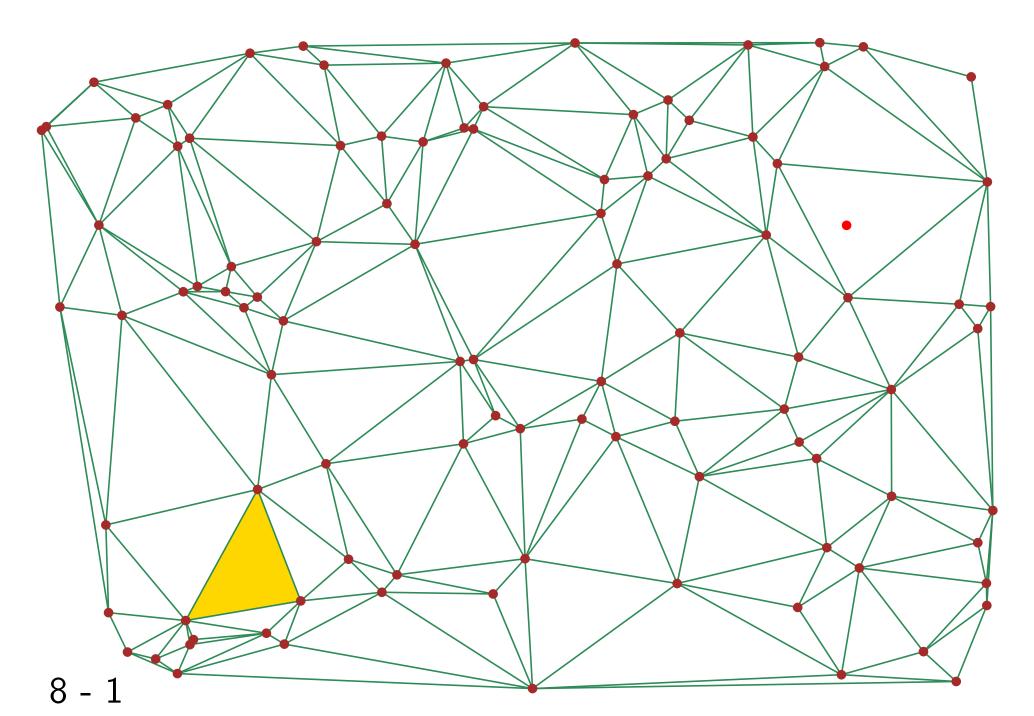
Structural filtering

Locate using randomized data structures

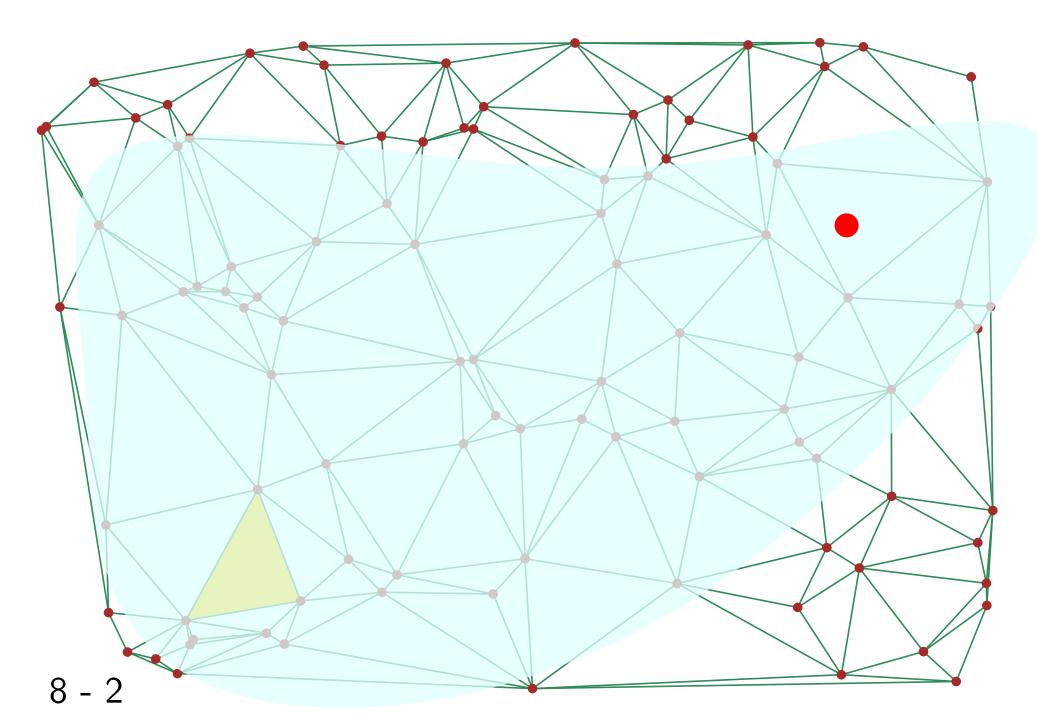
Vertex removal in 2D

Conclusions

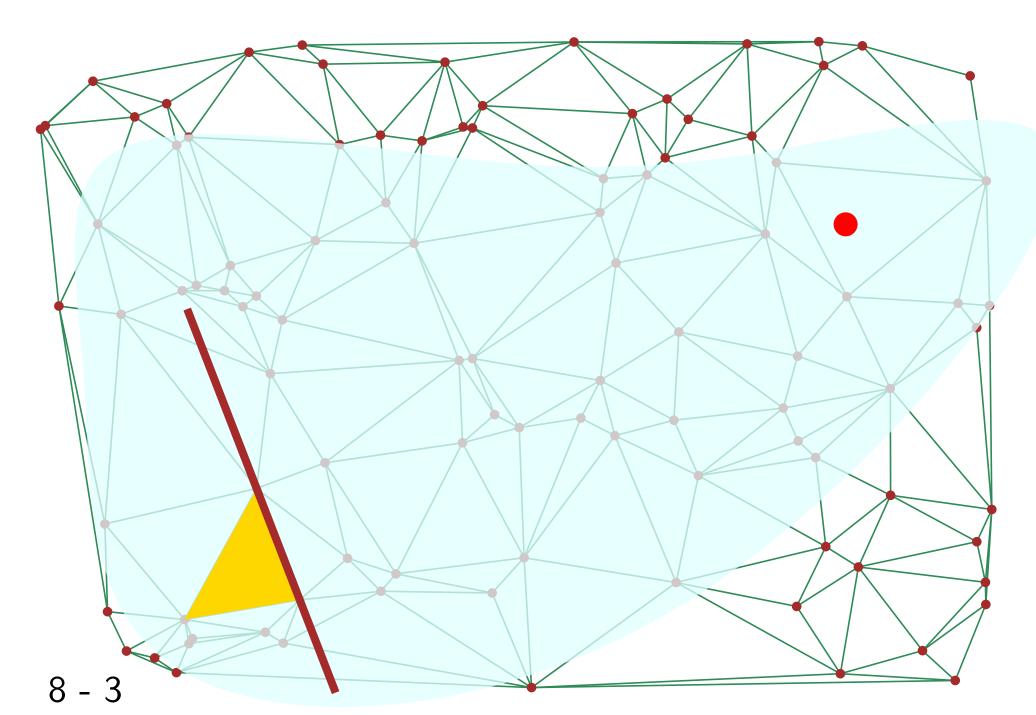
Locate by walk



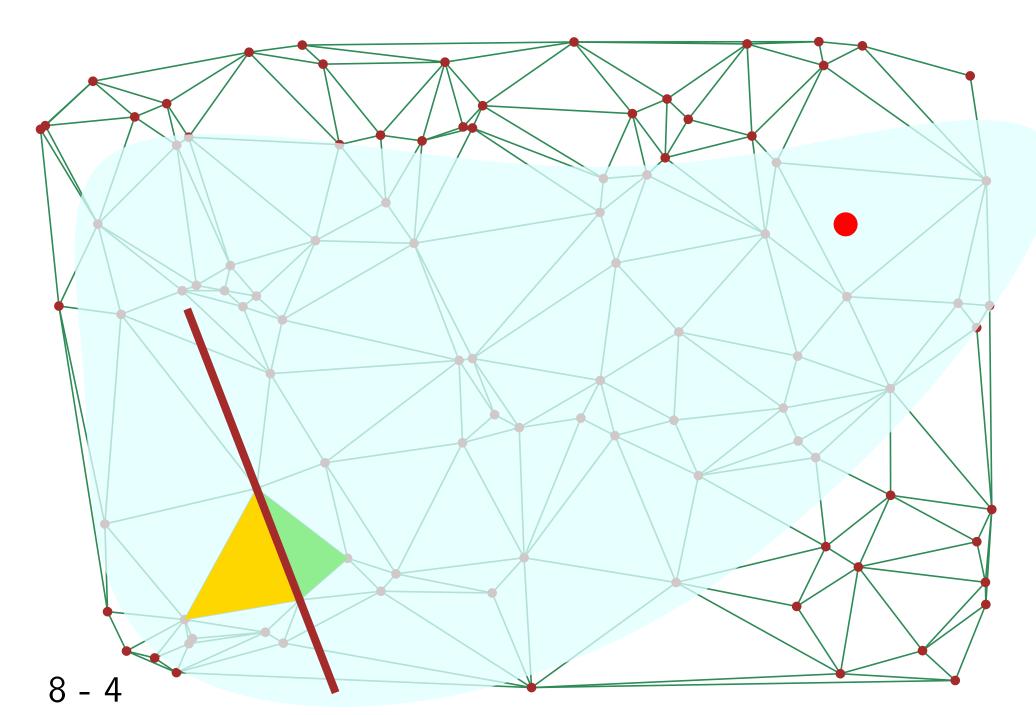
Locate by walk



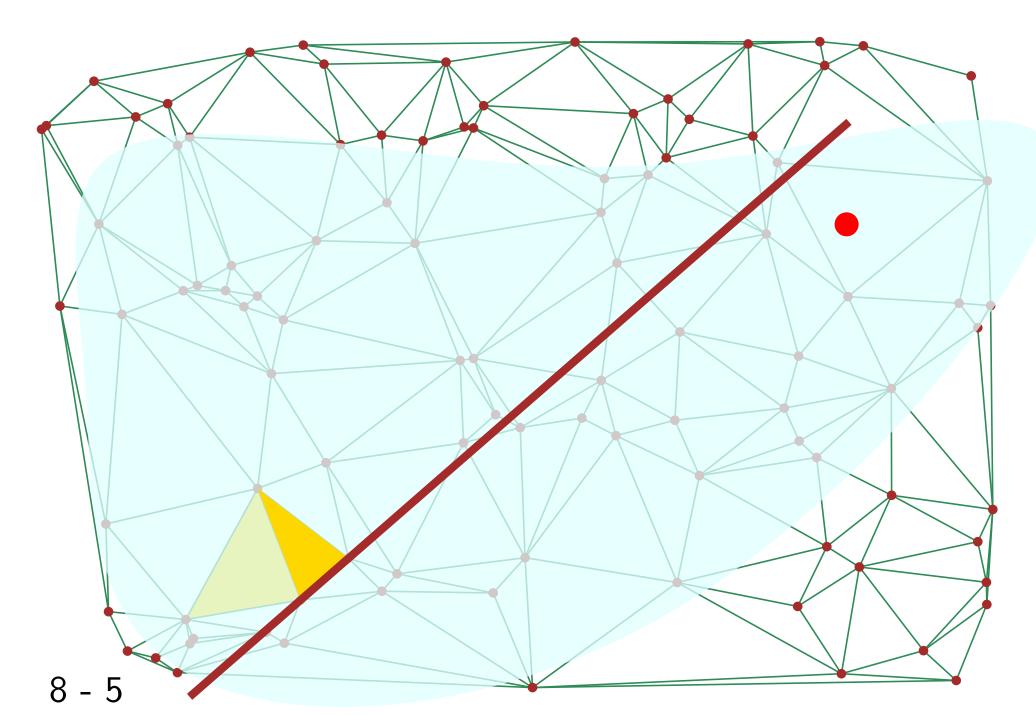
Locate by walk



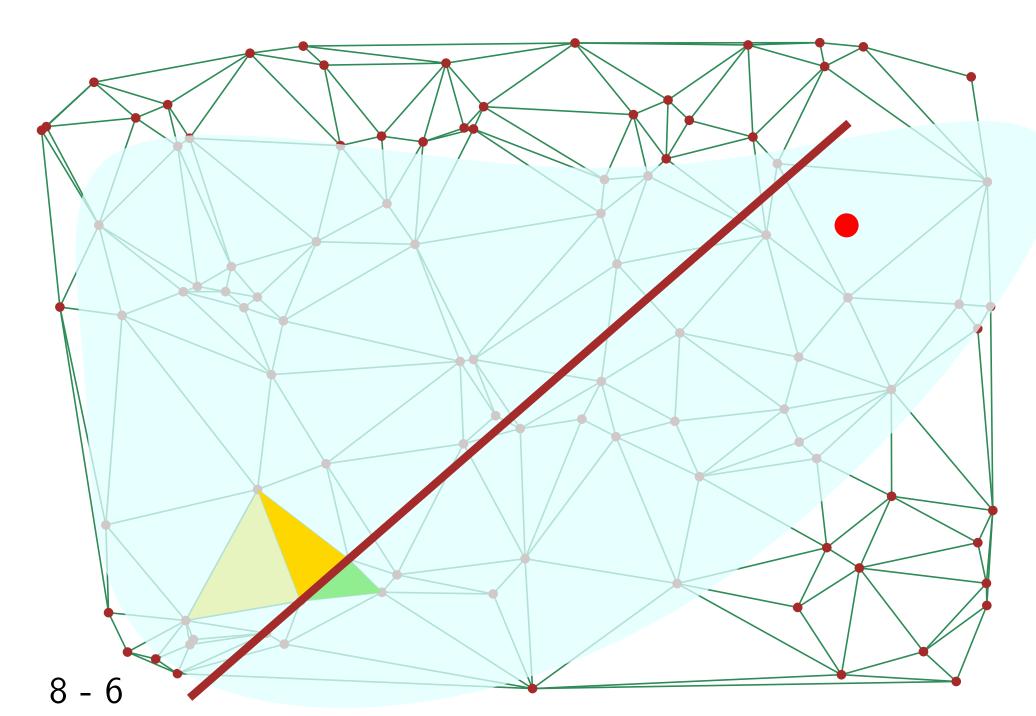
Locate by walk

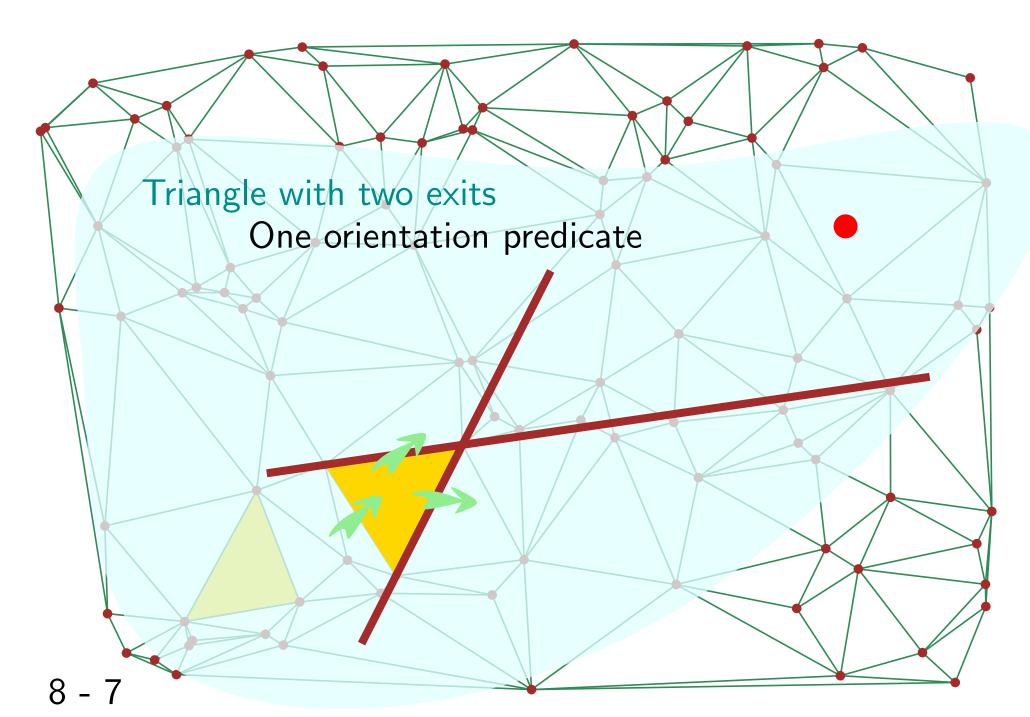


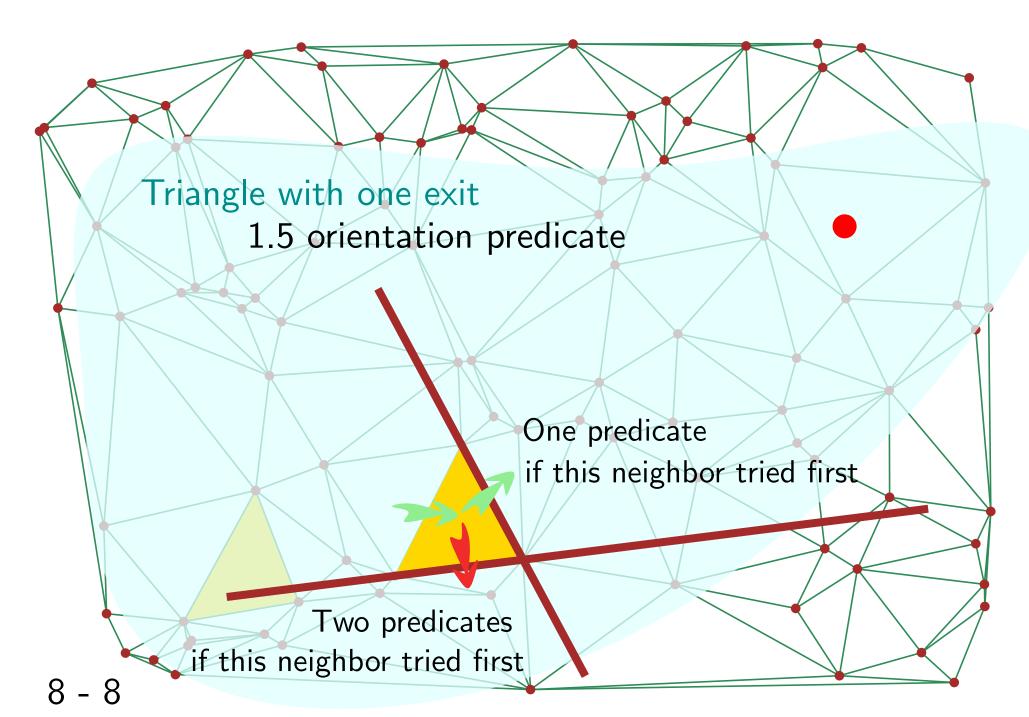
Locate by walk

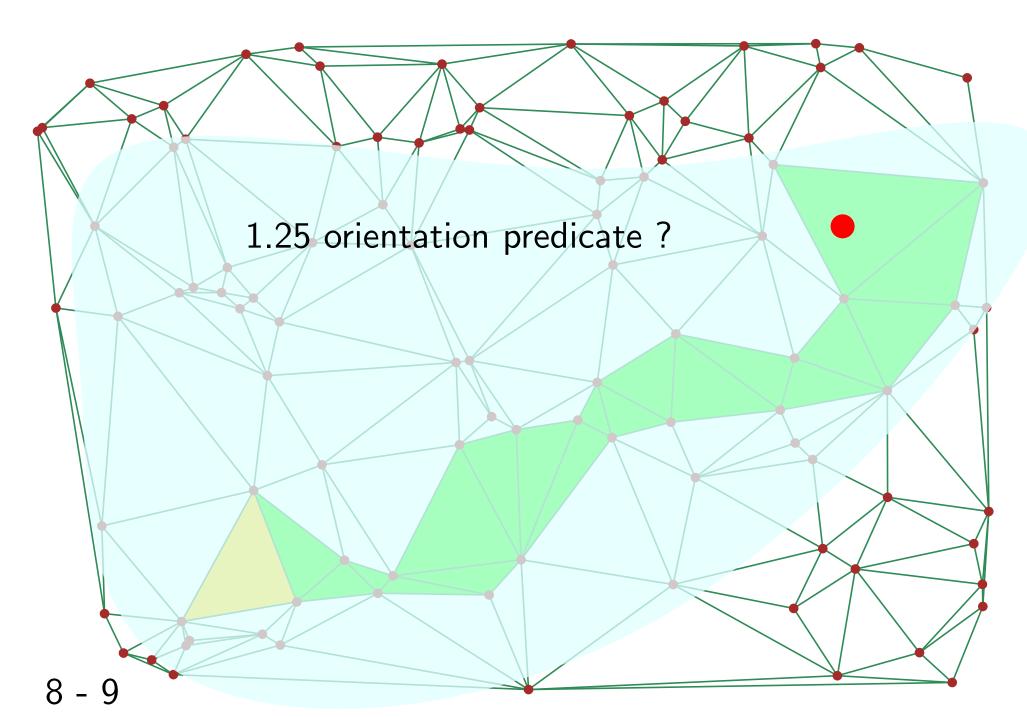


Locate by walk









Locate by walk

Visibility vs straight walk

Locate by walk

Visibility vs straight walk 2D and 3D

fewer predicates per crossed edge

similar number of crossed edges experimental / theoretical

Locate by walk

Visibility vs straight walk

Speed improvement ?

Speed improvement 2

Walk in Delaunay 1 Mpoints

Straight: 324 μ s

Visibility: 285 μ s

3D: 97 μs

Locate by walk

#include

<CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Triangulation_3.h>

#include <iostream> #include <fstream>
#include <cassert>
#include <list> #include <vector>

typedef

CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Triangulation_3<K> Triangulation;

typedef Triangulation::Cell_handle Cell_handle; typedef Triangulation::Vertex_handle Vertex_handle; typedef Triangulation::Locate_type Locate_type; typedef Triangulation::Point Point;

10 - 1

```
Algorithms
```

```
int main()
```

```
std::list<Point> L;
L.push_front(Point(0,0,0));
L.push_front(Point(1,0,0));
L.push_front(Point(0,1,0));
Triangulation T(L.begin(), L.end());
int n = T.number_of_vertices();
```

```
std::vector<Point> V(3);
V[0] = Point(0,0,1);
V[1] = Point(1,1,1);
V[2] = Point(2,2,2);
n = n + T.insert(V.begin(), V.end());
```

```
assert( n == 6 );
assert( T.is_valid() );
```

10 - 2

```
Locate_type lt;
int li, lj;
Point p(0,0,0);
Cell_handle c = T.locate(p, lt, li, lj);
assert( lt == Triangulation::VERTEX );
assert( c->vertex(li)->point() == p );
```

```
Vertex_handle v = c->vertex( (li+1)&3 );
Cell_handle nc = c->neighbor(li);
int nli;
assert( nc->has_vertex( v, nli ) );
```

```
Algorithms
```

```
std::ofstream oFileT("output",std::ios::out);
oFileT << T;
Triangulation T1;
std::ifstream iFileT("output",std::ios::in);
iFileT >> T1;
assert( T1.is_valid() );
assert(T1.number_of_vertices() == T.number_of_vertices());
assert( T1.number_of_cells() == T.number_of_cells() );
return 0;
```

ł

Basic incremental algorithm

Locate by walk

Straight walk

Visibility walk

Walk shape

Structural filtering

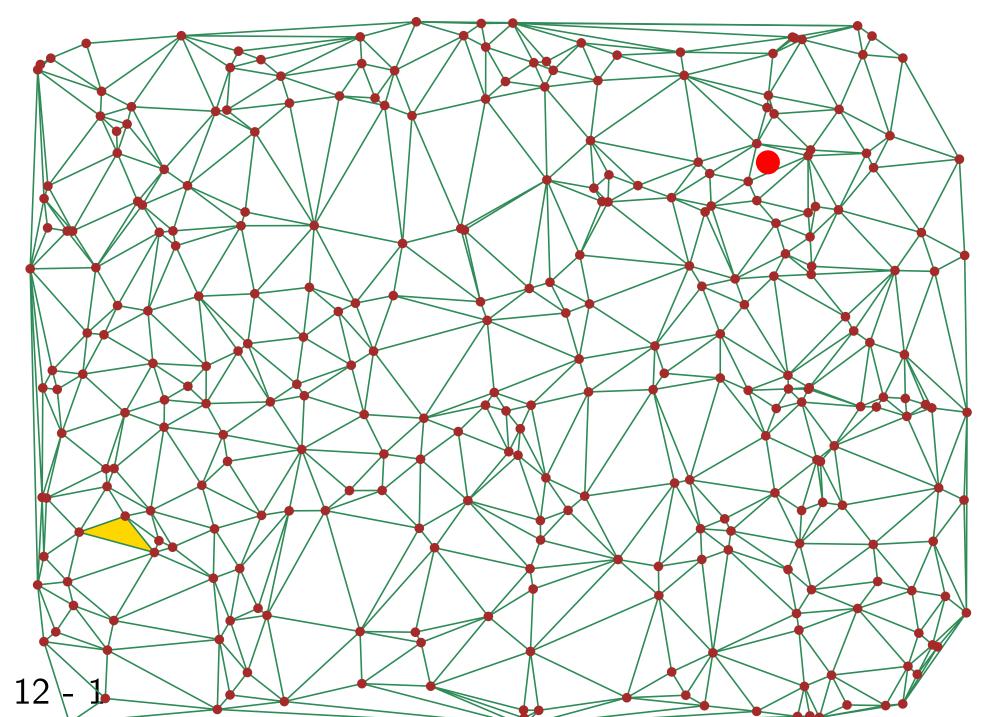
Locate using randomized data structures

Vertex removal in 2D

Conclusions

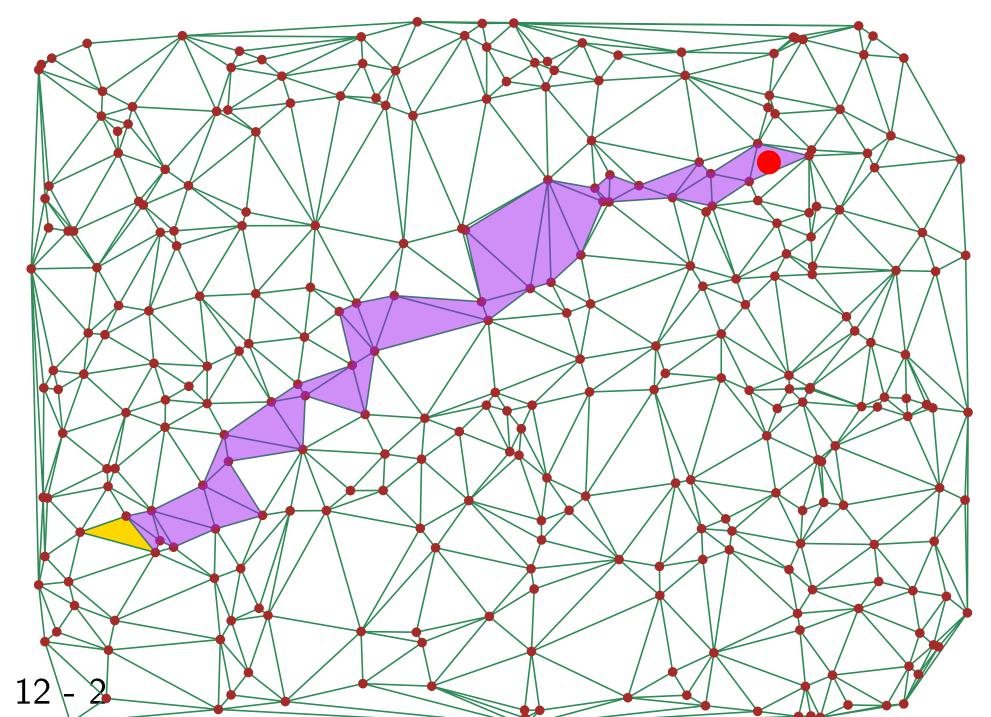
Locate by walk

visibility walk - structural filtering

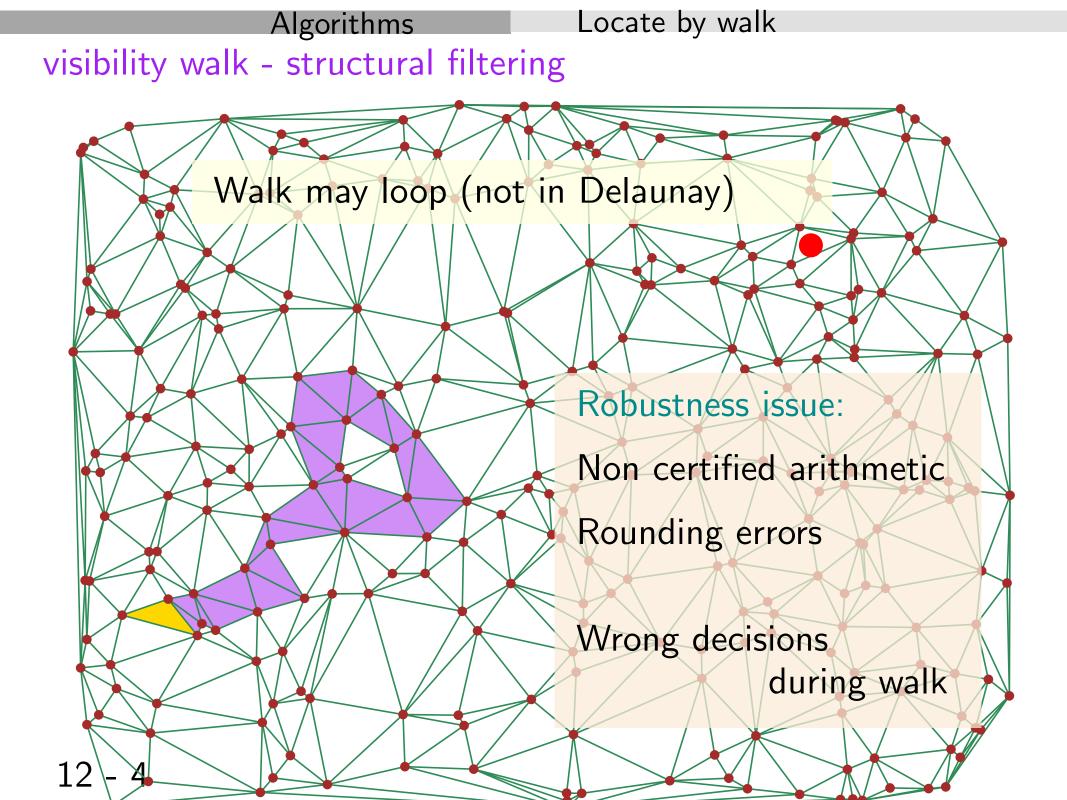


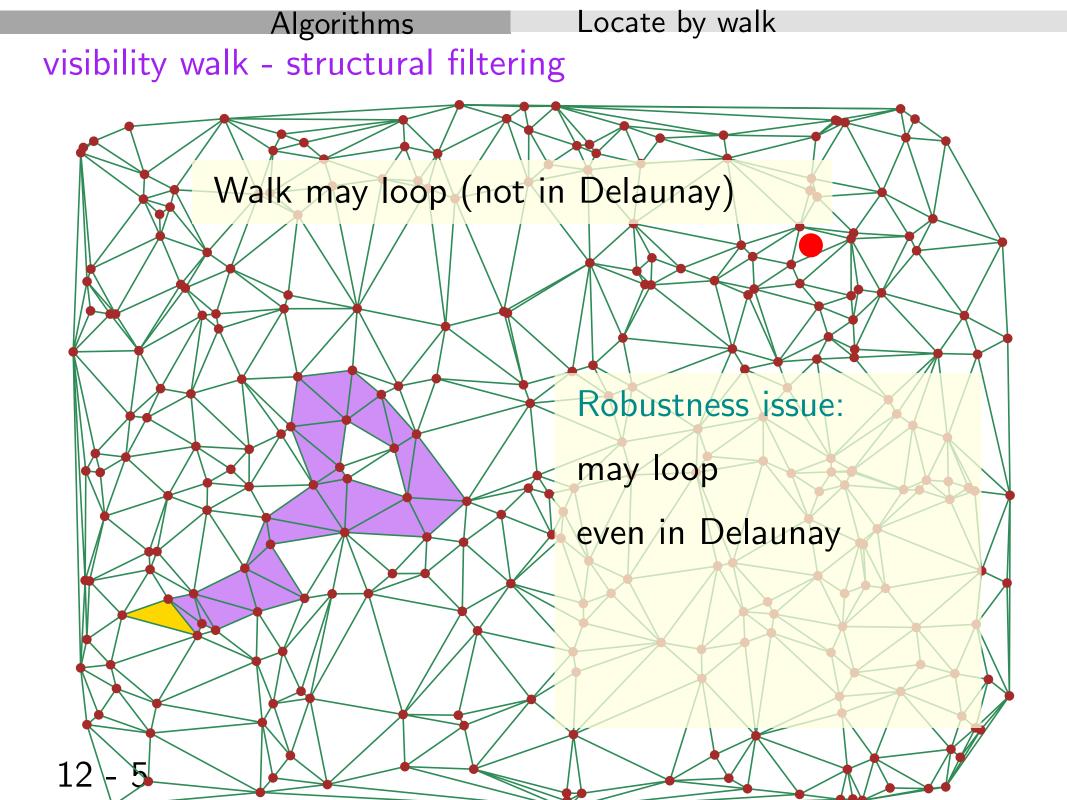
Locate by walk

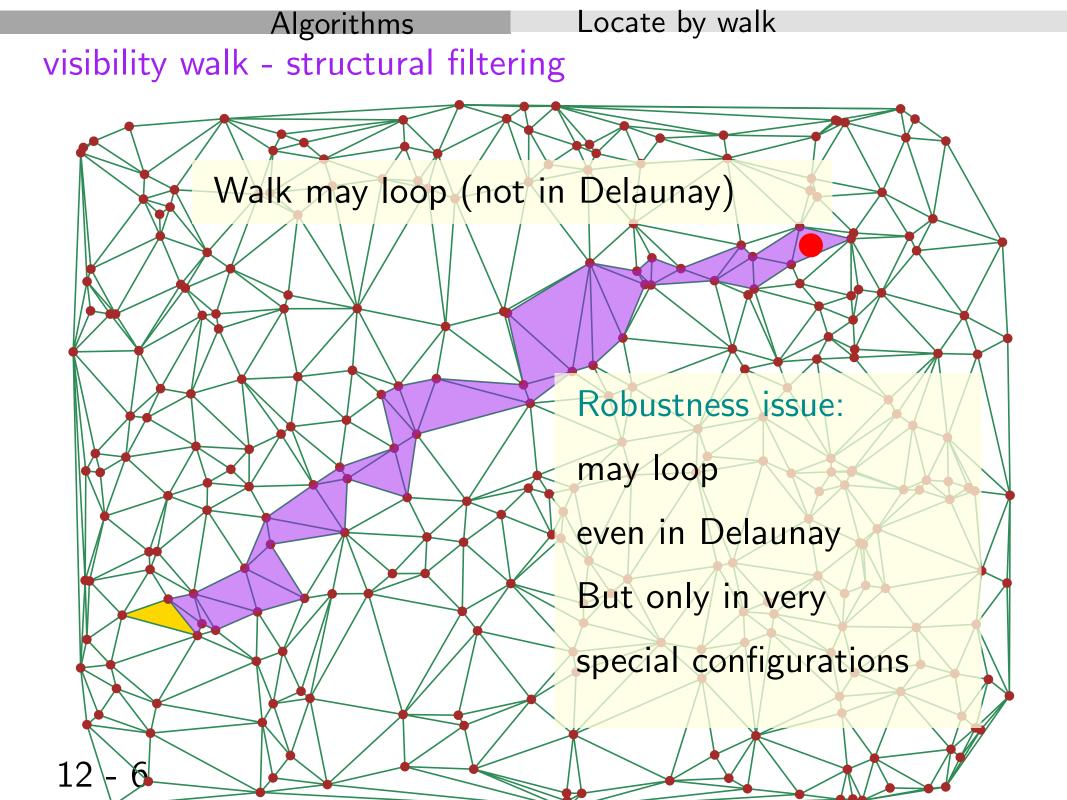
visibility walk - structural filtering

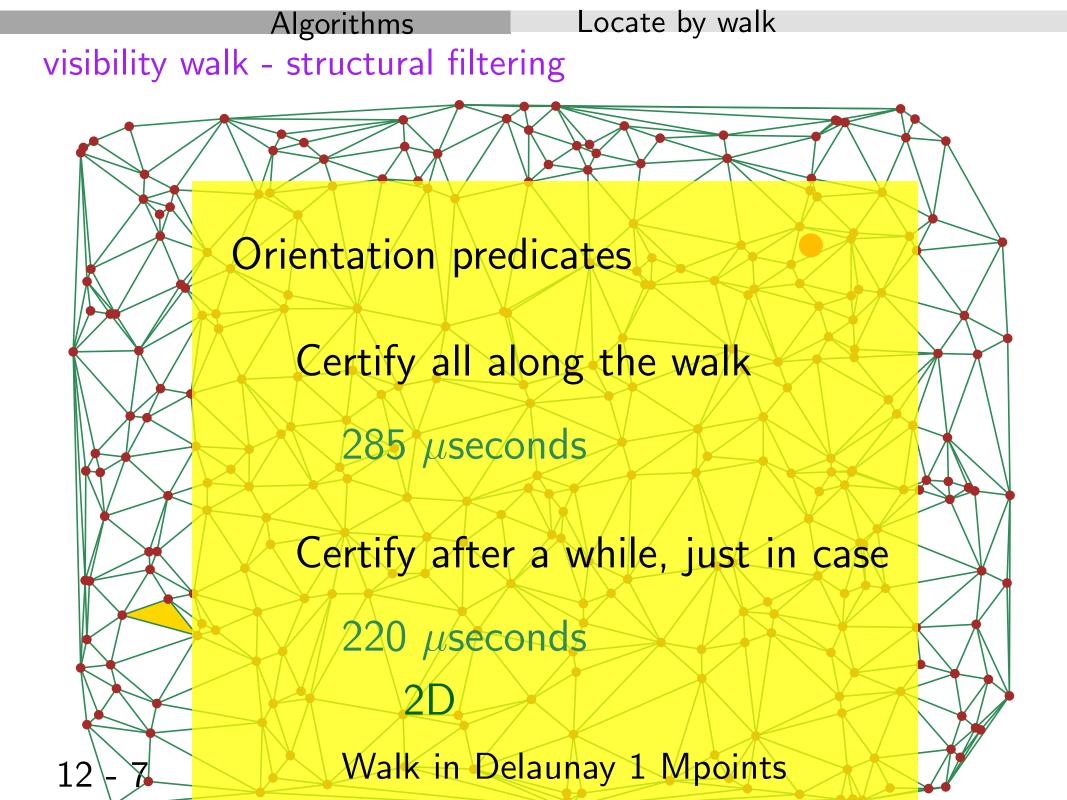


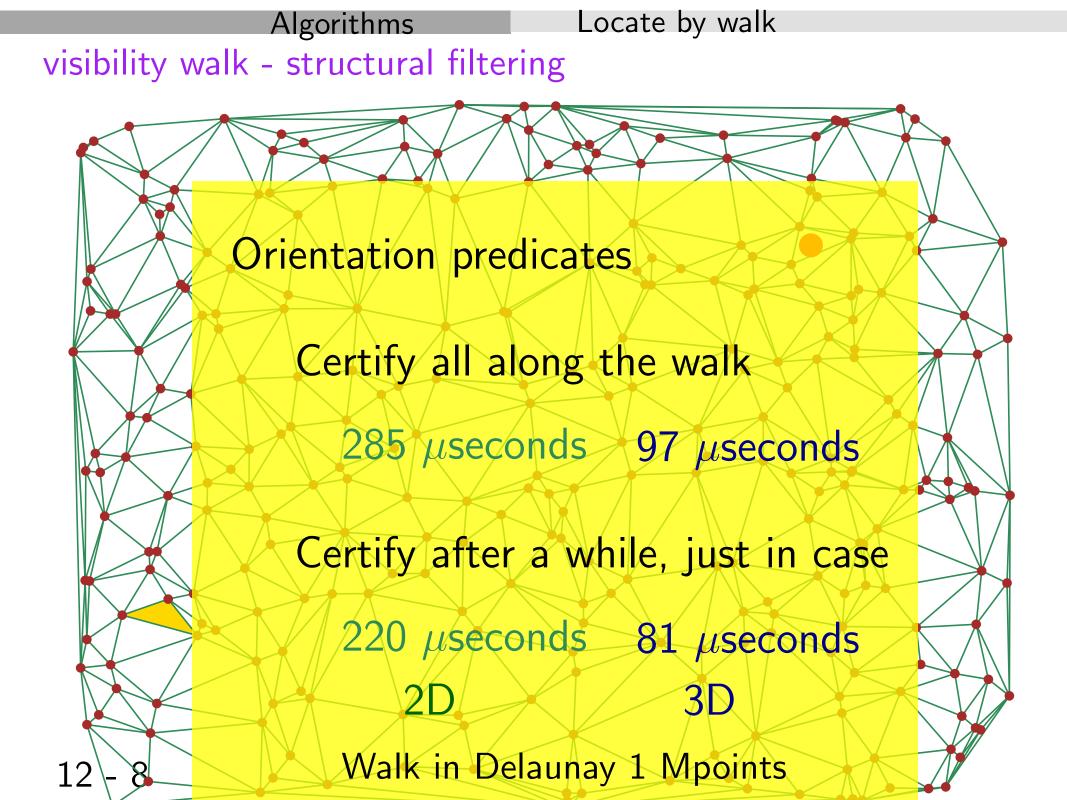
Algorithms Locate by walk visibility walk - structural filtering Walk may loop (not in Delaunay) 12











Basic incremental algorithm

Locate by walk

Straight walk

Visibility walk

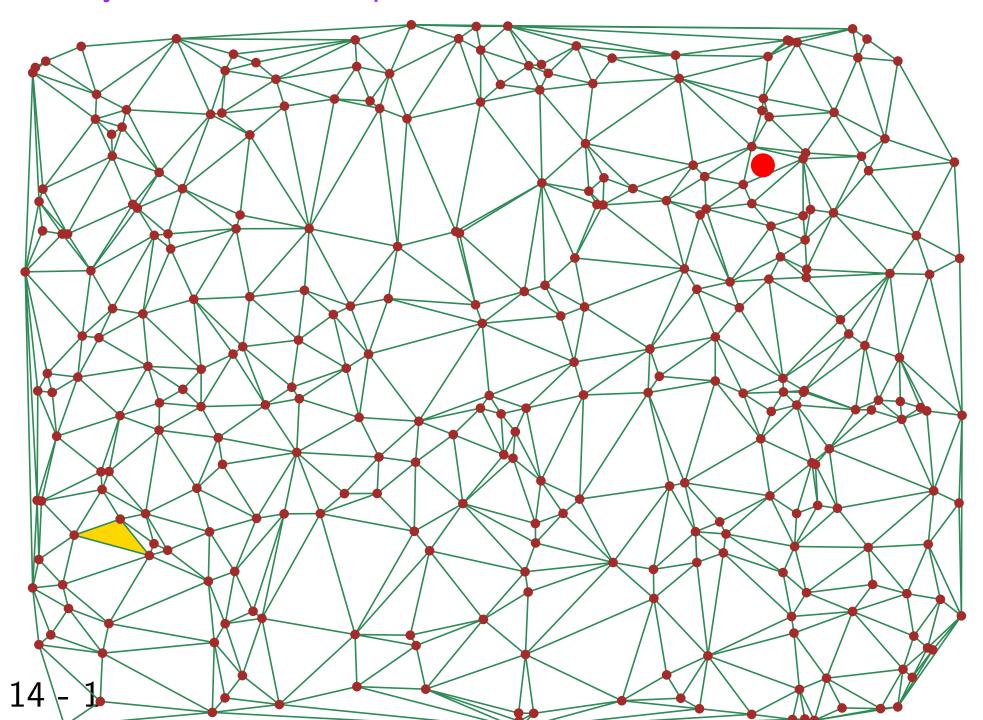
Structural filtering

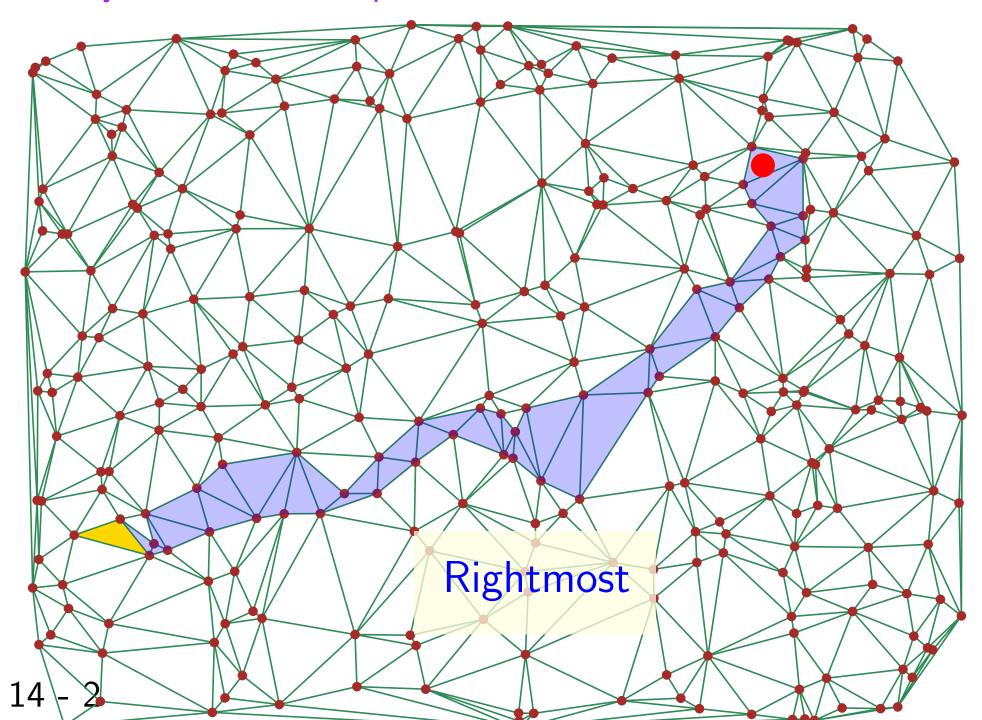
Walk shape

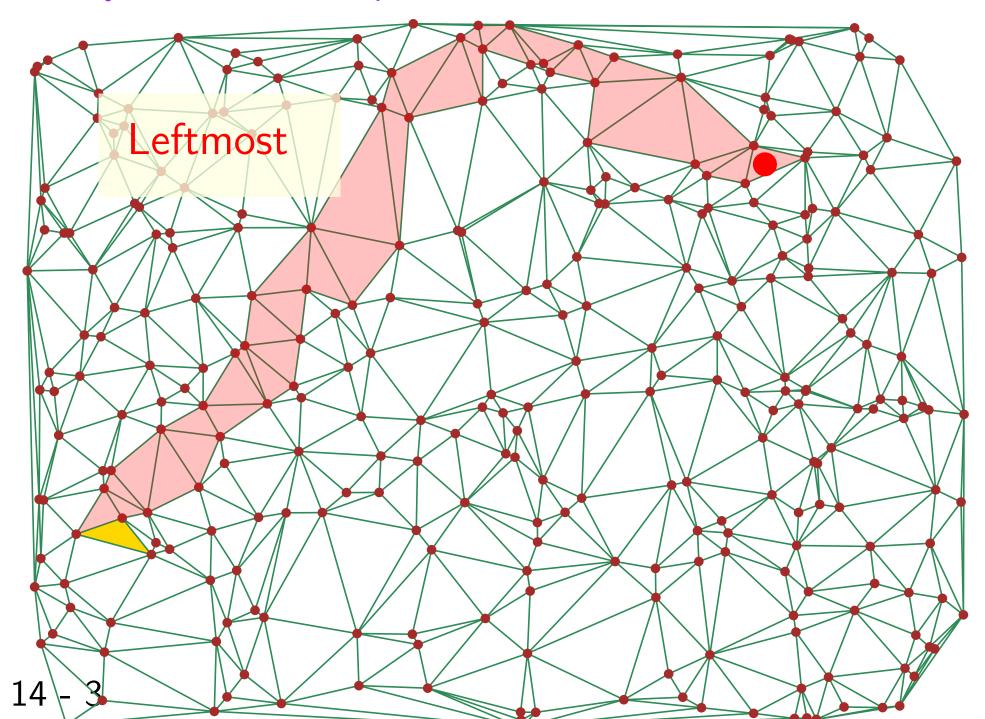
Locate using randomized data structures

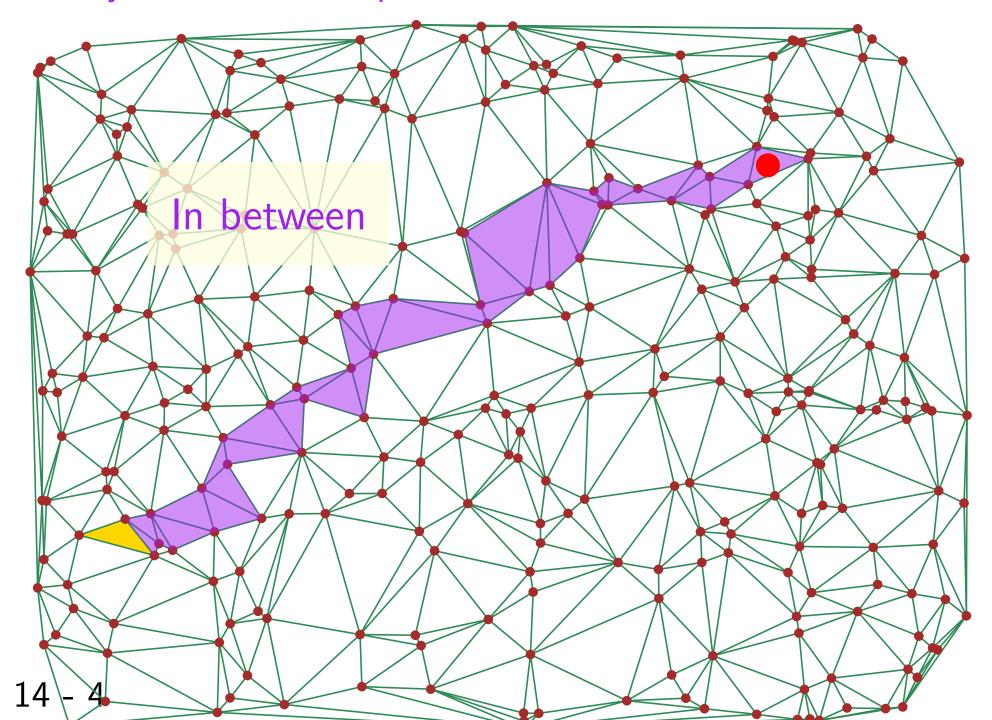
Vertex removal in 2D

Conclusions



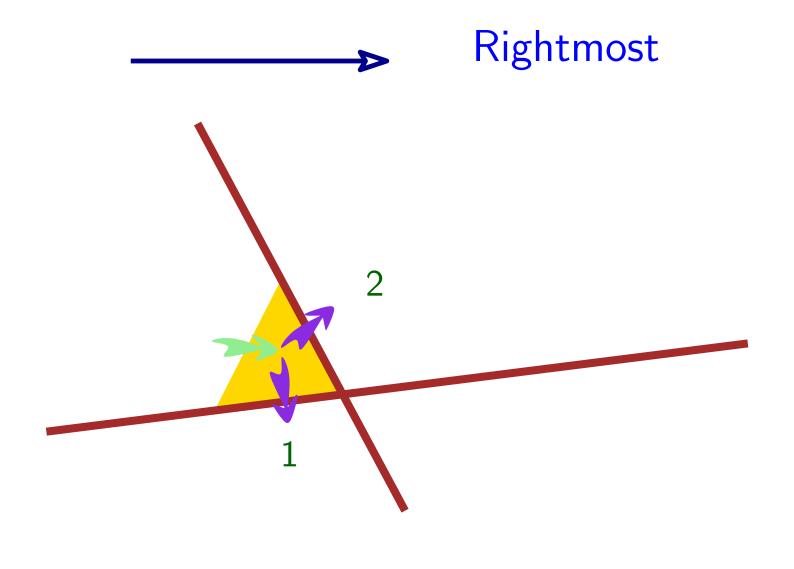




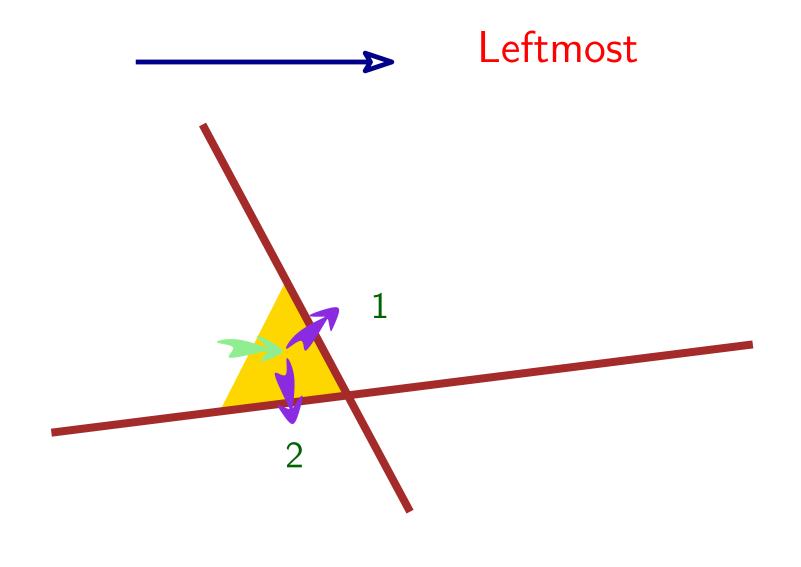


14

Turn counterclockwise from previous



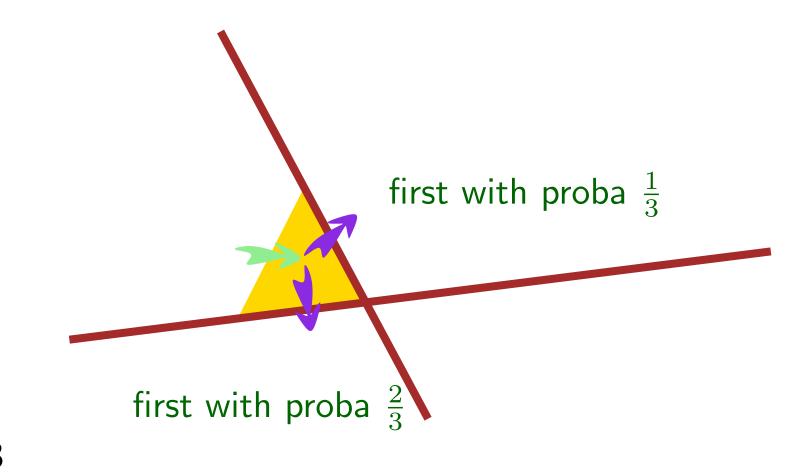
Turn clockwise from previous

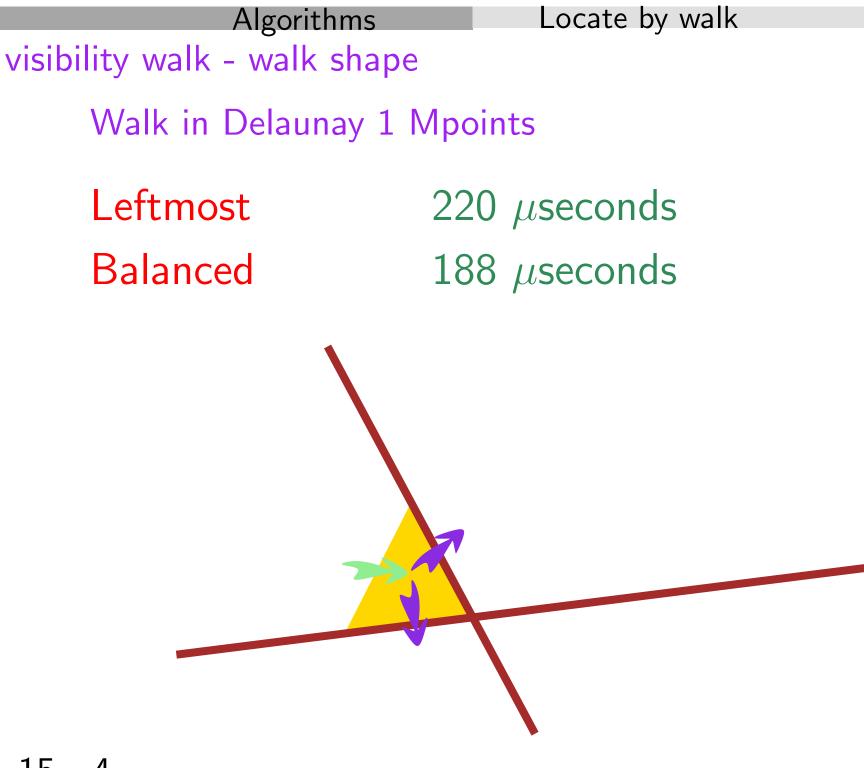


Locate by walk

visibility walk - walk shape

Balance left and right turns





Locate by walk

Walk in Delaunay 1 Mpoints

Straight walk 324 μ seconds

285 μ seconds Visibility walk

Structural filtering 220 μ seconds

Balanced walk

188 μ seconds

Basic incremental algorithm

Locate using randomized data structures

The Delaunay tree

The Delaunay hierarchy

Biased randomized insertion order

Vertex removal in 2D

Locate by walk

Conclusions

Basic incremental algorithm

Locate using randomized data structures

The Delaunay tree

The Delaunay hierarchy

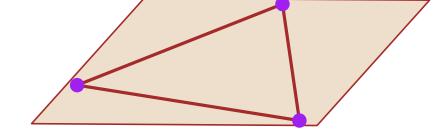
Biased randomized insertion order

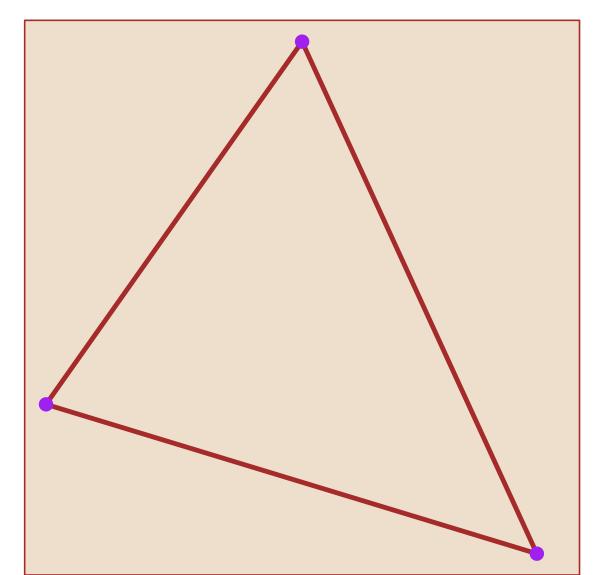
Vertex removal in 2D

Locate by walk

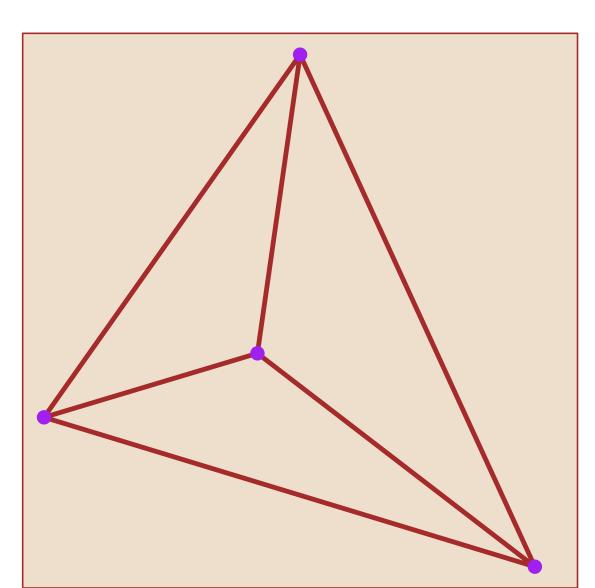
Conclusions

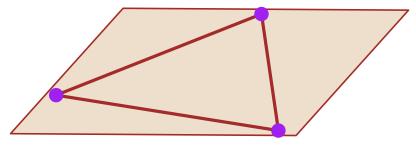
Locate using data structures

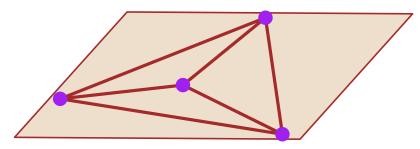




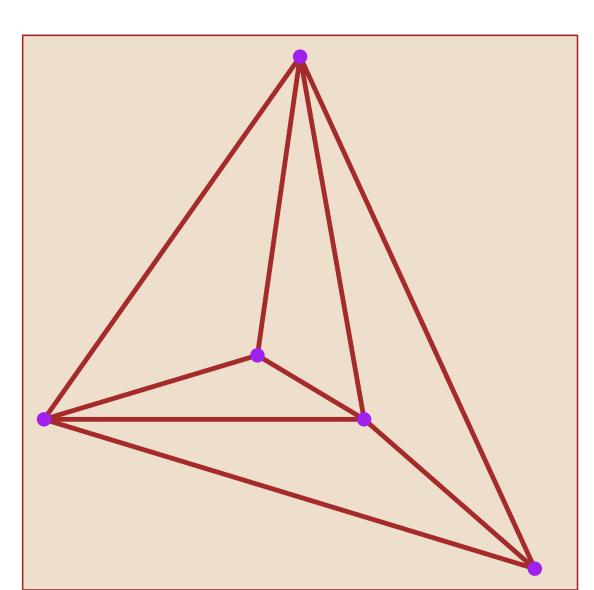
Locate using data structures

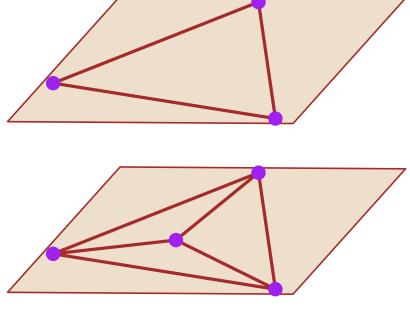


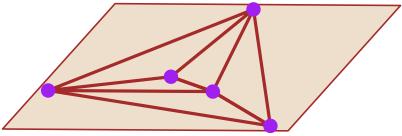




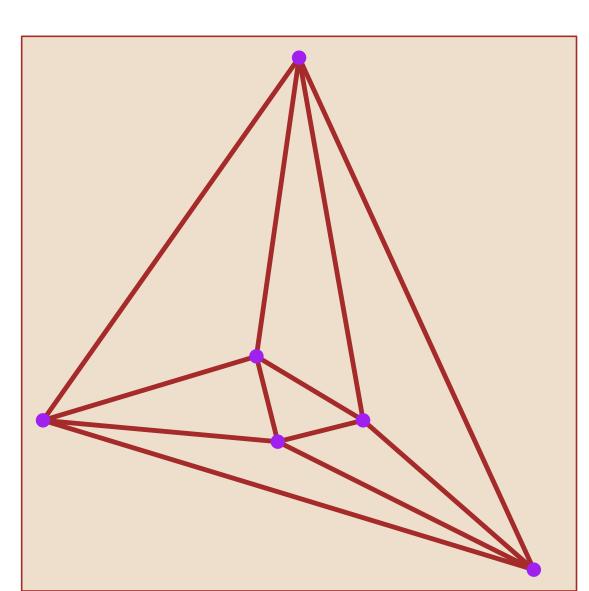
Locate using data structures

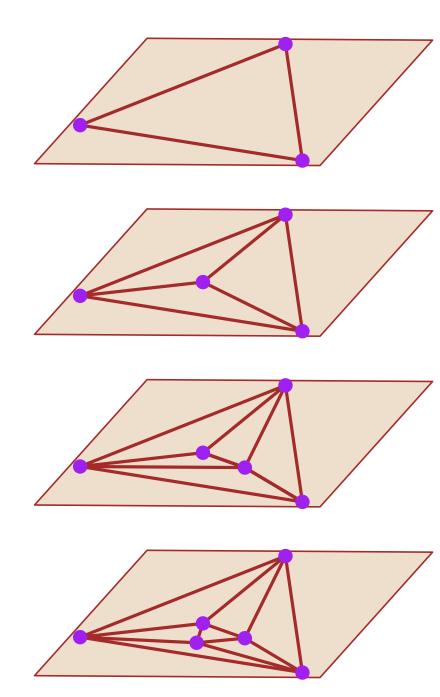




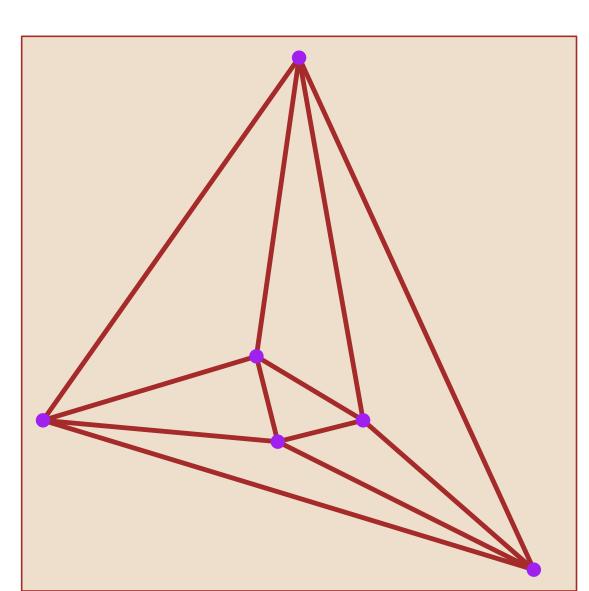


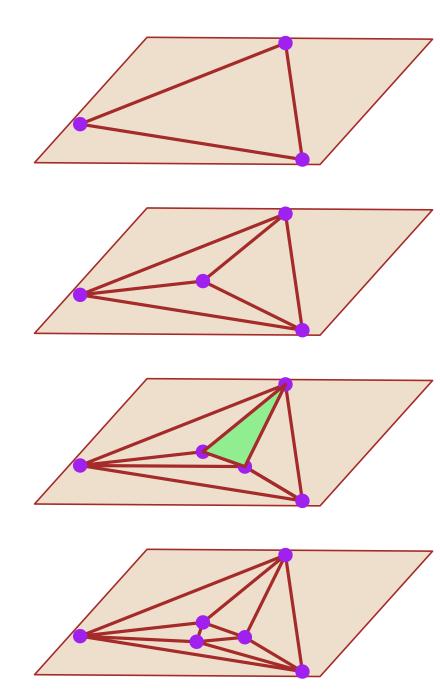
Locate using data structures



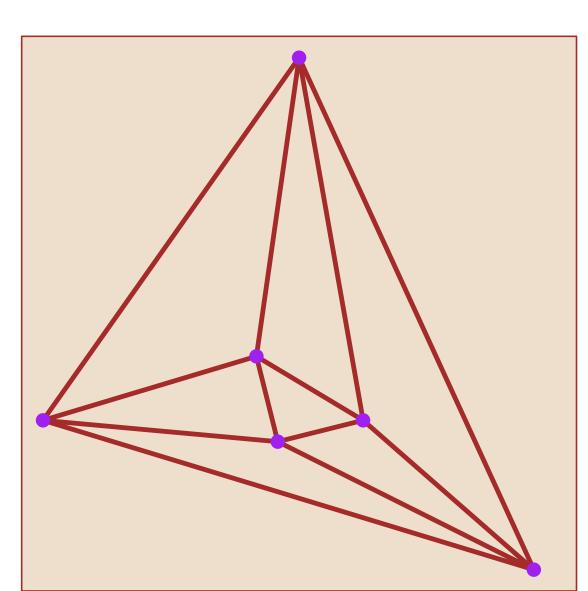


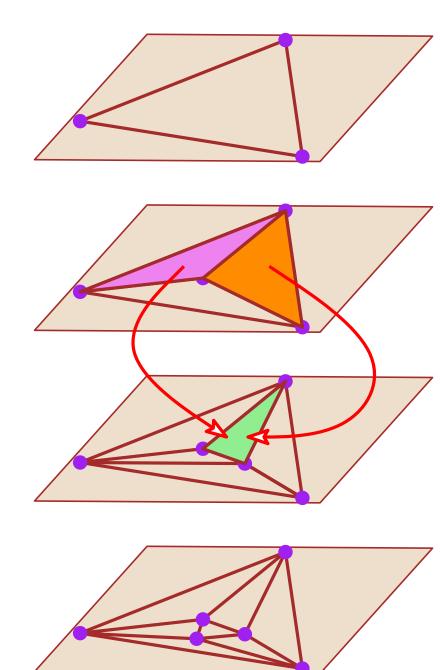
Locate using data structures



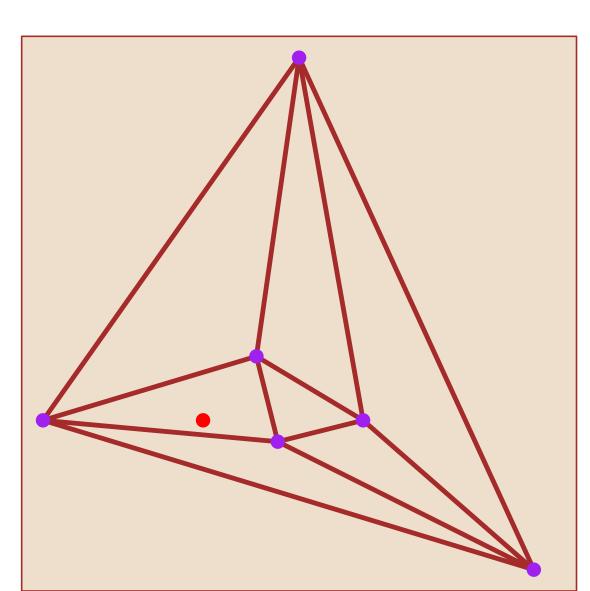


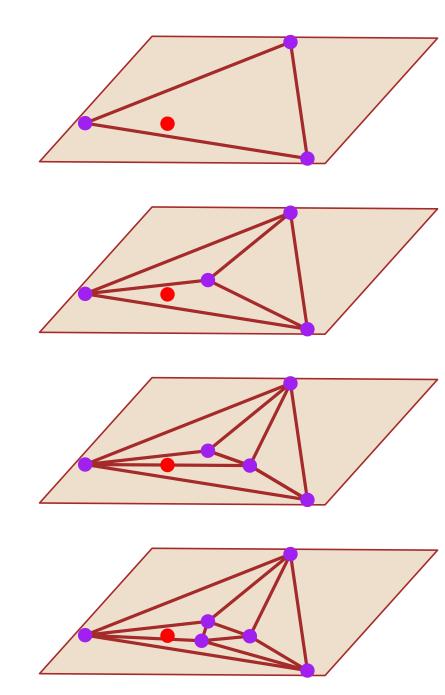
Locate using data structures



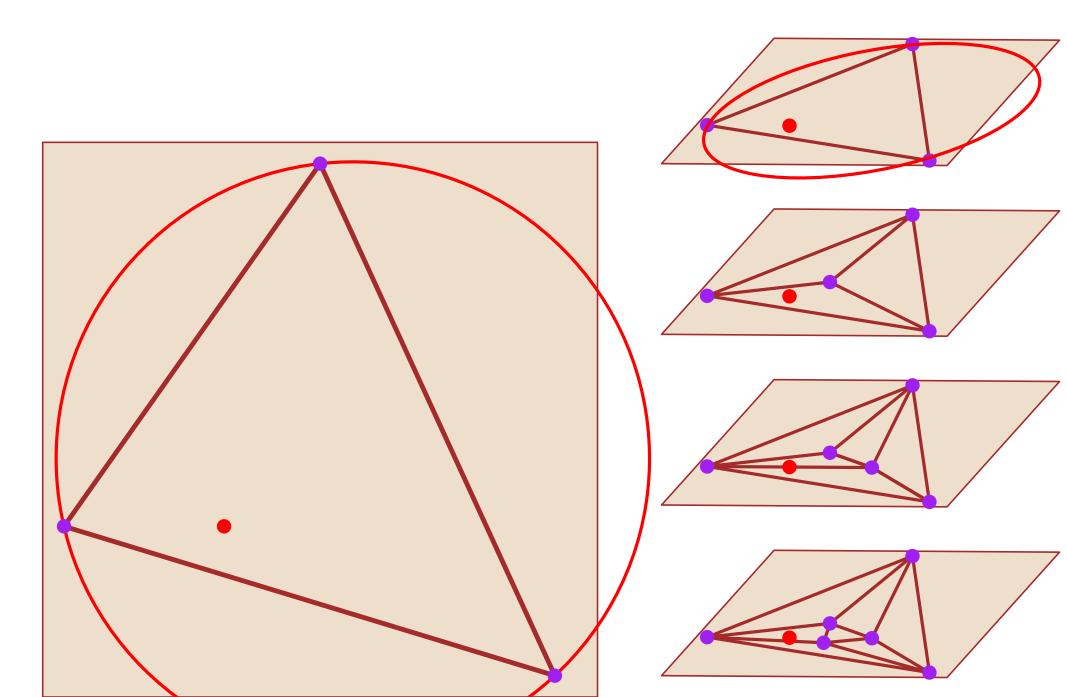


Locate using data structures

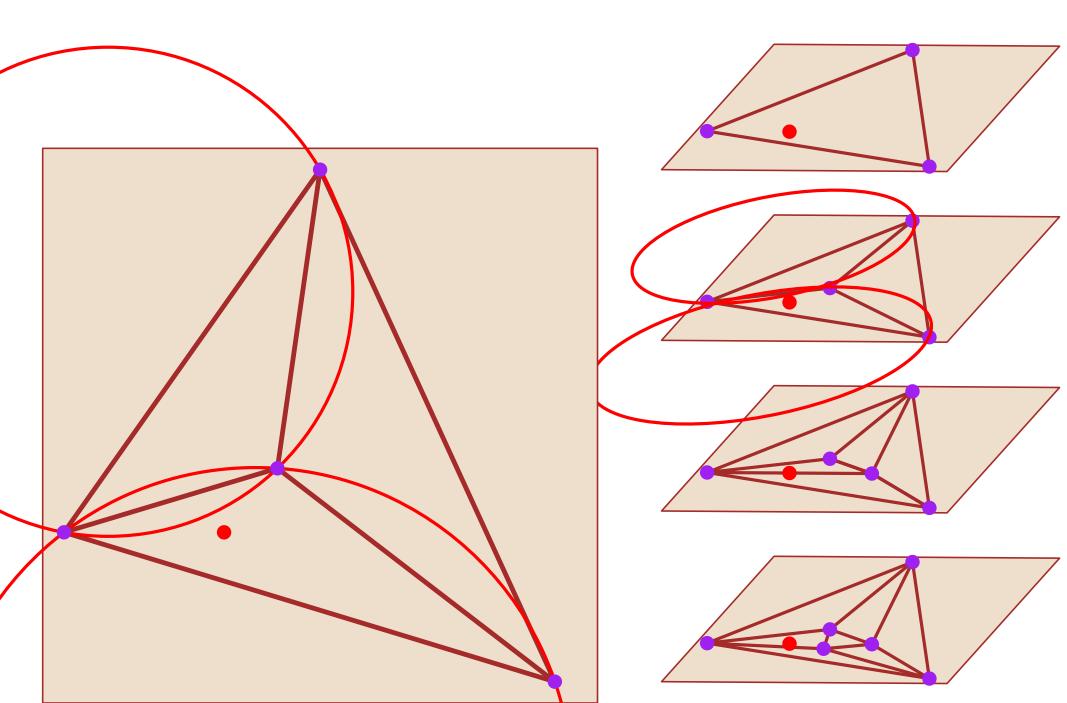




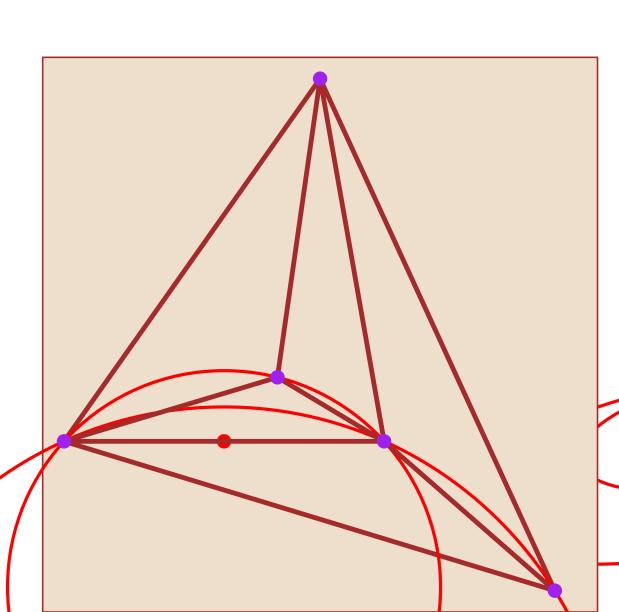
Locate using data structures

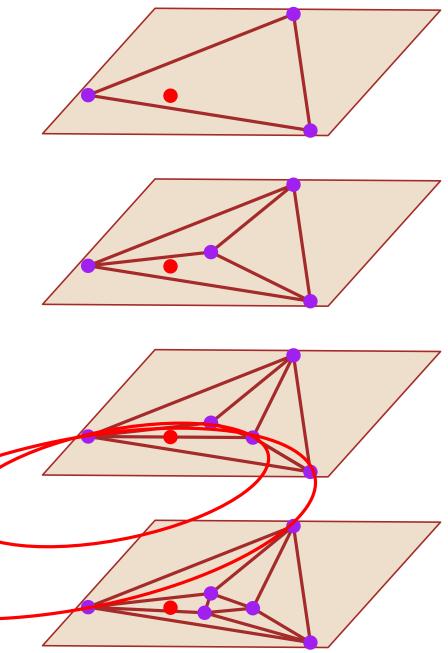


Locate using data structures

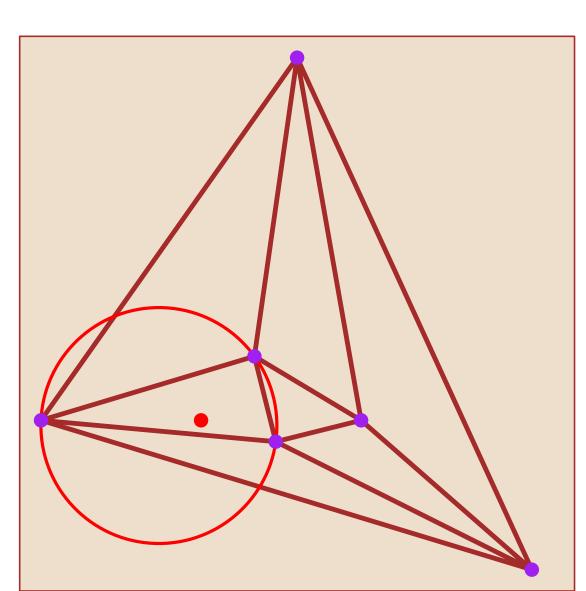


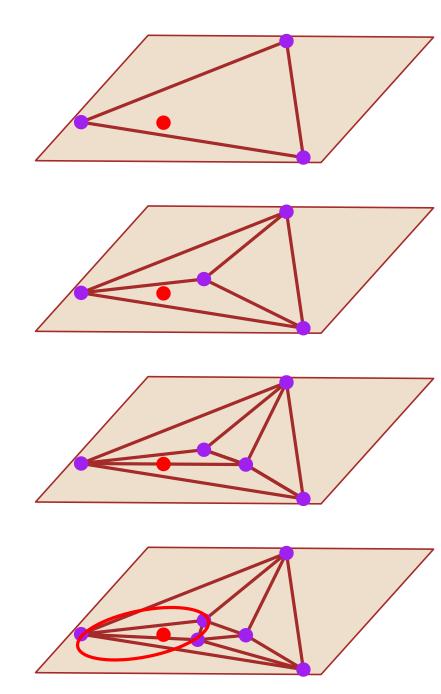
Locate using data structures





Locate using data structures



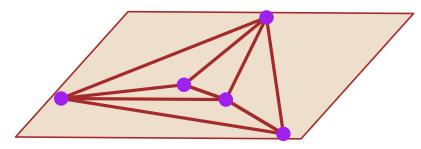


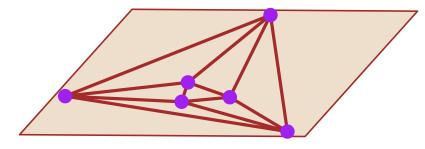
Locate using data structures

the Delaunay tree

locate based on incircle predicate

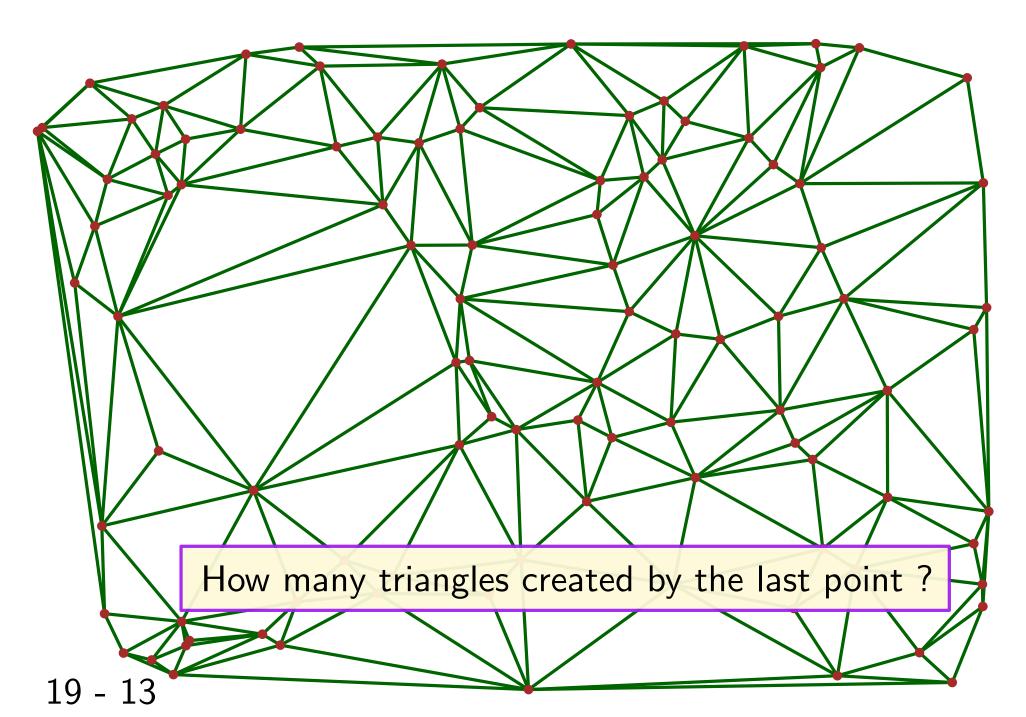
triangles in the Delaunay tree



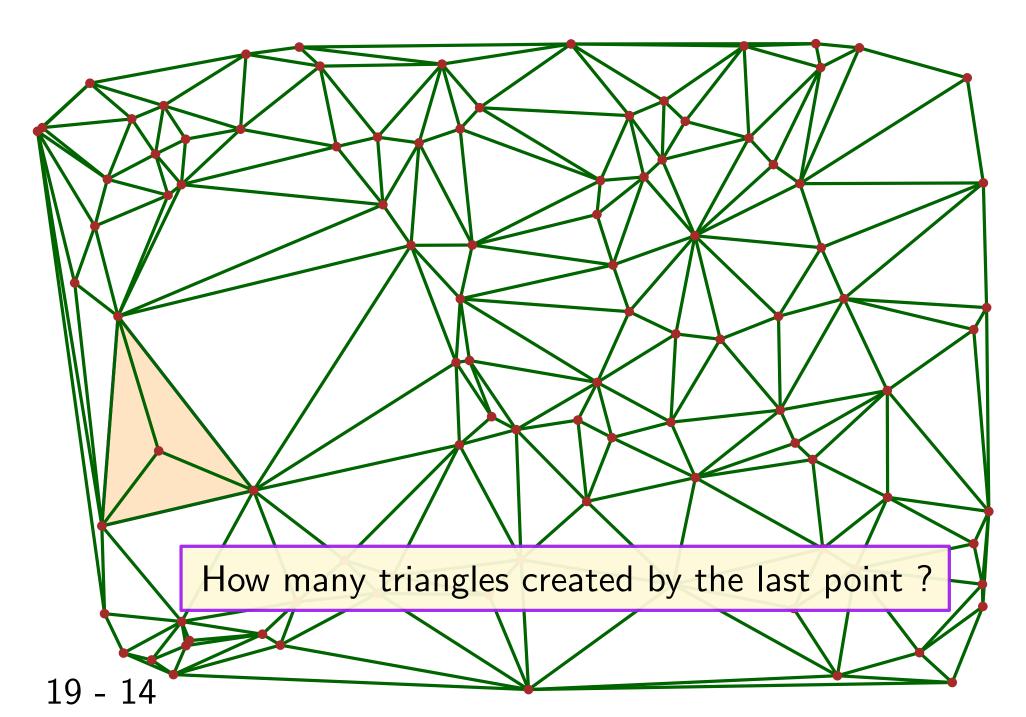


19 - 12

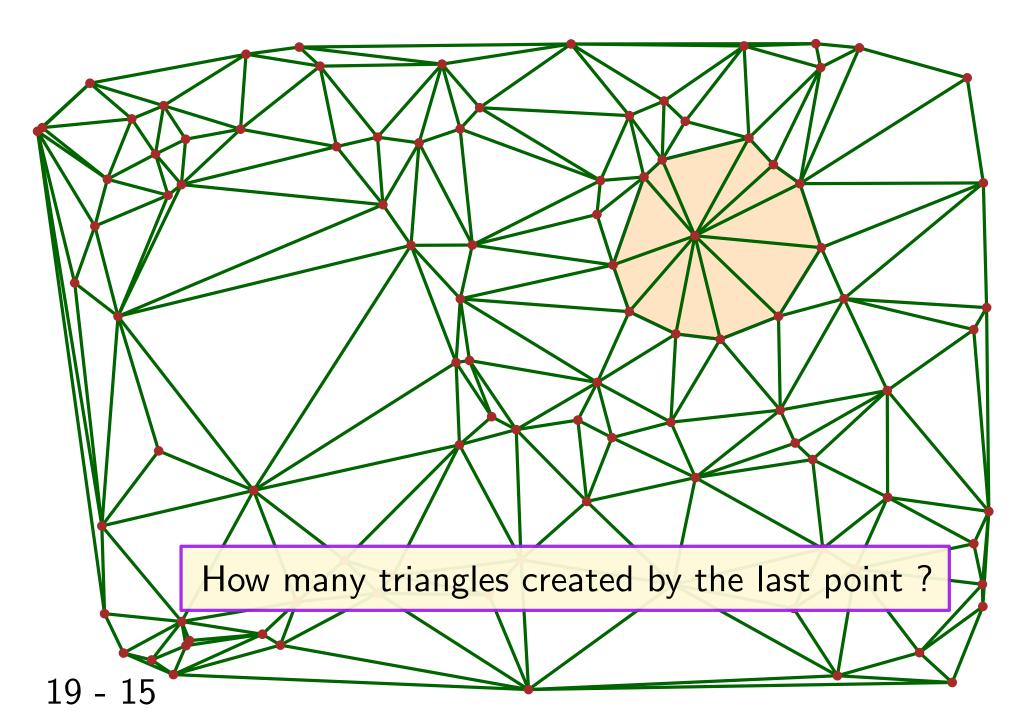
Locate using data structures



Locate using data structures



Locate using data structures



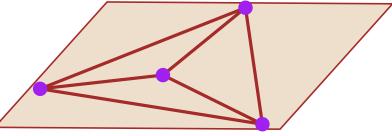
Locate using data structures

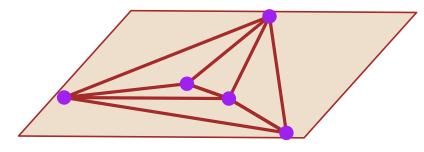
the Delaunay tree

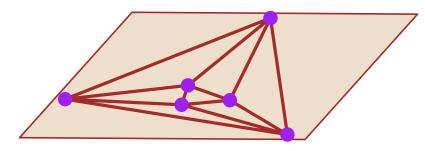
locate based on incircle predicate

triangles in the Delaunay tree

= 6n (randomized)







19 - 16

Basic incremental algorithm

Locate using randomized data structures

The Delaunay hierarchy

Biased randomized insertion order

The Delaunay tree

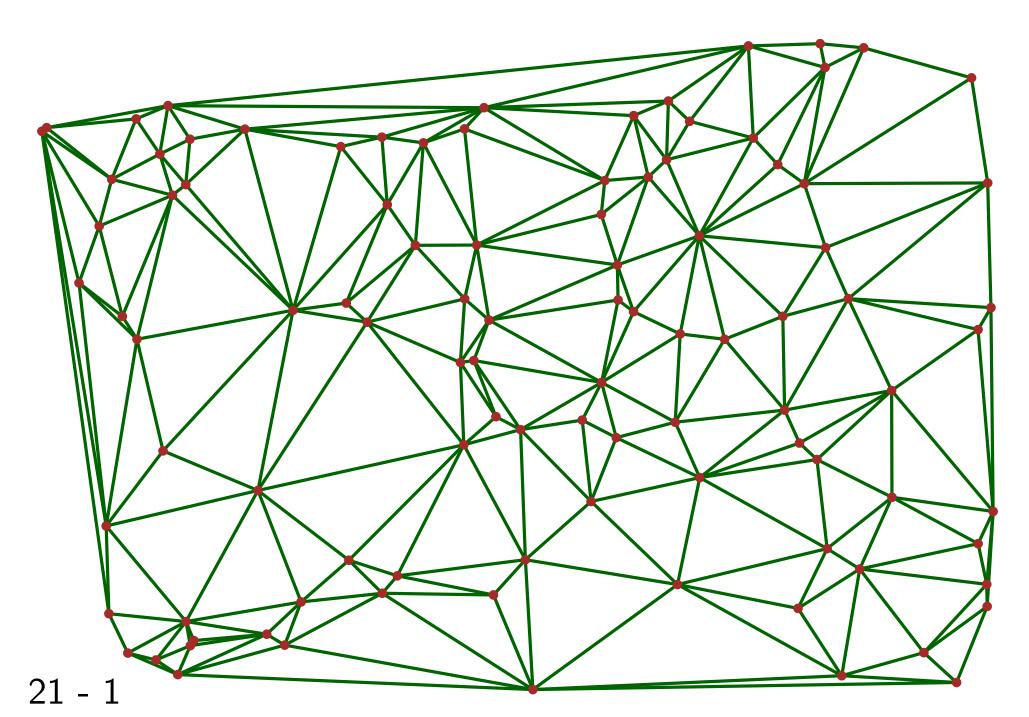
Vertex removal in 2D

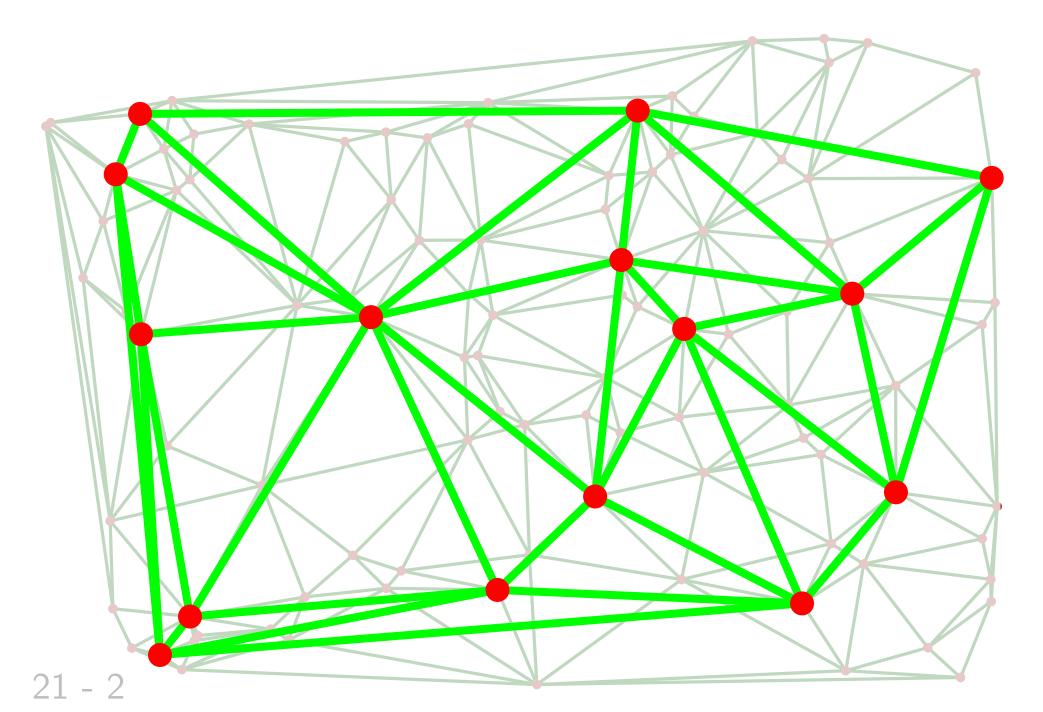
Locate by walk

Conclusions

Locate using data structures

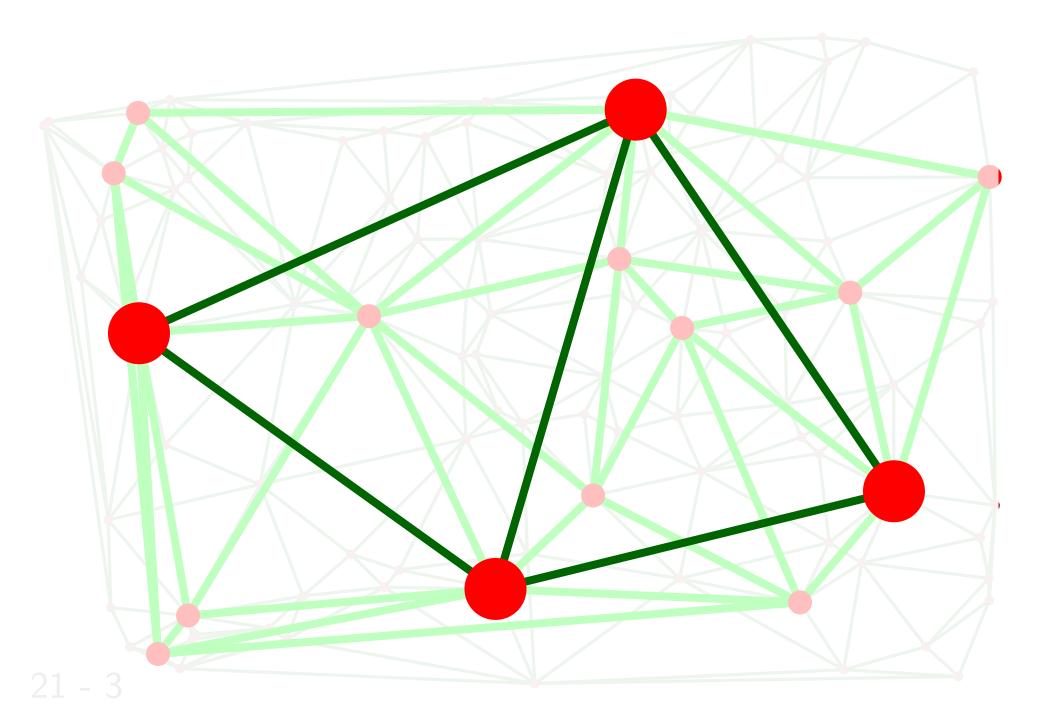
the Delaunay hierarchy





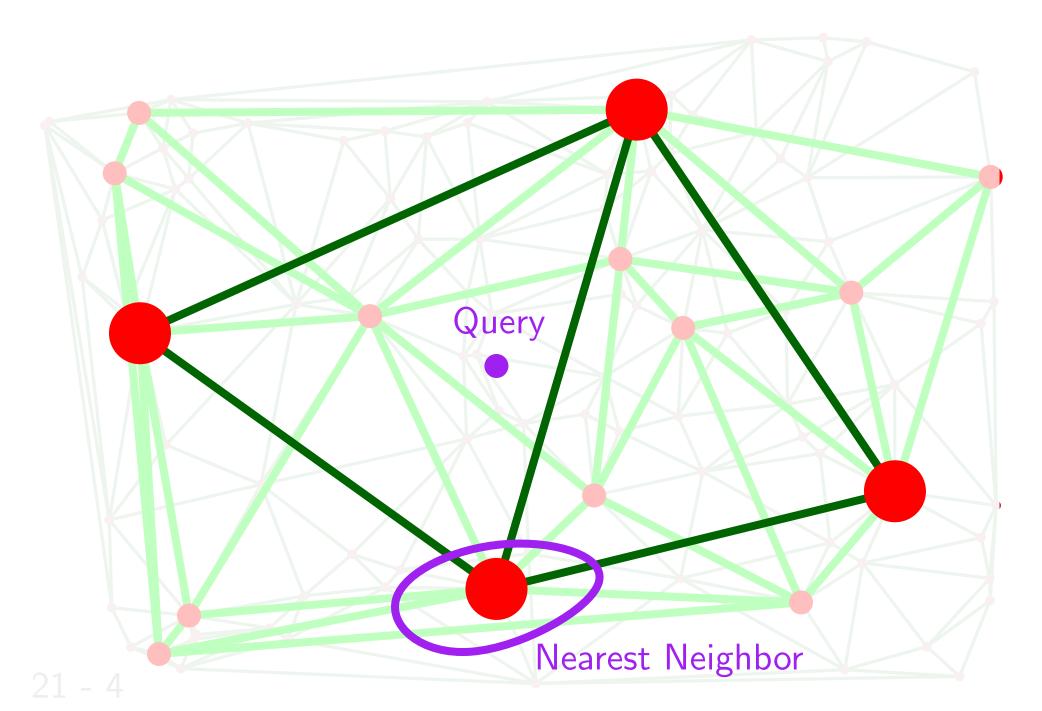
Locate using data structures

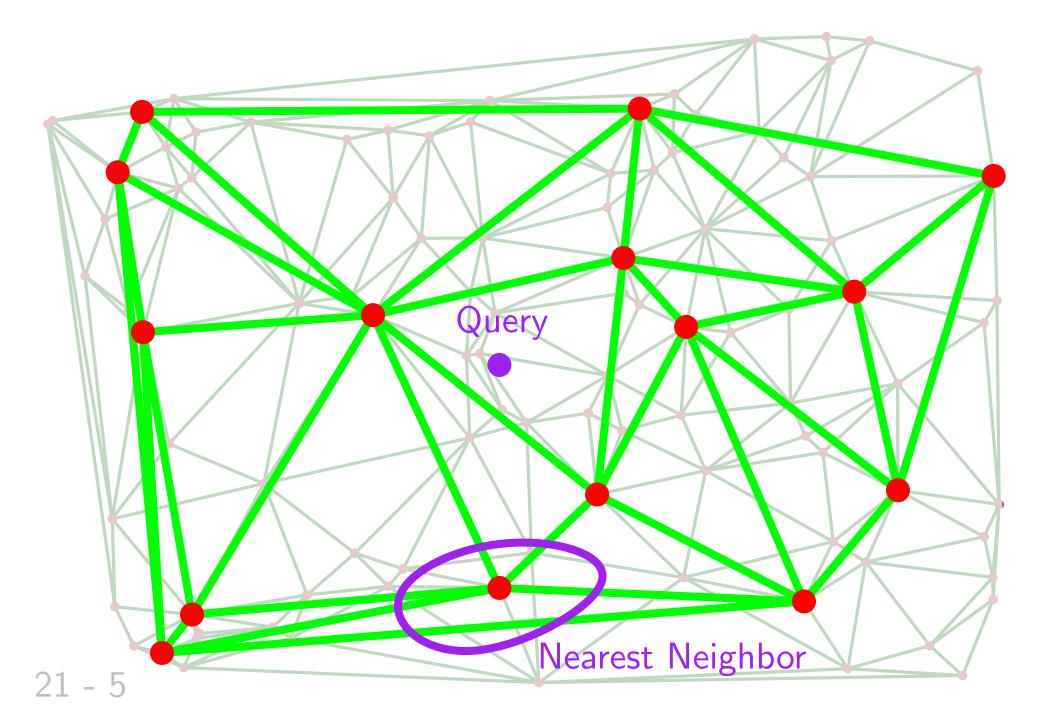
the Delaunay hierarchy

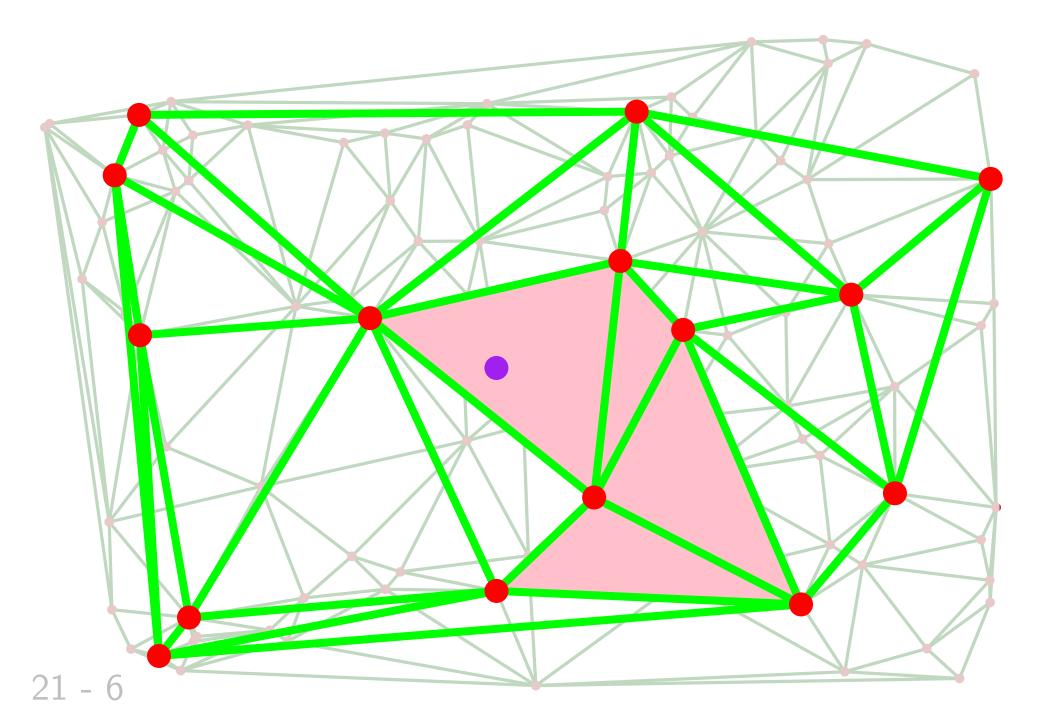


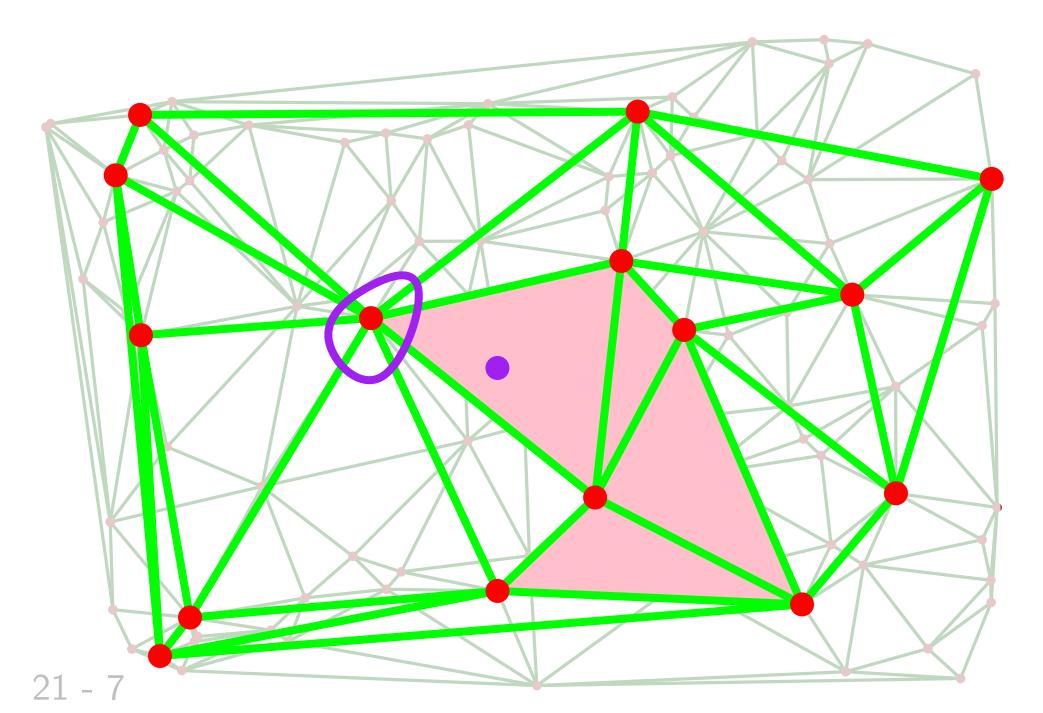
Locate using data structures

the Delaunay hierarchy



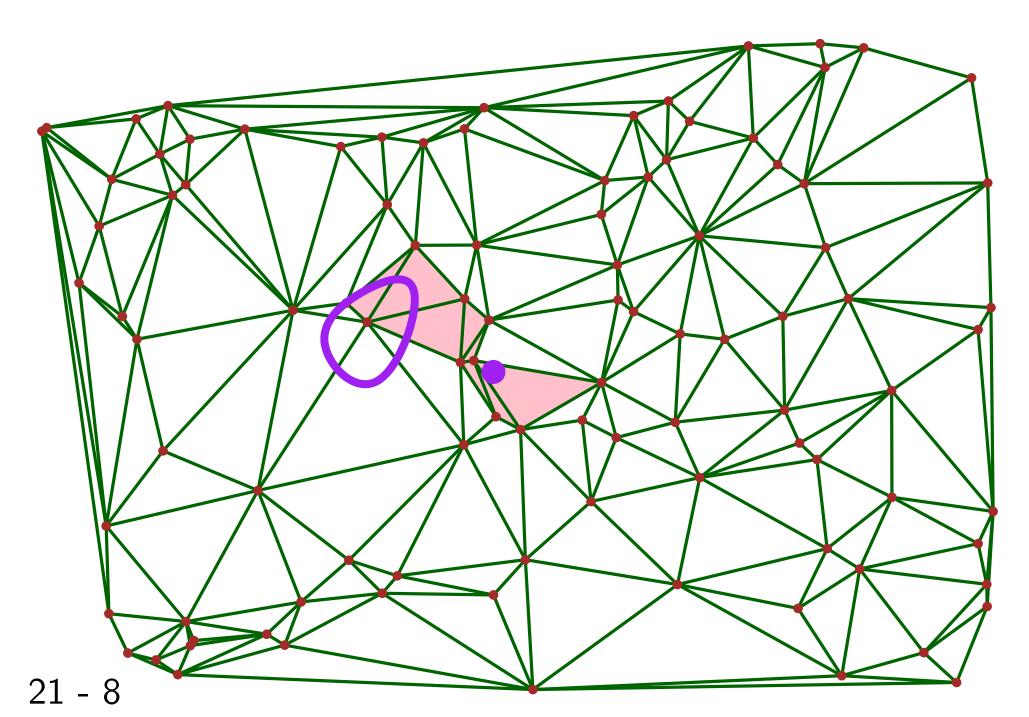


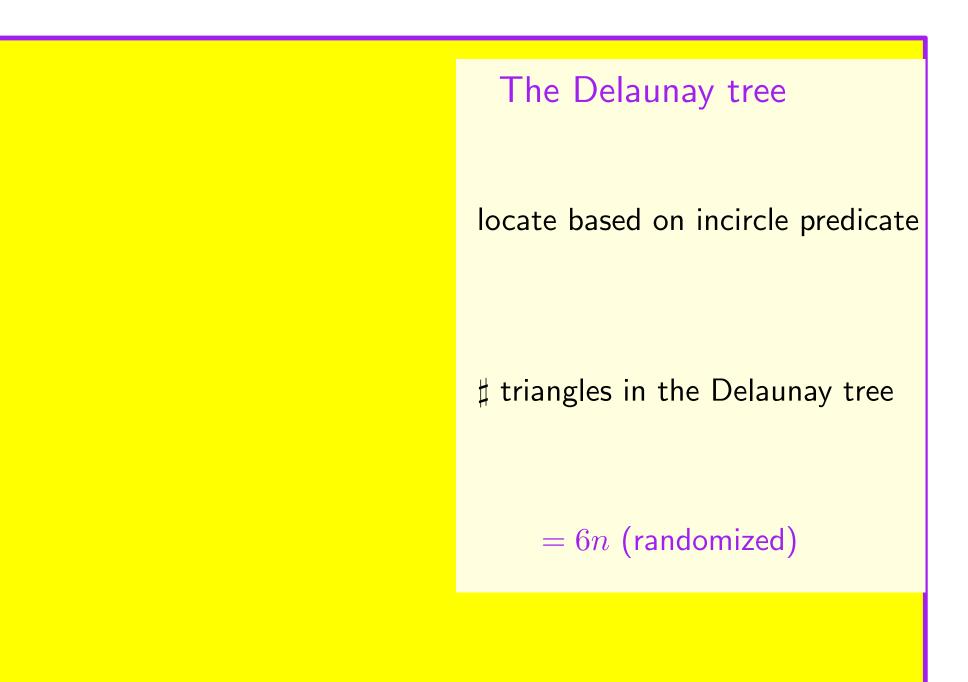




Locate using data structures

the Delaunay hierarchy





Locate using data structures

The Delaunay hierarchy

based on orientation predicate

triangles in the hierarchy
can be chosen

 $= 1.03 \times 2n$ (expected)

The Delaunay tree

locate based on incircle predicate

triangles in the Delaunay tree

= 6n (randomized)

Locate using data structures

The Delaunay hierarchy

based on orientation predicate

triangles in the hierarchy
can be chosen

 $= 1.03 \times 2n$ (expected)

The Delaunay tree

locate based on incircle predicate

triangles in the Delaunay tree

= 6n (randomized)

 $O(n \log n)$

Locate using data structures

The Delaunay hierarchy

based on orientation predicate

triangles in the hierarchy
can be chosen

 $= 1.03 \times 2n$ (expected)

2.3 seconds

The Delaunay tree

locate based on incircle predicate

triangles in the Delaunay tree

= 6n (randomized)

17 seconds

50000 random points (original benchmarks in 2000).

Algorithms Locate using data structures

#include

<CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Random.h>

```
#include <vector>
#include <cassert>
```

typedef

CGAL::Exact_predicates_inexact_constructions_kernel K; typedef CGAL::Delaunay_triangulation_3<K, CGAL::Fast_location> Delaunay;

typedef Delaunay::Point Point;

```
int main()
{ Delaunay T;
    std::vector<Point> P;
    for (int z=0 ; z<20 ; z++)
    for (int y=0 ; y<20 ; y++)
    for (int x=0 ; x<20 ; x++)
        P.push_back(Point(x,y,z));</pre>
```

```
Delaunay T(P.begin(), P.end());
assert( T.number_of_vertices() == 8000 );
```

```
for (int i=0; i<10000; ++i)</pre>
```

T.nearest_vertex

(Point(CGAL::default_random.get_double(0,20), CGAL::default_random.get_double(0,20), CGAL::default_random.get_double(0,20)));

22^{return 0; }}

Basic incremental algorithm

Locate using randomized data structures

The Delaunay tree

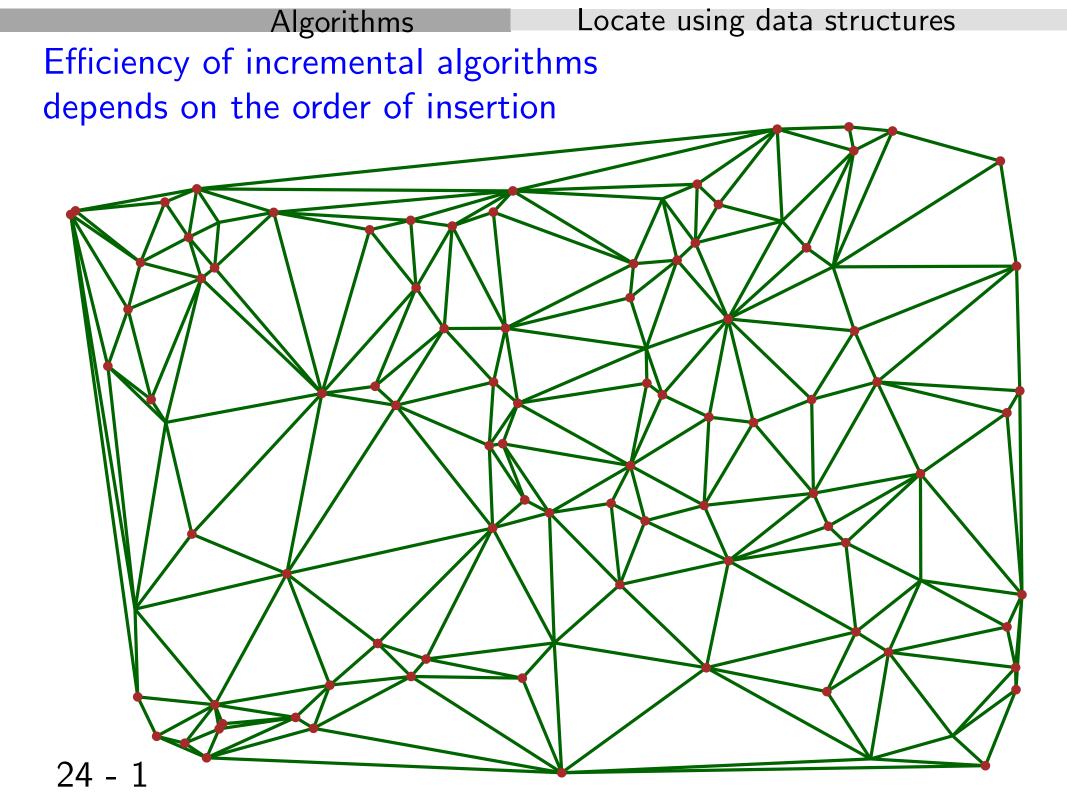
The Delaunay hierarchy

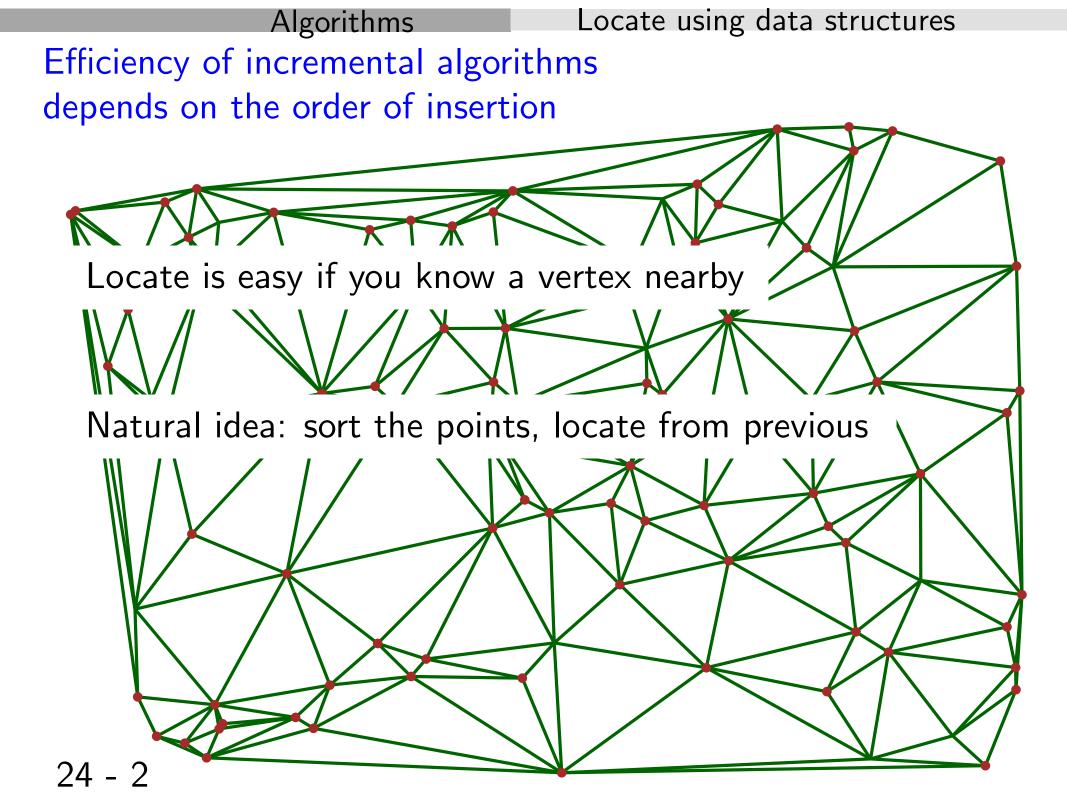
Biased randomized insertion order

Vertex removal in 2D

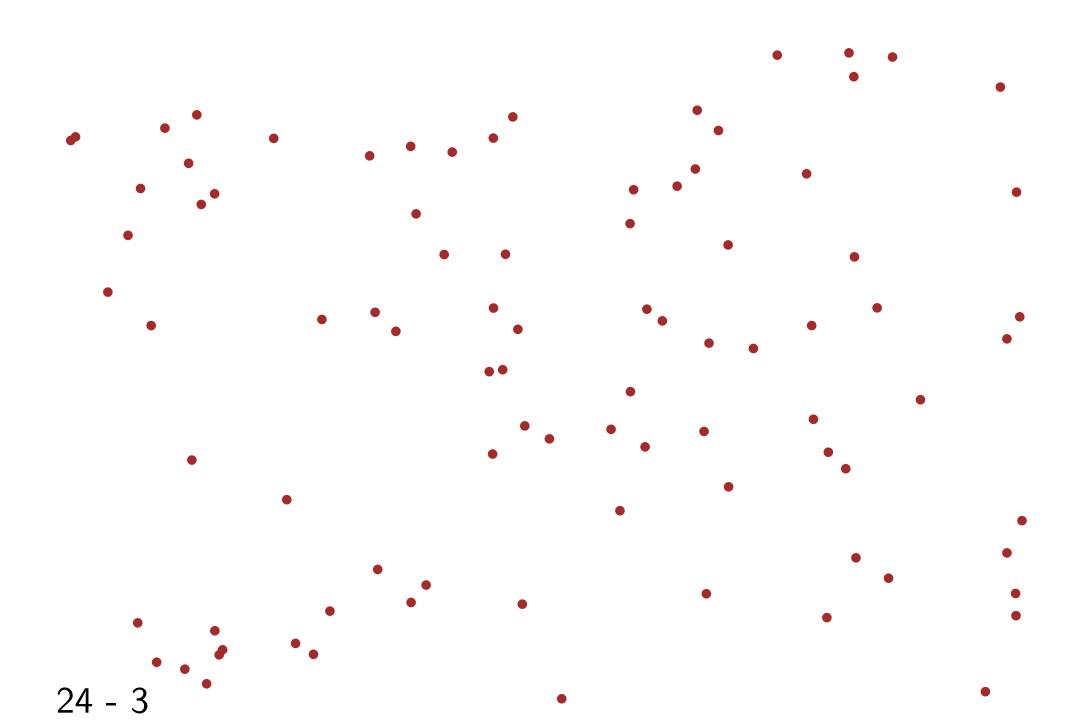
Locate by walk

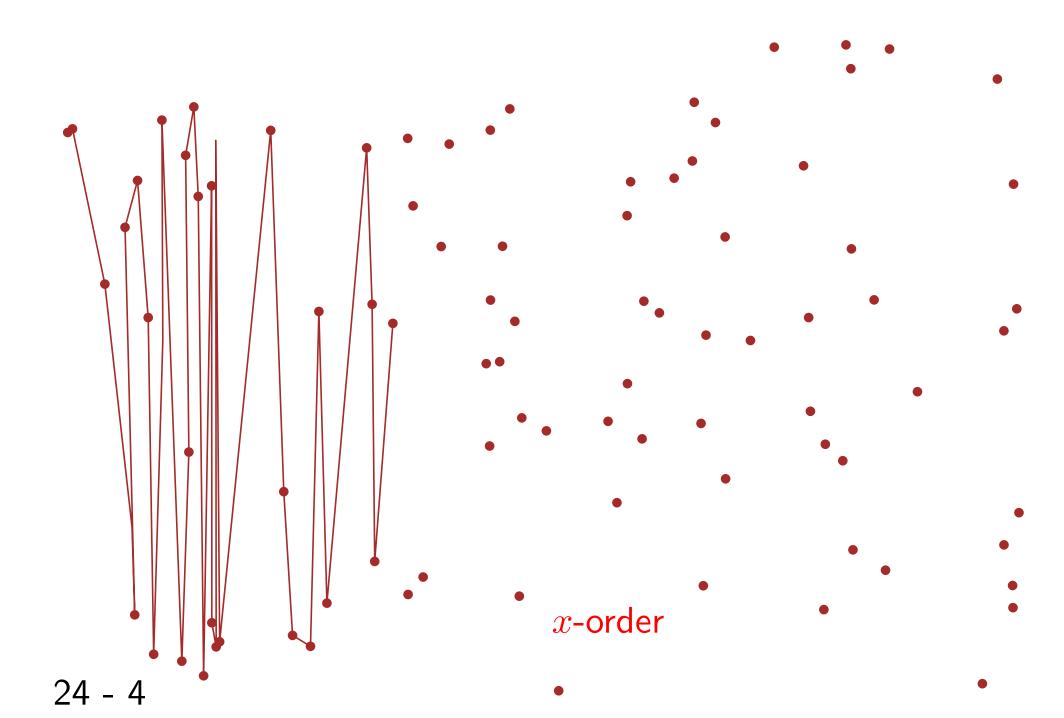
Conclusions

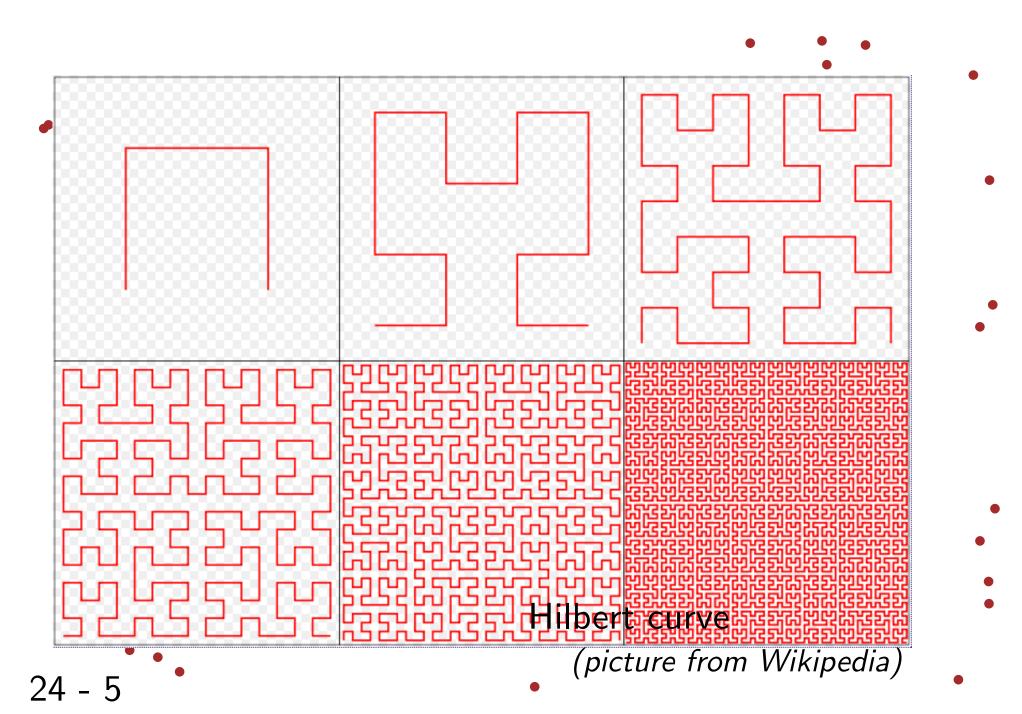


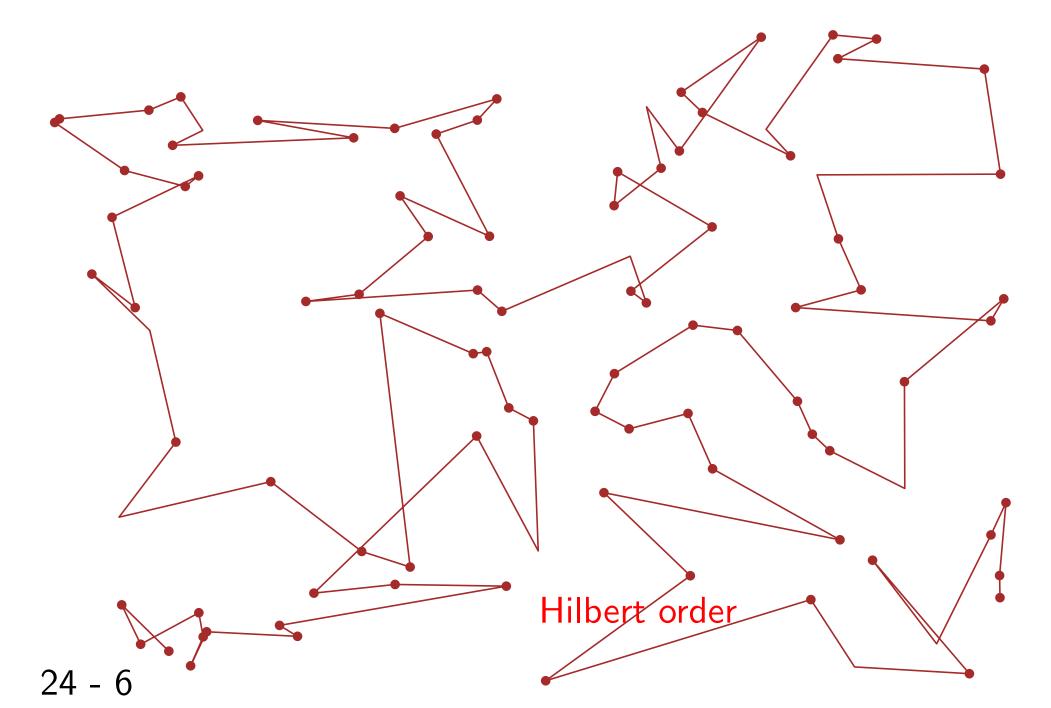


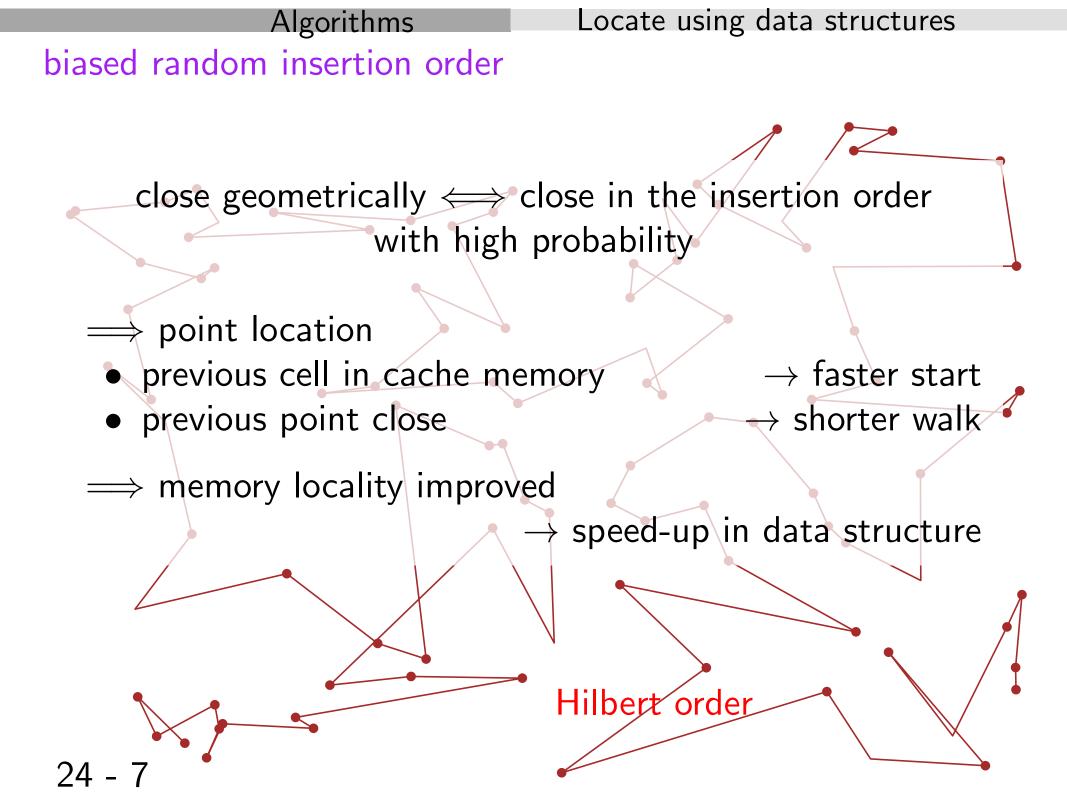
Algorithms Locate using data structures

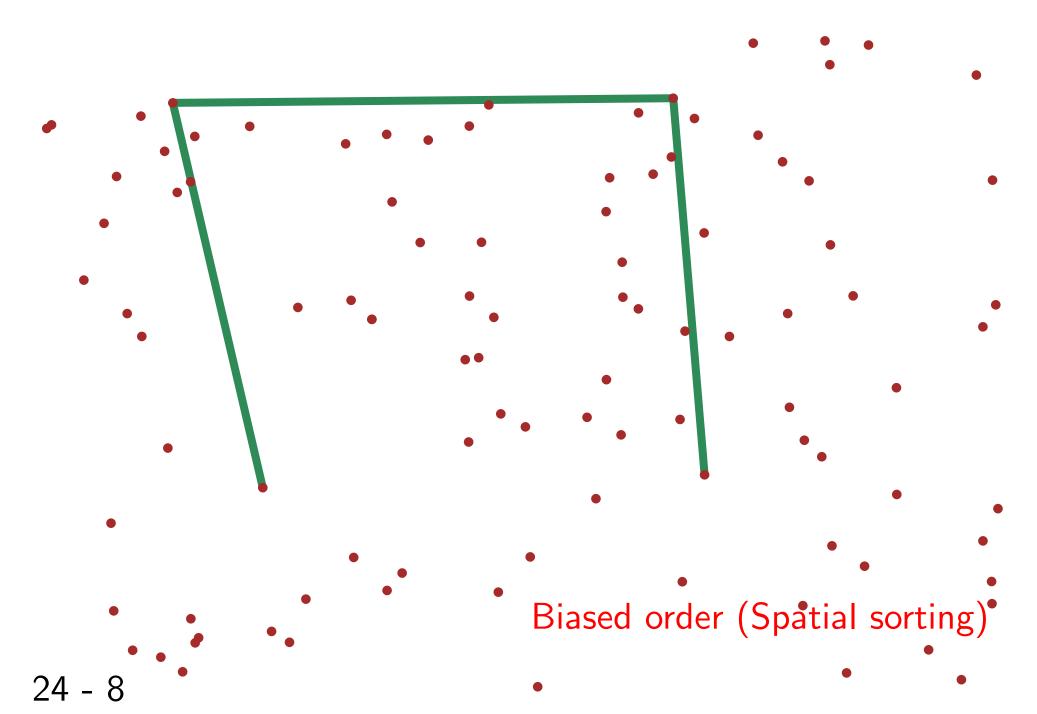


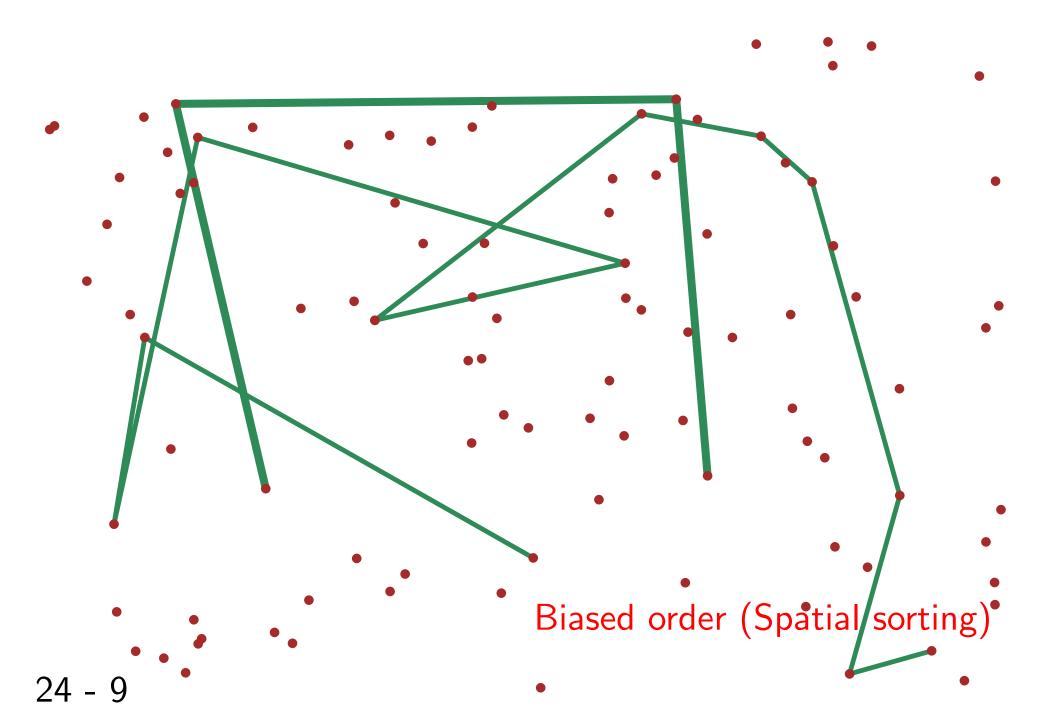


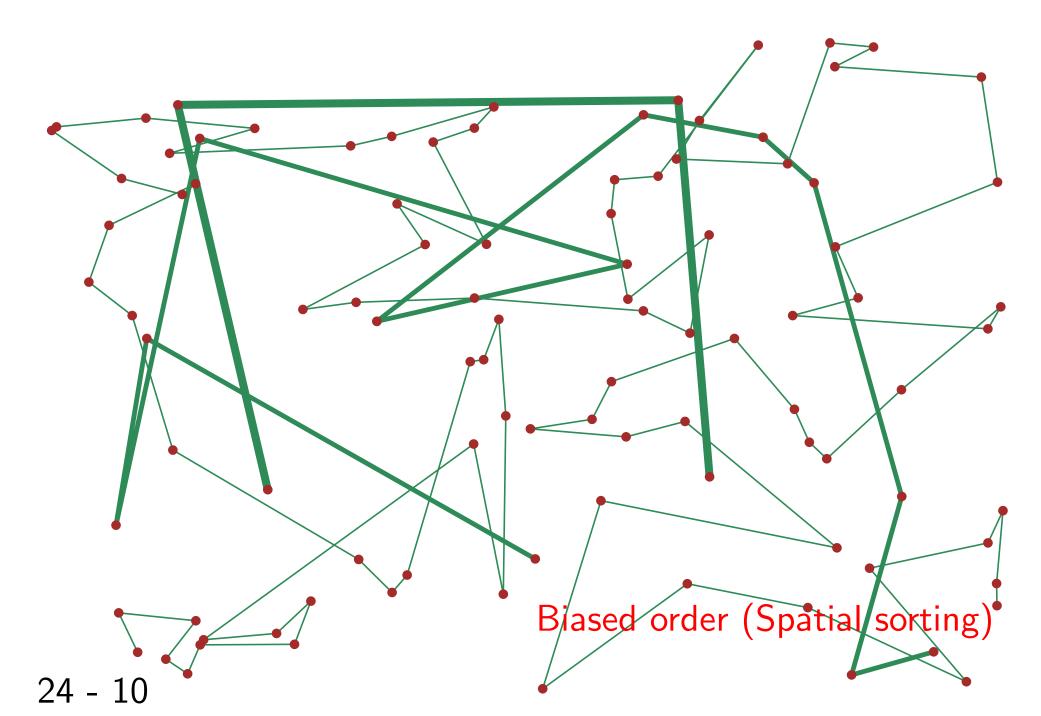


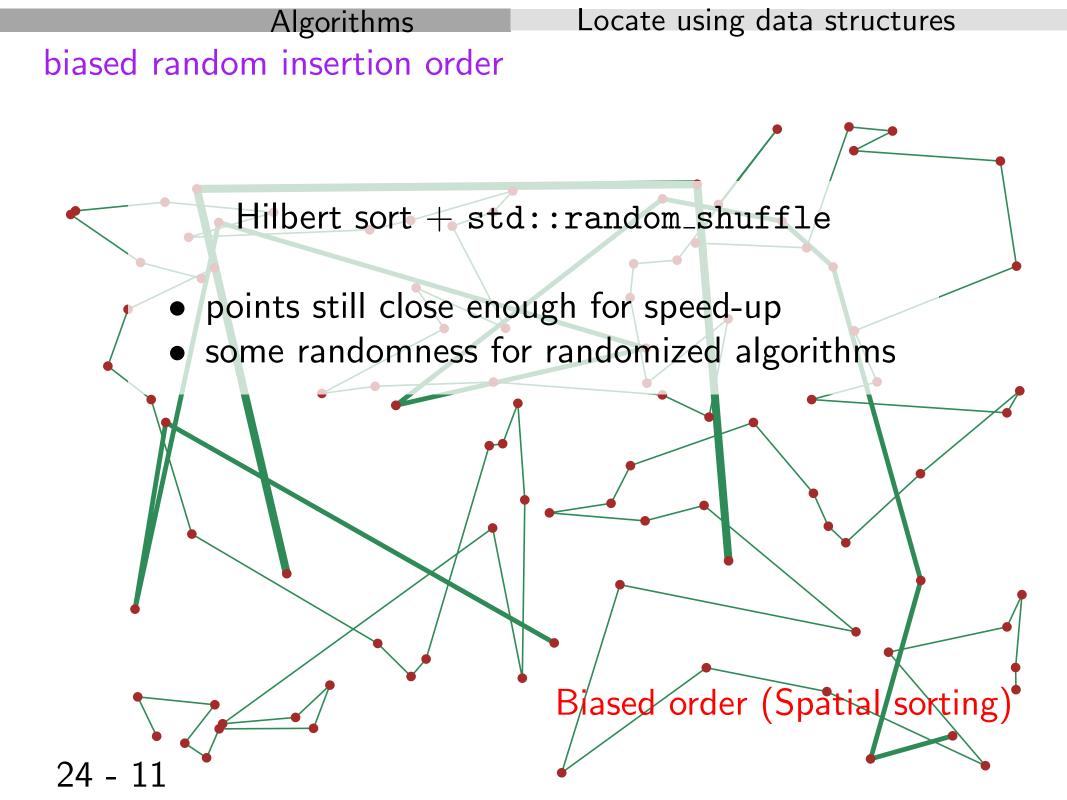


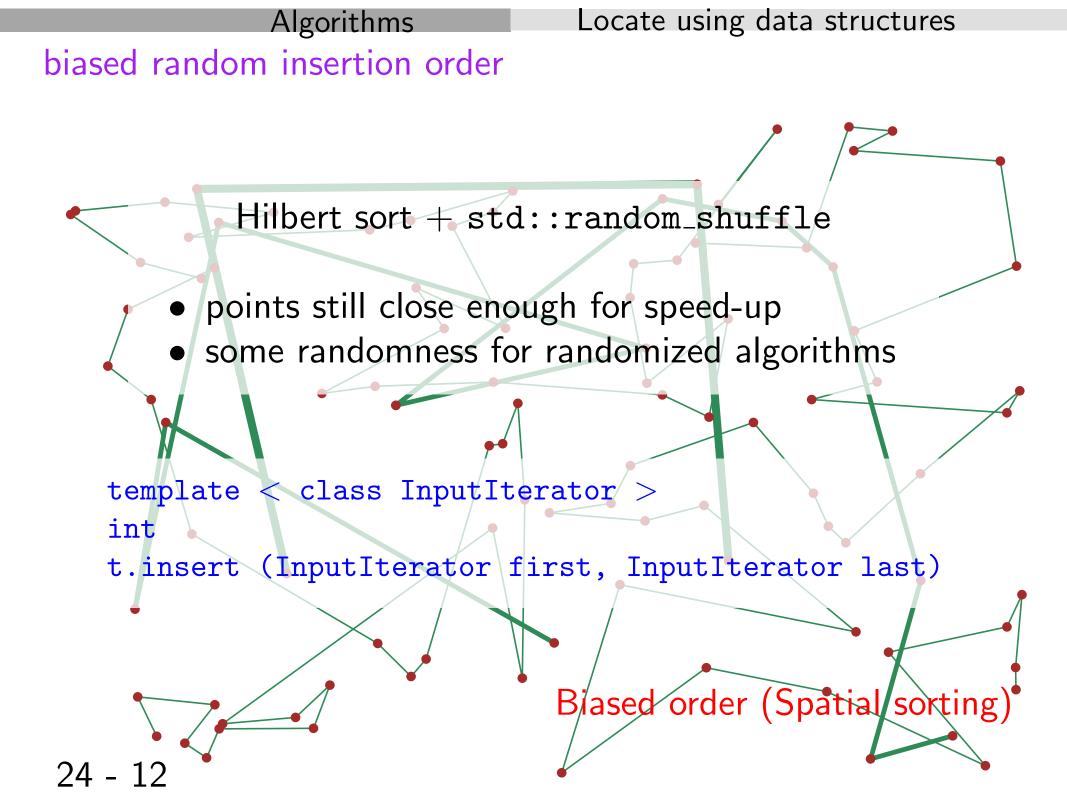




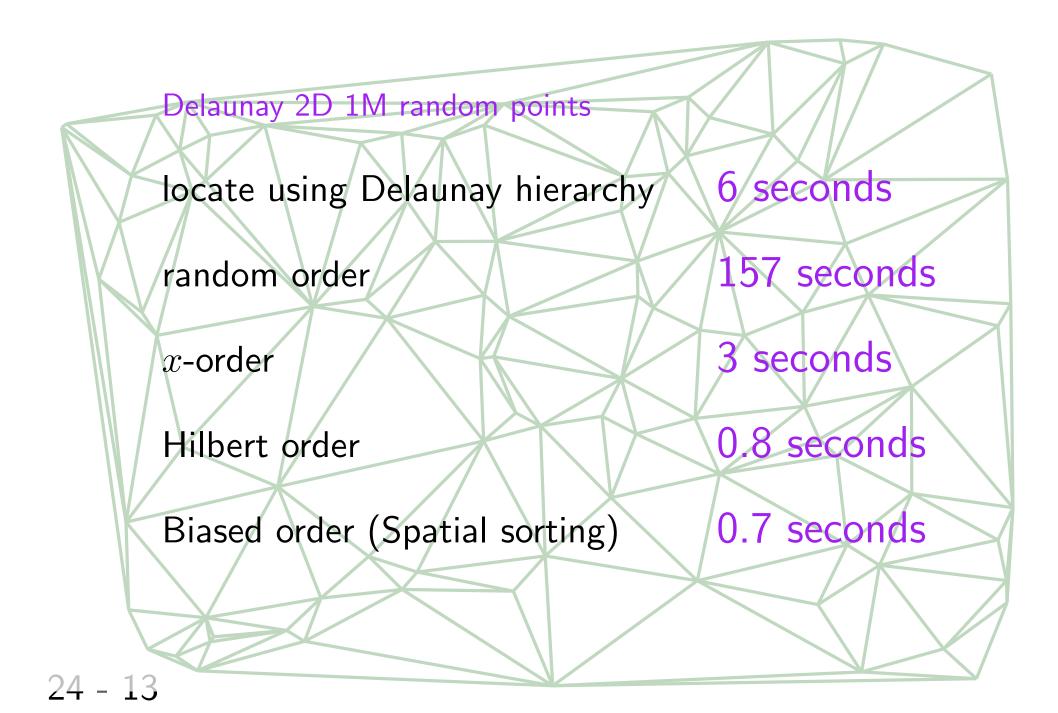








Locate using data structures



Locate using data structures

Delaunay 2D 100K parabola points locate using Delaunay hierarchy 0.3 seconds 128 seconds random order 632 seconds *x*-order 46 seconds Hilbert order 0.3 seconds Biased order (Spatial sorting)

Construction of Delaunay 10 M random points

Delaunay tree $\sim 10 \text{ mn} \text{ (estimate)}$

Delaunay hierarchy 90 seconds

Biased random order 10.6 seconds

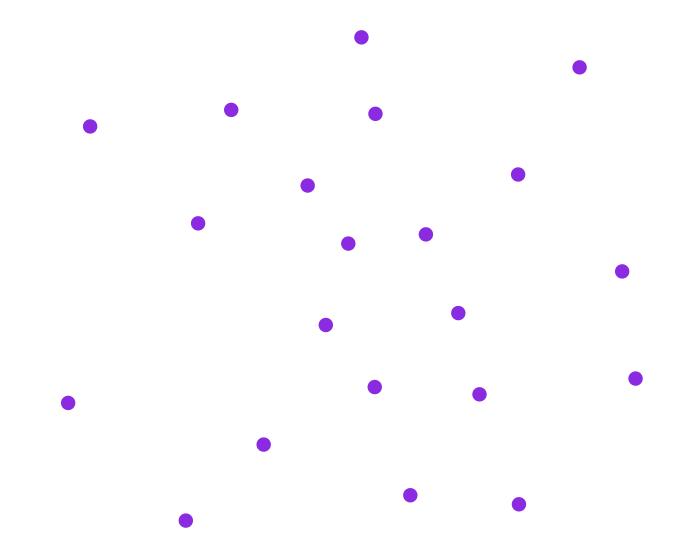
Basic incremental algorithm

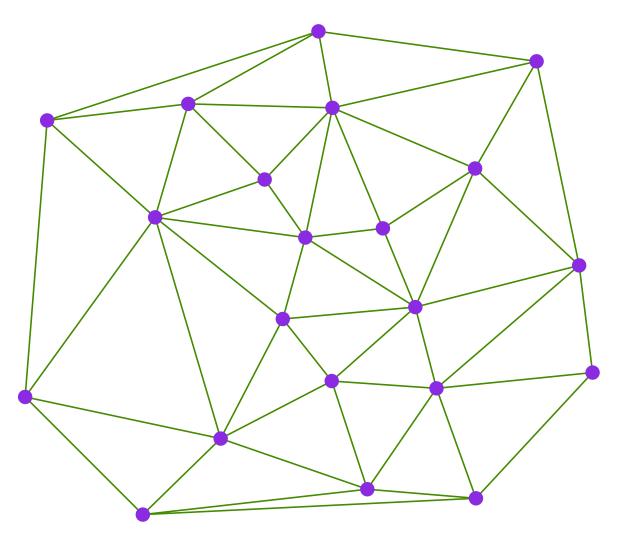
Locate using randomized data structures

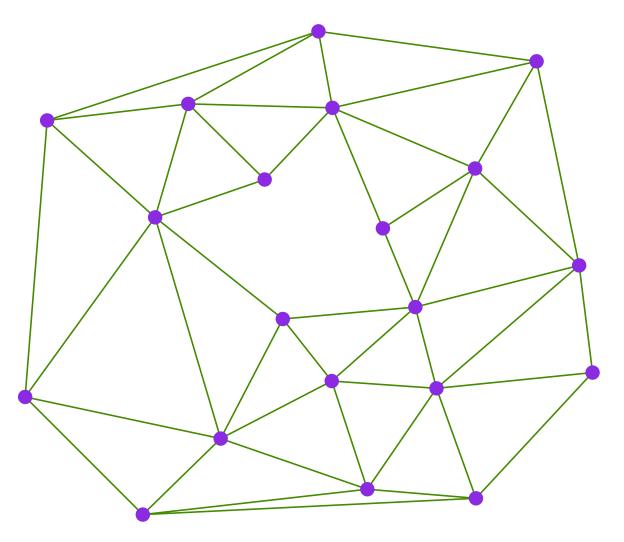
Vertex removal in 2D

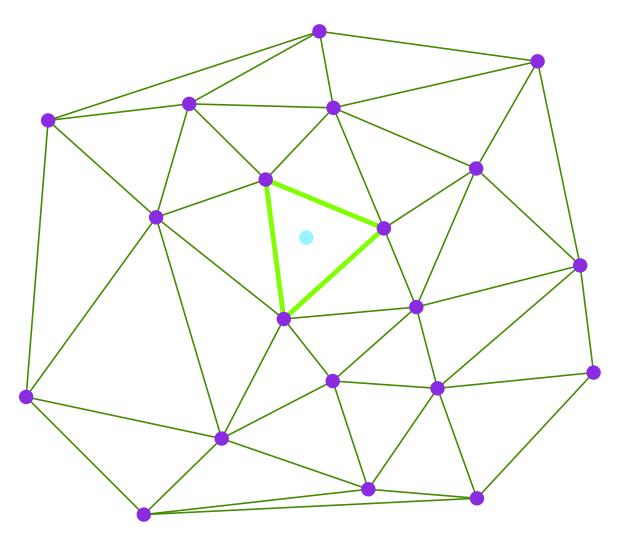
Locate by walk

Conclusions









Basic incremental algorithm

Locate using randomized data structures

Vertex removal in 2D

Locate by walk

Boundary expansion

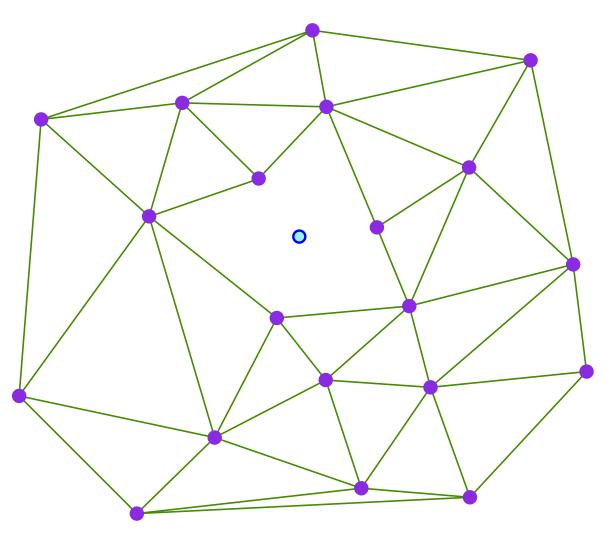
Triangulate and sew

Flip the hole

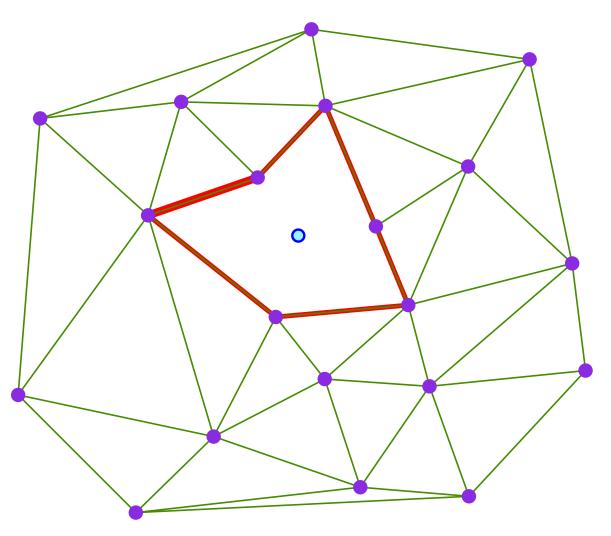
Low degree optimization

Conclusions

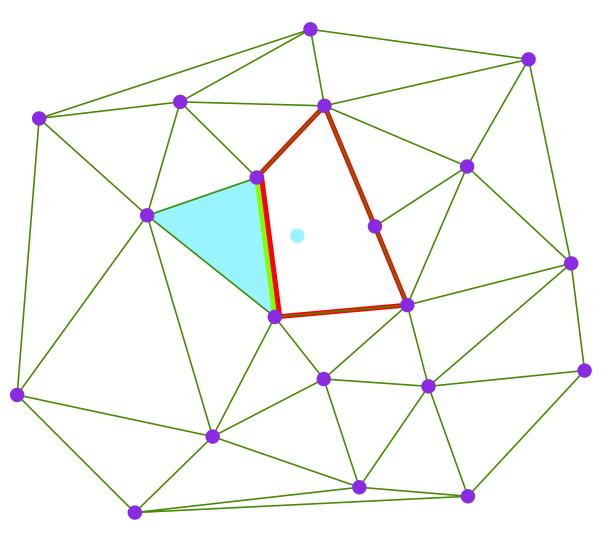
Vertex removal



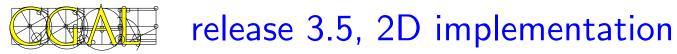
Vertex removal

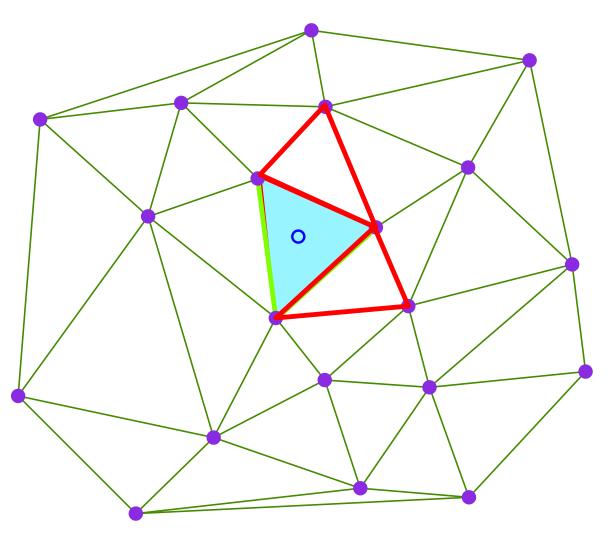


Vertex removal



Vertex removal





Vertex removal

Basic incremental algorithm

Locate using randomized data structures

Vertex removal in 2D

Locate by walk

Boundary expansion

Triangulate and sew

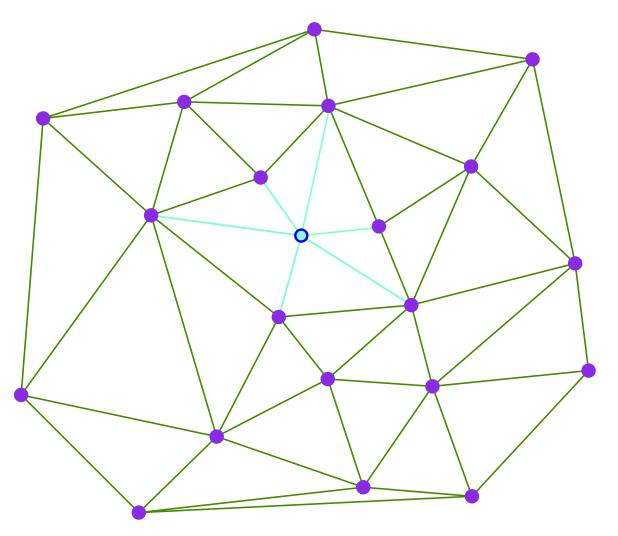
Low degree optimization

Flip the hole

Conclusions

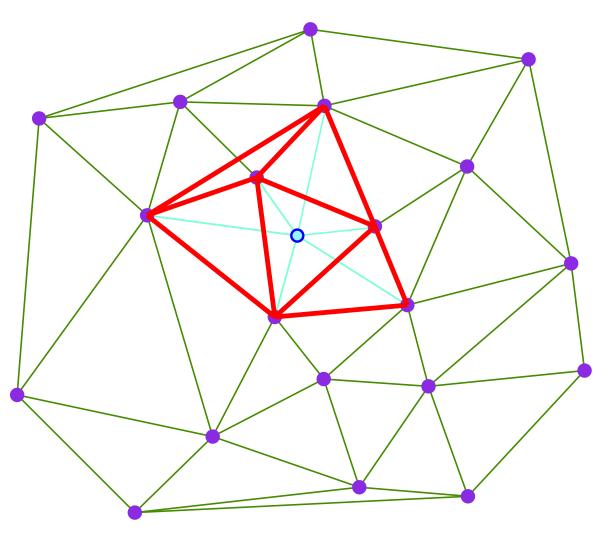
Vertex removal

triangulate and sew



Vertex removal

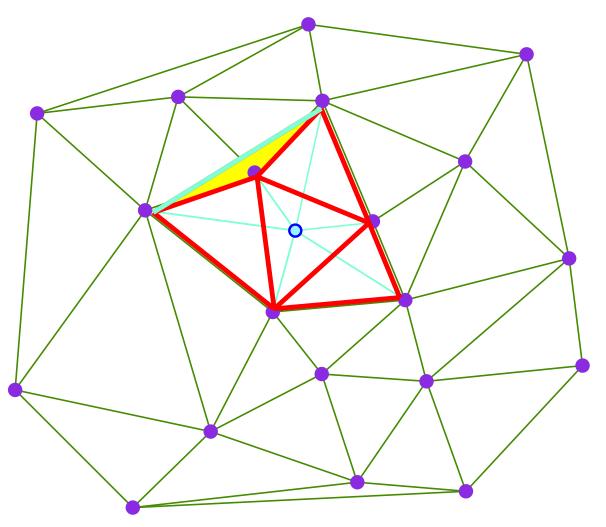
triangulate and sew



31 Delaunay of neighbors

Vertex removal

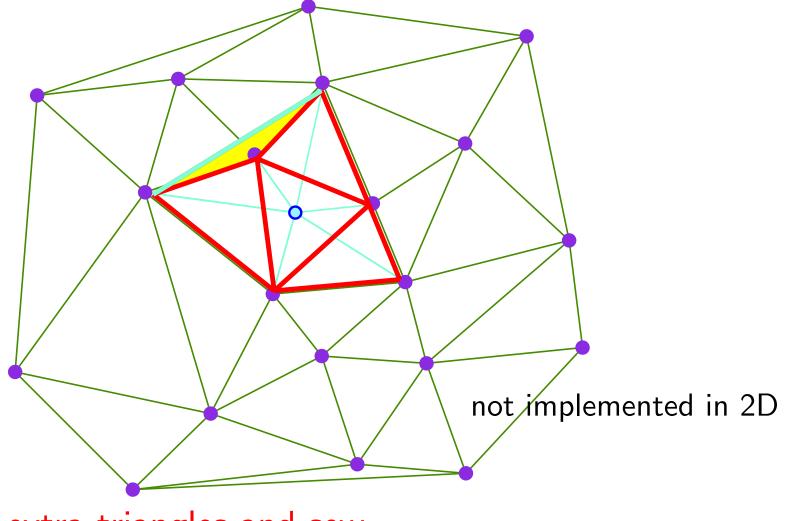
triangulate and sew



31 delete extra triangles and sew

Vertex removal

triangulate and sew



31 delete extra triangles and sew

Basic incremental algorithm

Locate using randomized data structures

Vertex removal in 2D

Locate by walk

Boundary expansion

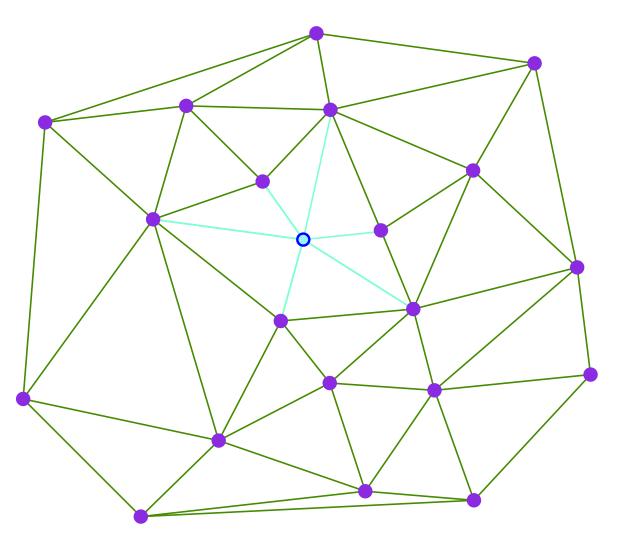
Triangulate and sew

Flip the hole

Low degree optimization

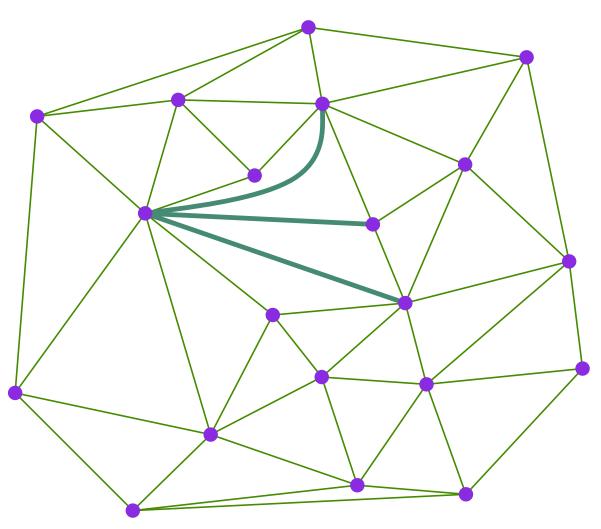
Conclusions

Vertex removal



Vertex removal

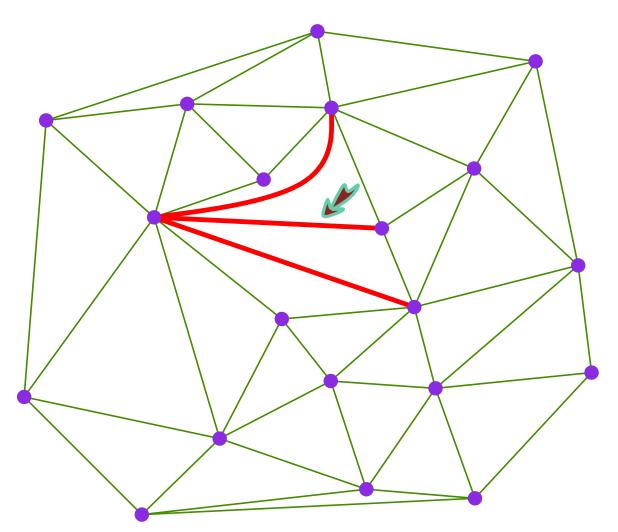
flip the hole



33^triangulate from any vertex

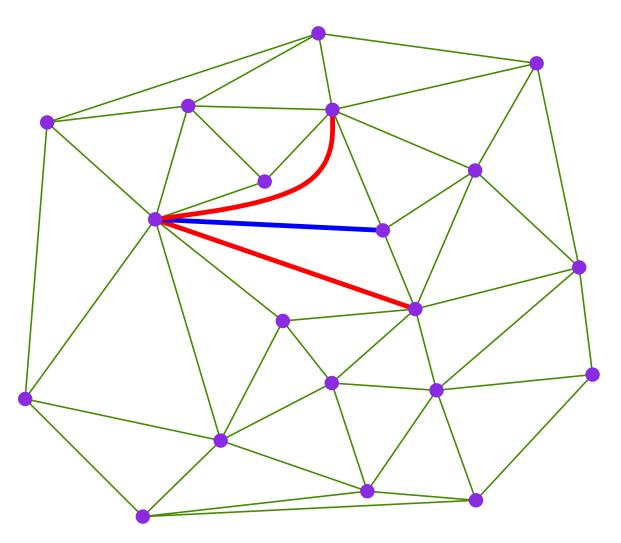
Vertex removal

flip the hole

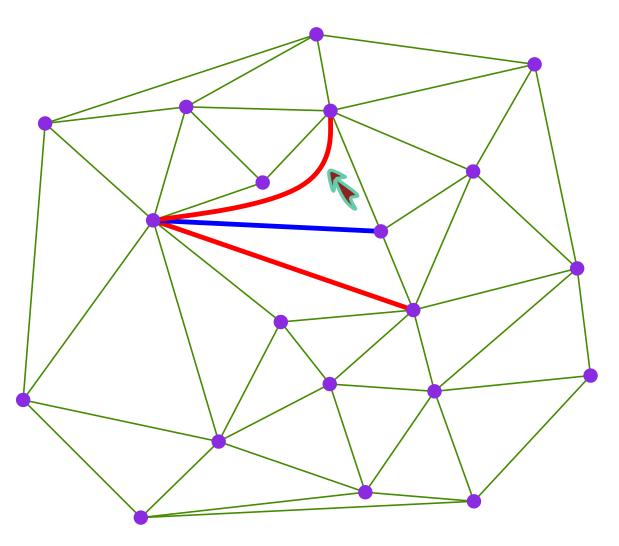


33qugue of edges to be checked

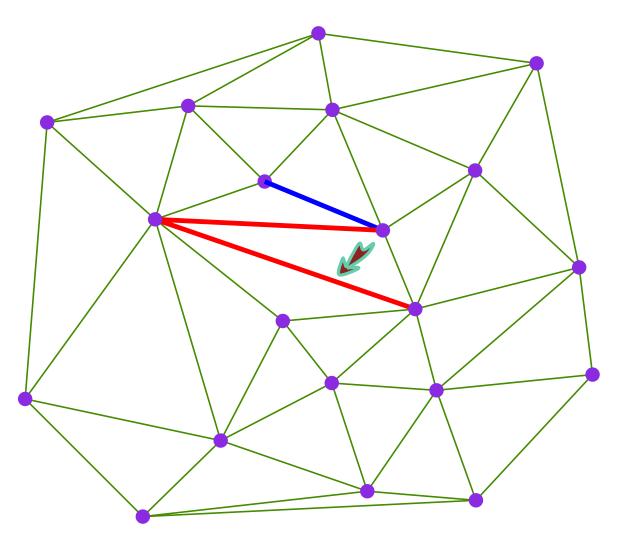
Vertex removal



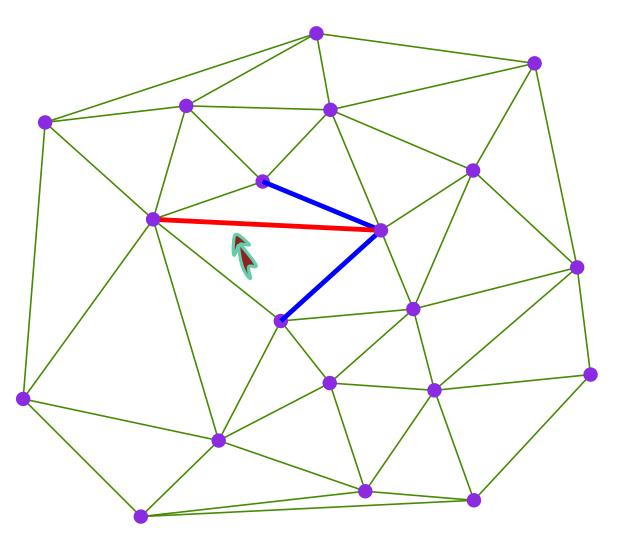
Vertex removal



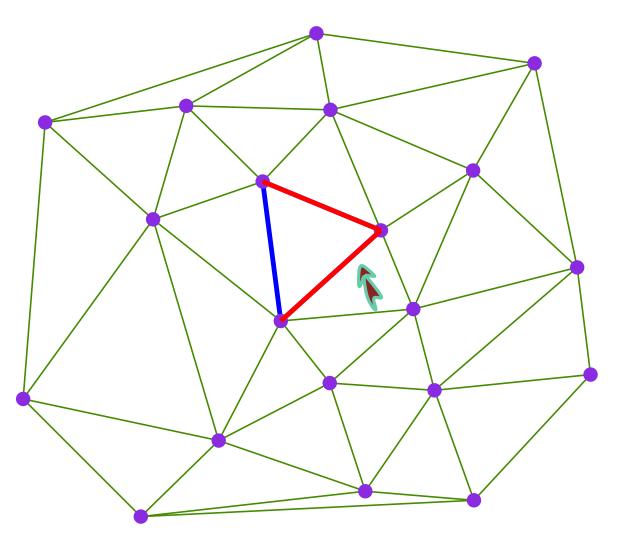
Vertex removal



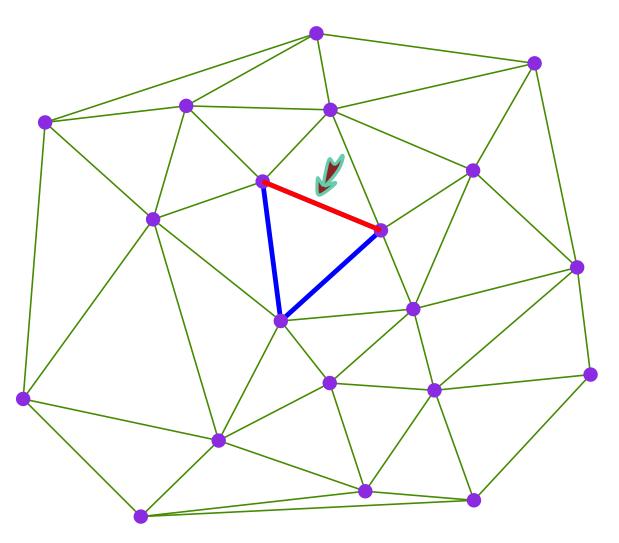
Vertex removal



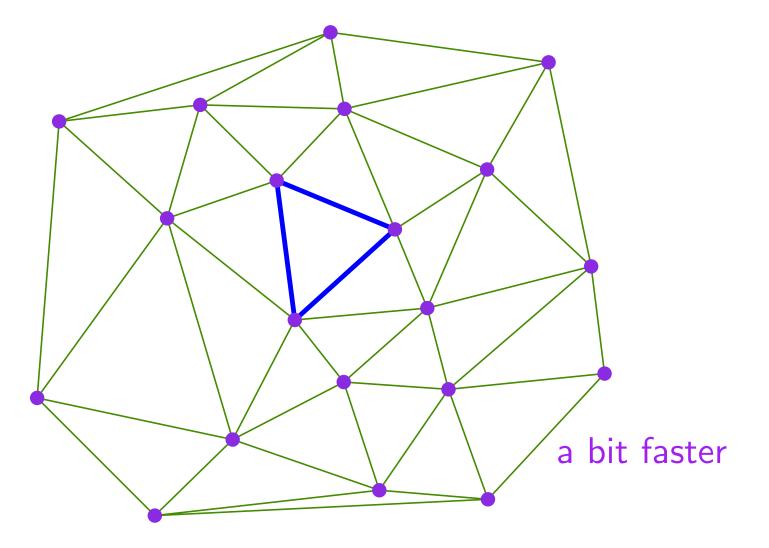
Vertex removal



Vertex removal



Vertex removal



Basic incremental algorithm

Locate using randomized data structures

Vertex removal in 2D

Locate by walk

Boundary expansion

Triangulate and sew

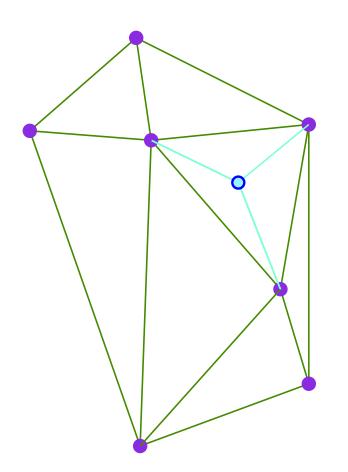
Flip the hole

Low degree optimization

Conclusions

Vertex removal

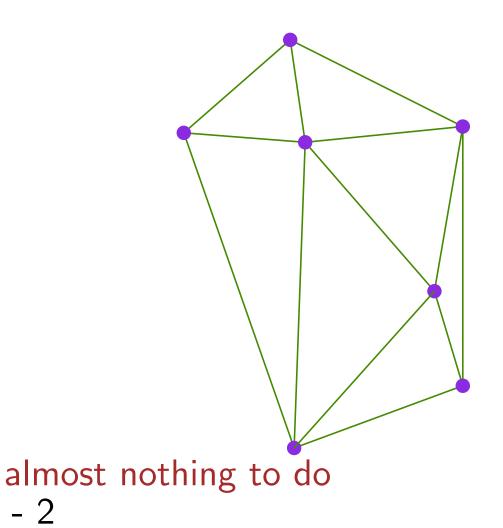
low degree optimization



Vertex removal

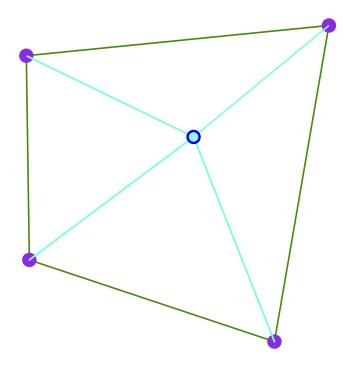
low degree optimization

35 - 2



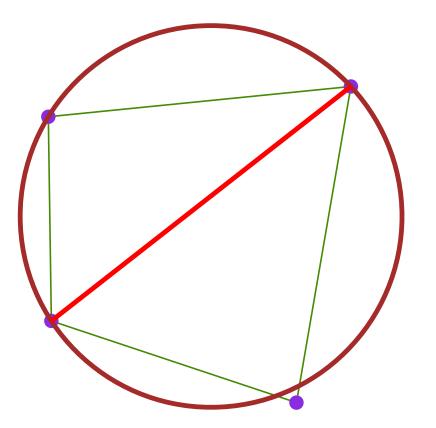
Vertex removal

low degree optimization



Vertex removal

low degree optimization

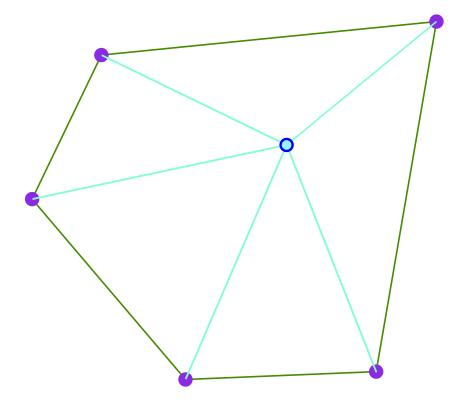


just one incircle test to decide

36 - 2

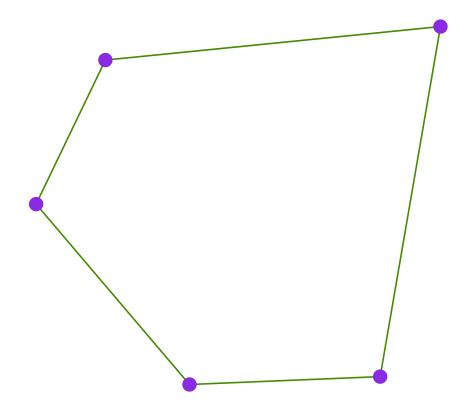
Vertex removal

low degree optimization



Vertex removal

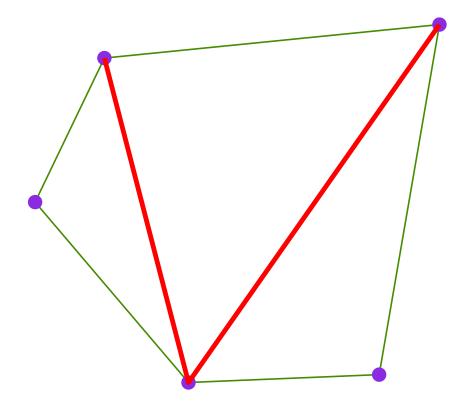
low degree optimization



37 - 2 the pentagon from the right vertex

Vertex removal

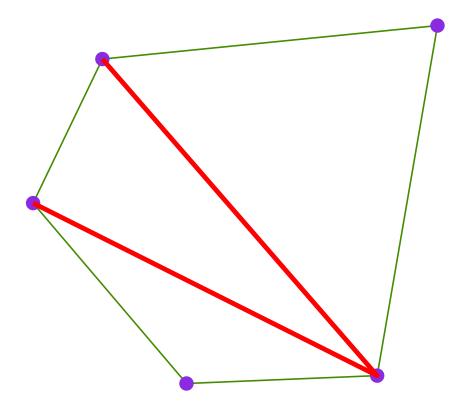
low degree optimization



37 - 3 the pentagon from the right vertex

Vertex removal

low degree optimization

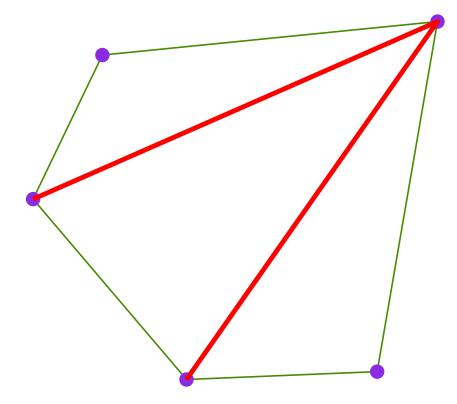


"star" the pentagon from the right vertex 37 - 4

Vertex removal

low degree optimization

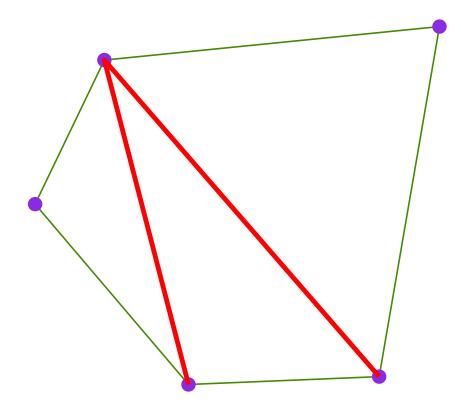
degree 5



37 - 5 the pentagon from the right vertex

Vertex removal

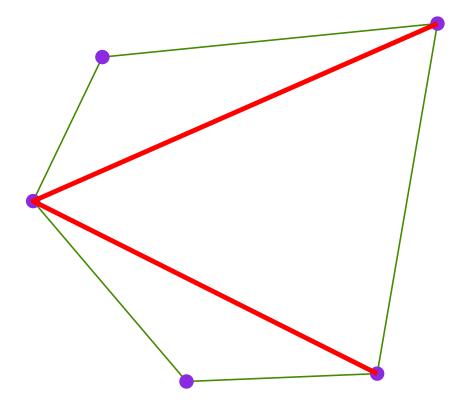
low degree optimization



"star" the pentagon from the right vertex 37 - 6

Vertex removal

low degree optimization



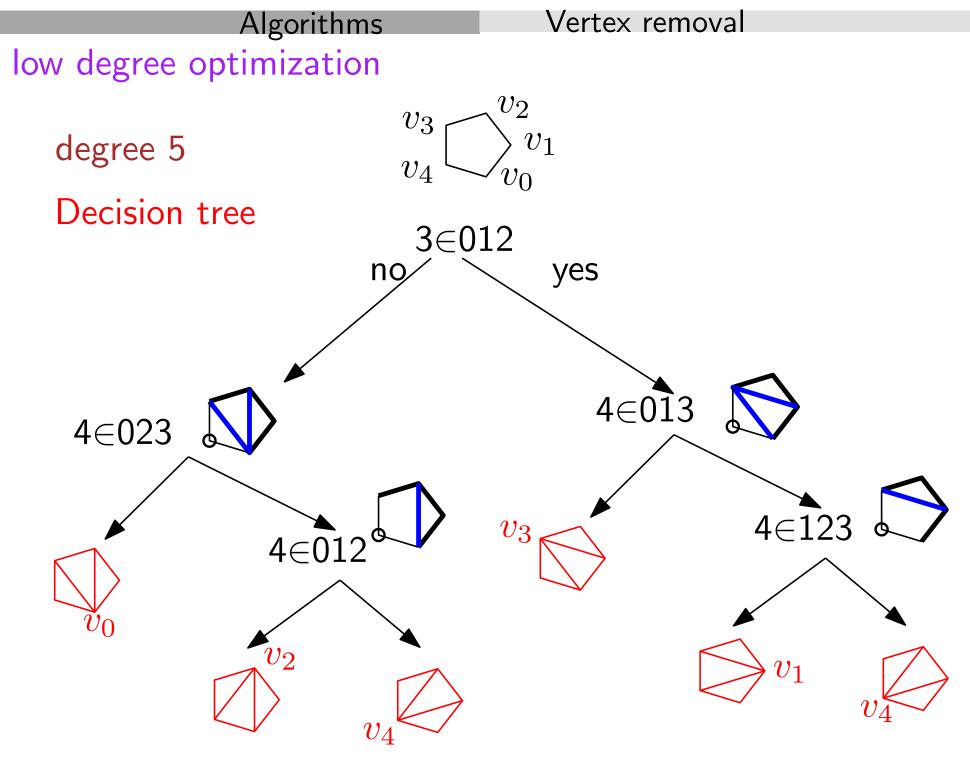
37 - 7 the pentagon from the right vertex

Vertex removal

low degree optimization

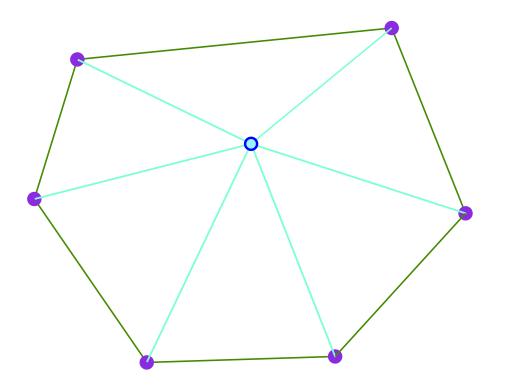
degree 5

Decision tree



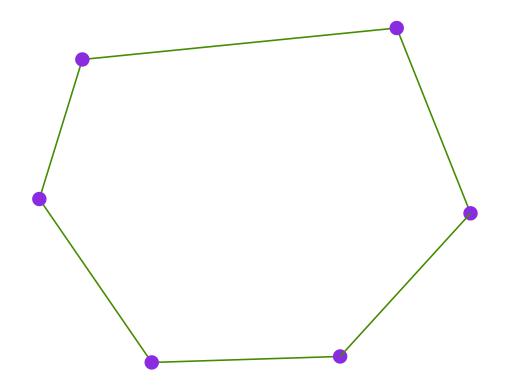
Vertex removal

low degree optimization



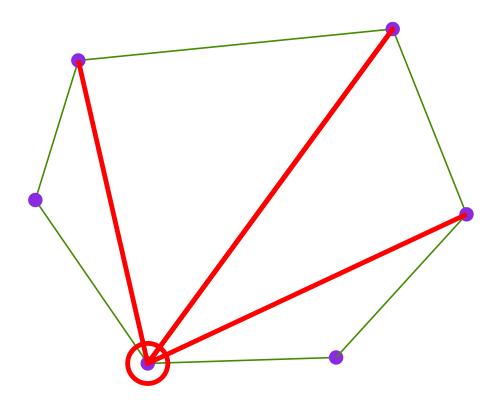
Vertex removal

low degree optimization



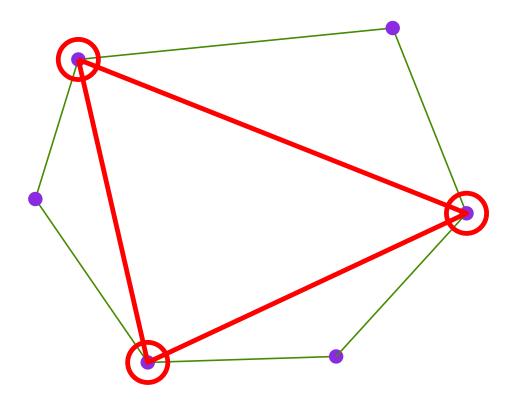
Vertex removal

low degree optimization



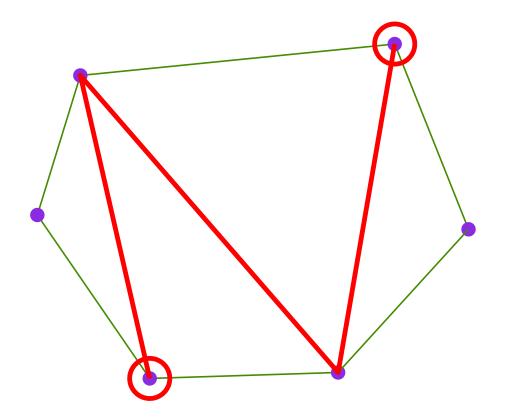
Vertex removal

low degree optimization



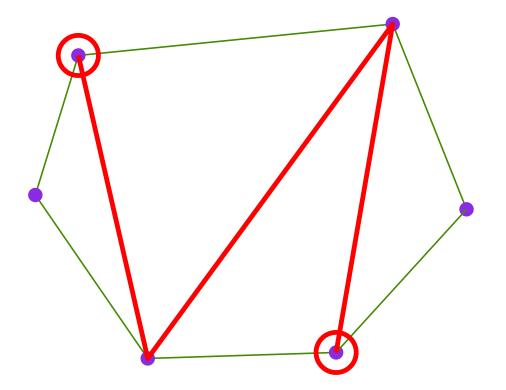
Vertex removal

low degree optimization



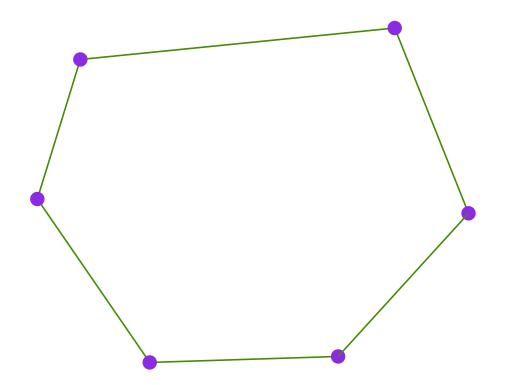
Vertex removal

low degree optimization



Vertex removal

low degree optimization

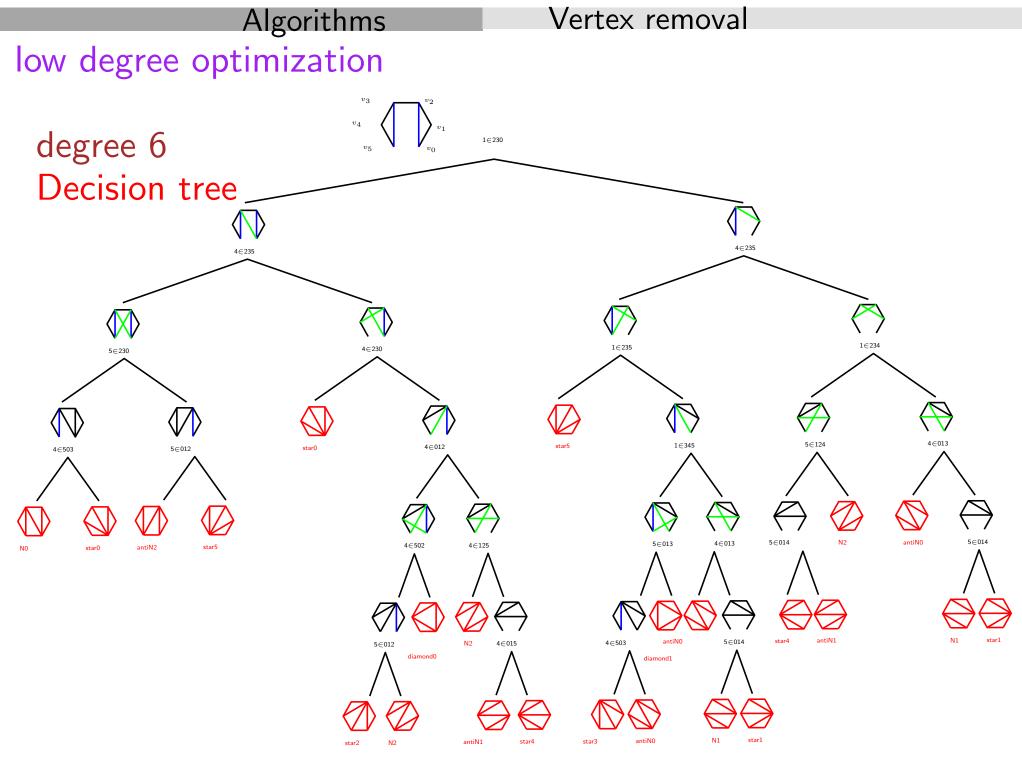


14 results 39 —

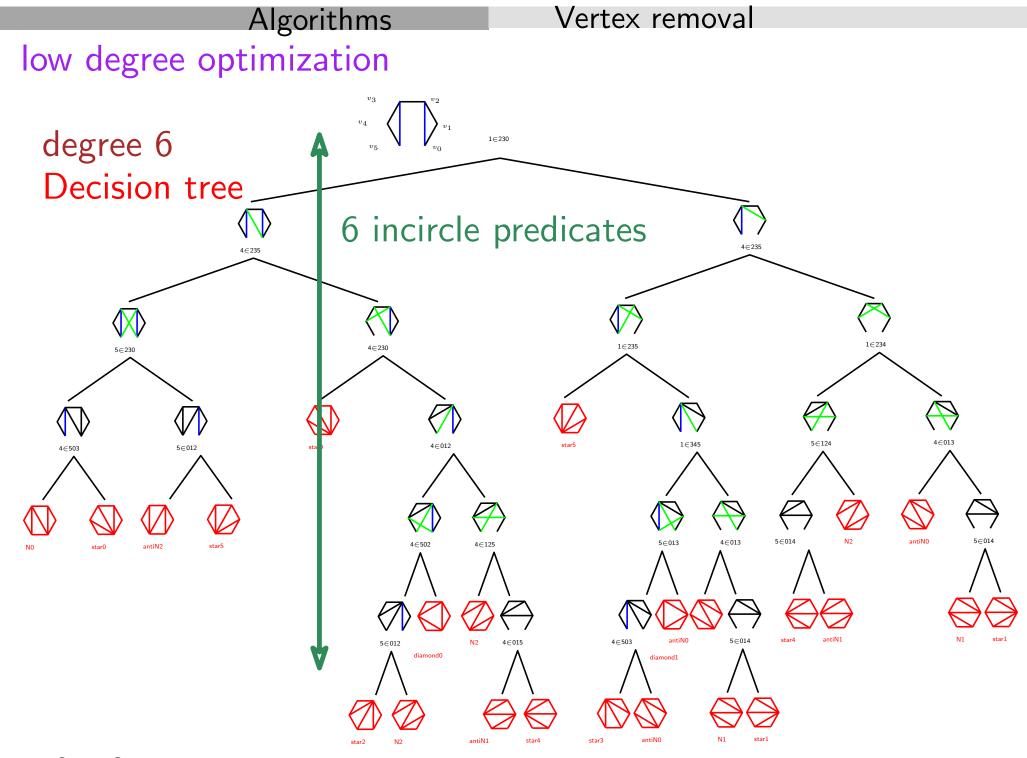
Vertex removal

low degree optimization

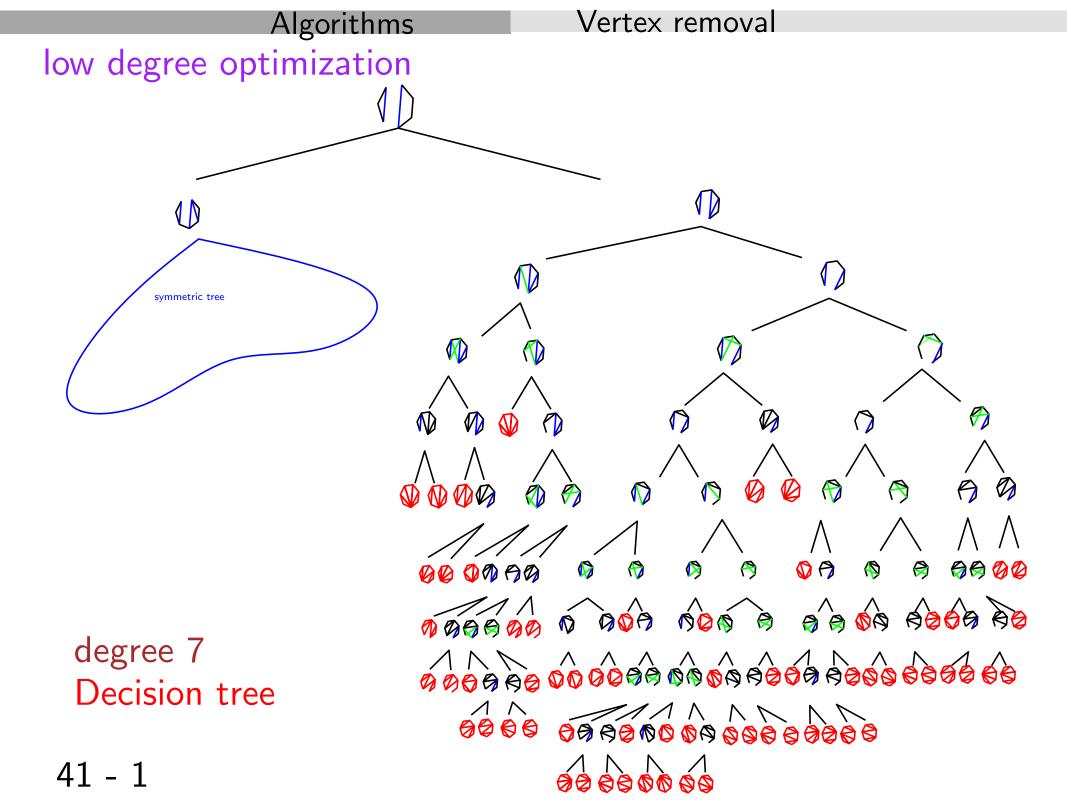
degree 6 Decision tree

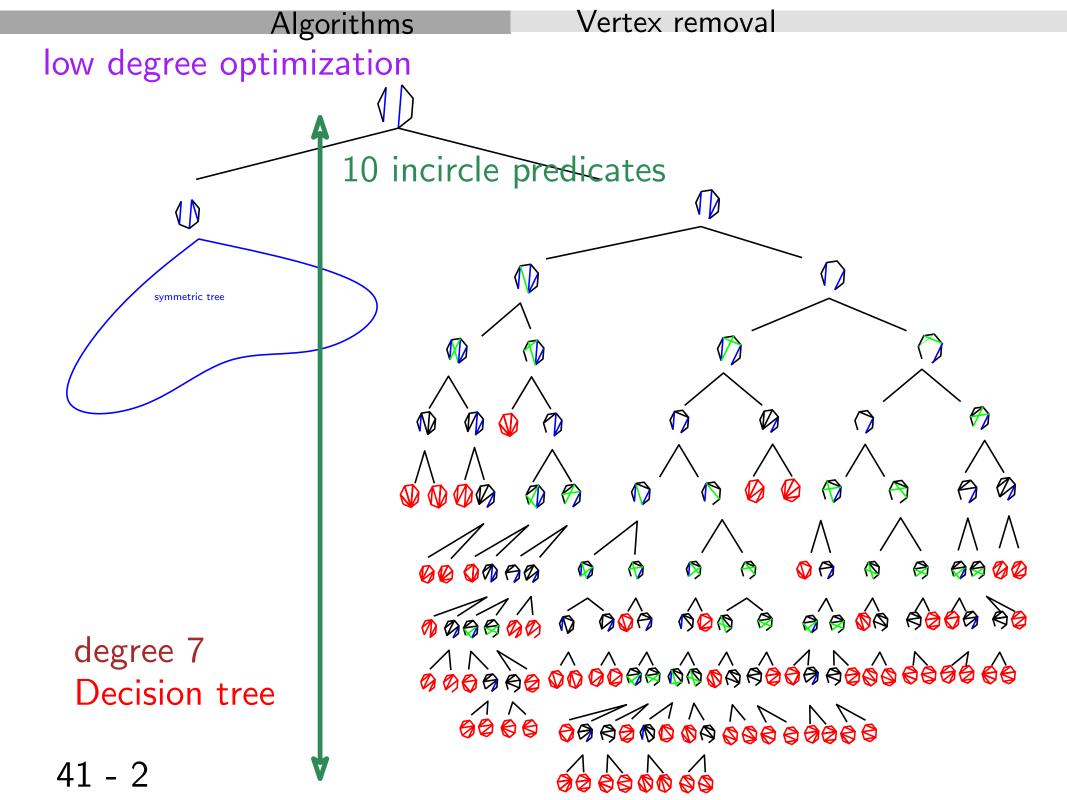


40 - 2



40 - 3





Vertex removal

low degree optimization

degree	3	4	5	6	7	8*	9
‡ results	1	2	5	14	42	132	429
‡ leaves	1	2	6	24	130	\simeq 500	
$\lceil \log_2 \sharp results \rceil$	0	1	3	4	6	8	9
tree height	0	1	3	6	10	$\simeq \! 14$	
<pre># lines of code</pre>	30	40	90	280	700	$\simeq 2500$	

* not implemented. The sizes of the tree and the code are estimated

Vertex removal

low degree optimization

Remarks on implementation

limited memory allocation, use old faces "in place"

re-use as many neighbor links as possible

Vertex removal

low degree optimization

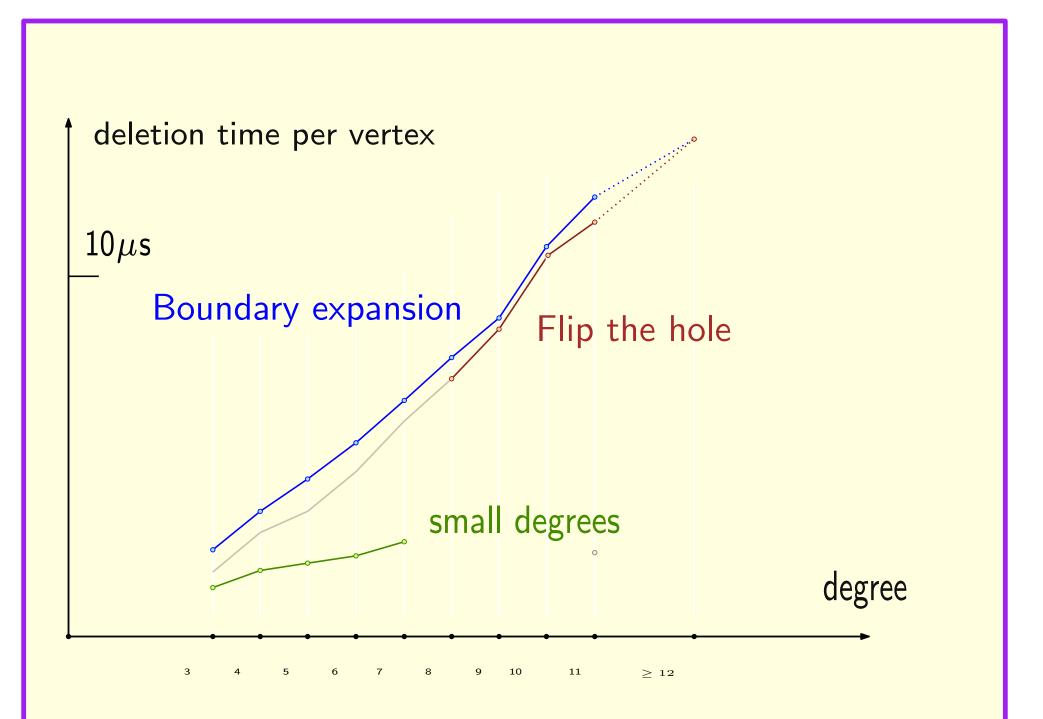
Remarks on implementation

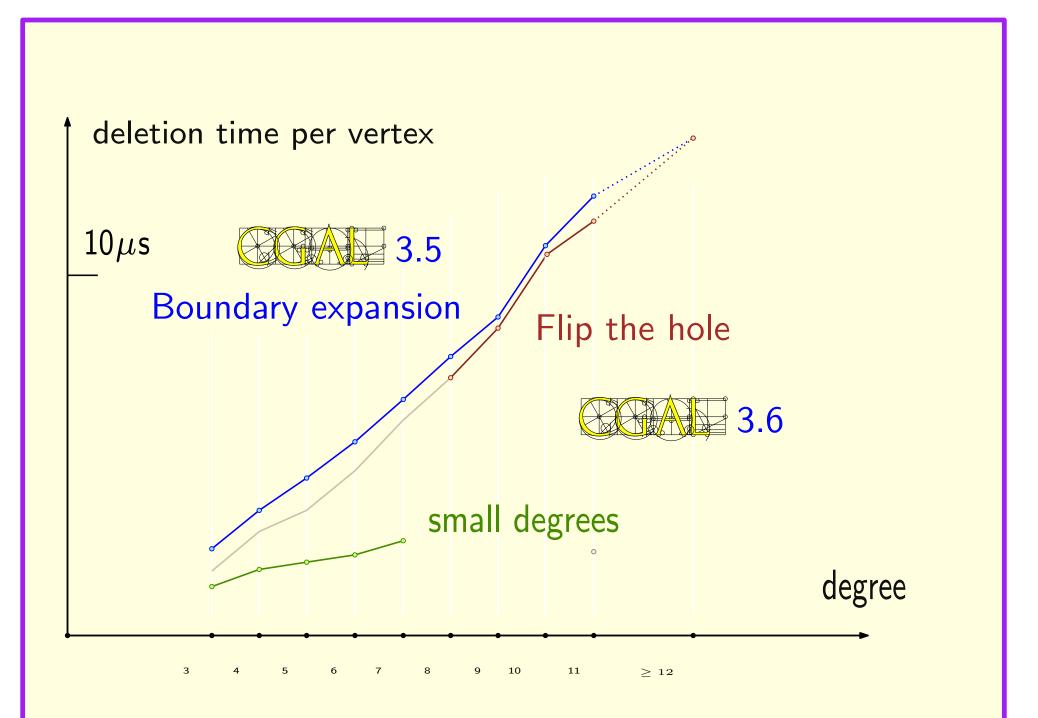
limited memory allocation, use old faces "in place"

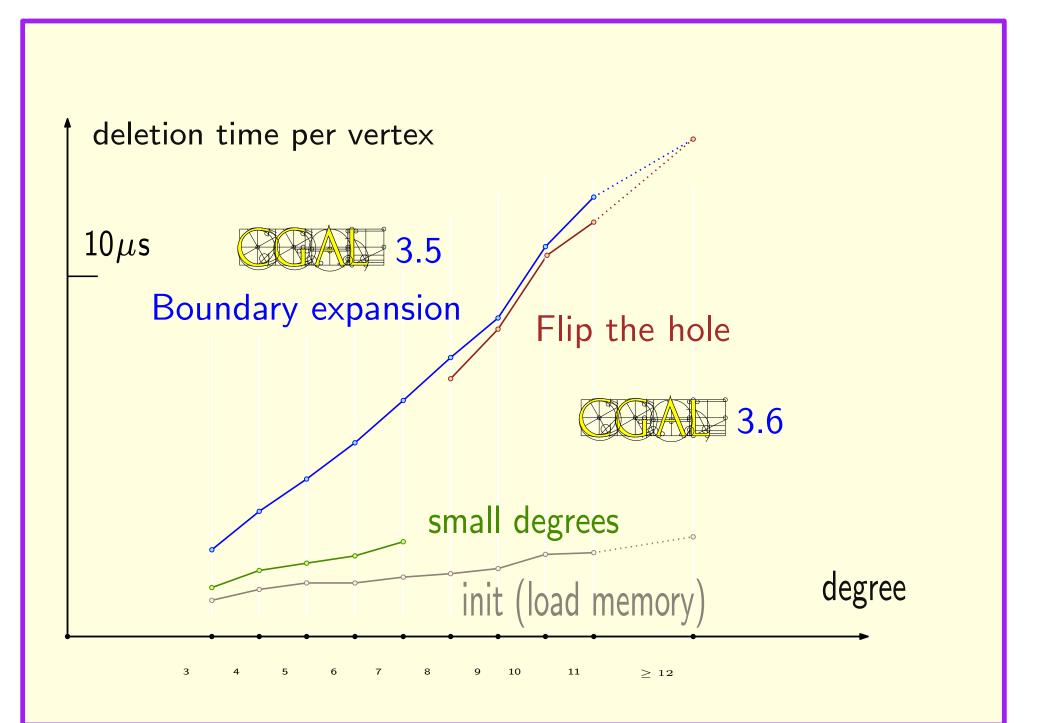
re-use as many neighbor links as possible

tree implementation

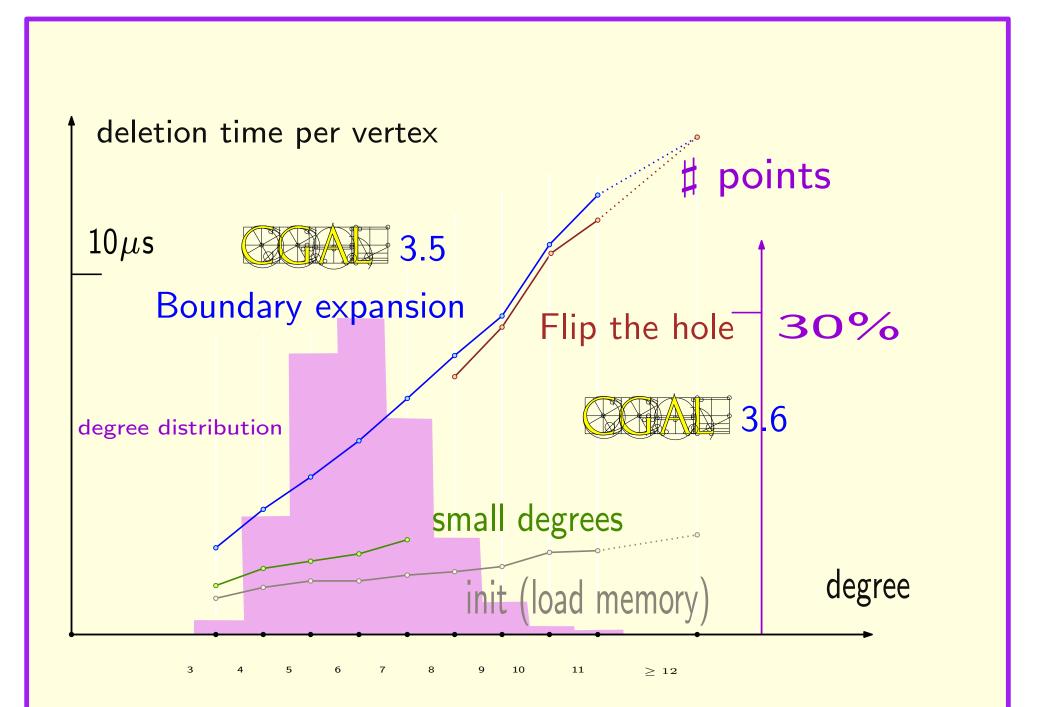
```
if incircle(...)
    if incircle(...)
        if incircle(...)
        else
            use_this_shape(face0,face1,face2...)
            use_other_shape(face2,face3,face4...)
.....
```

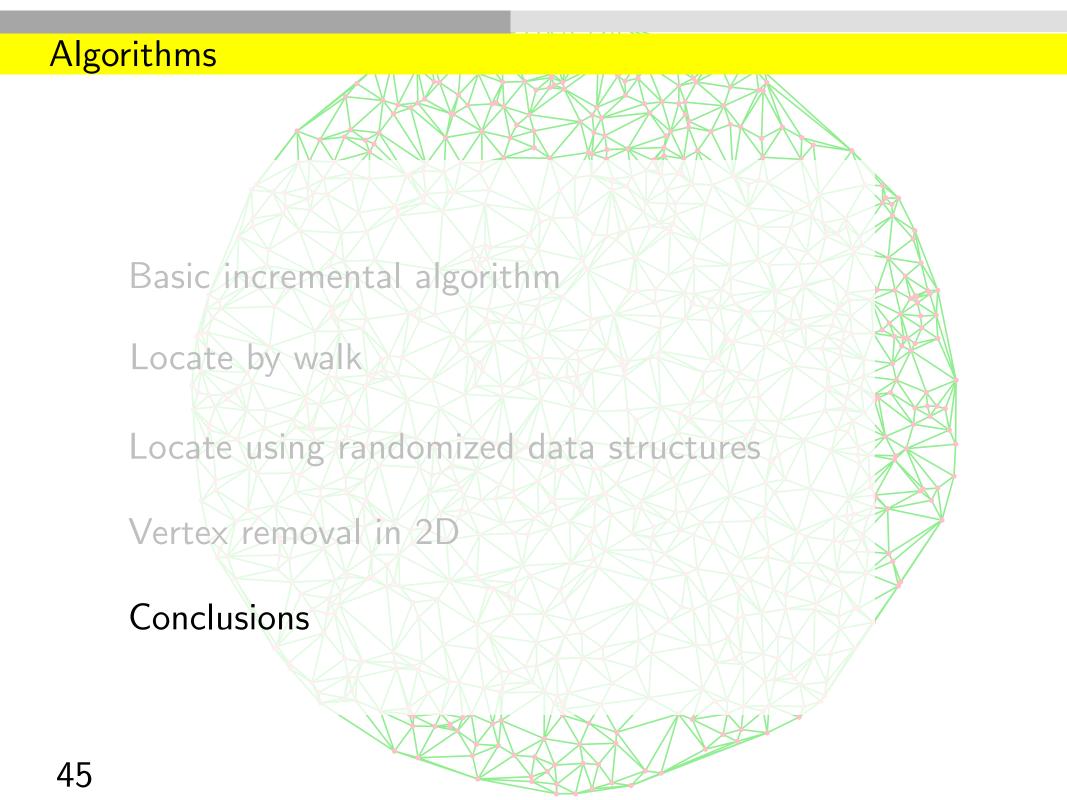


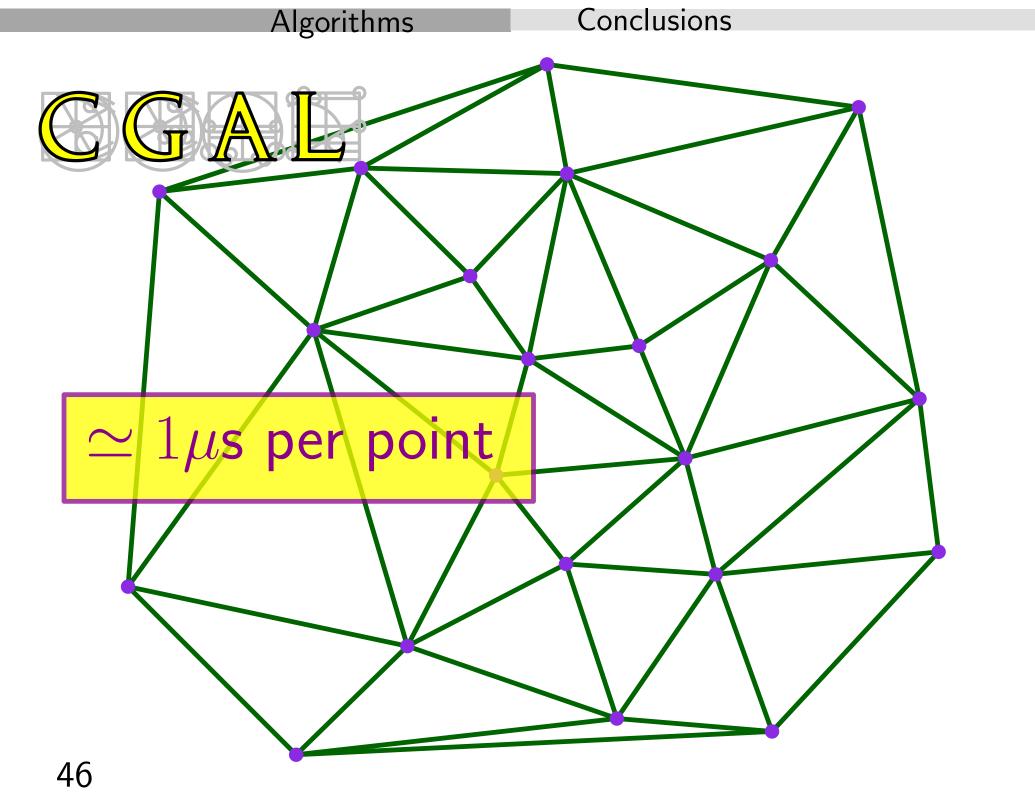


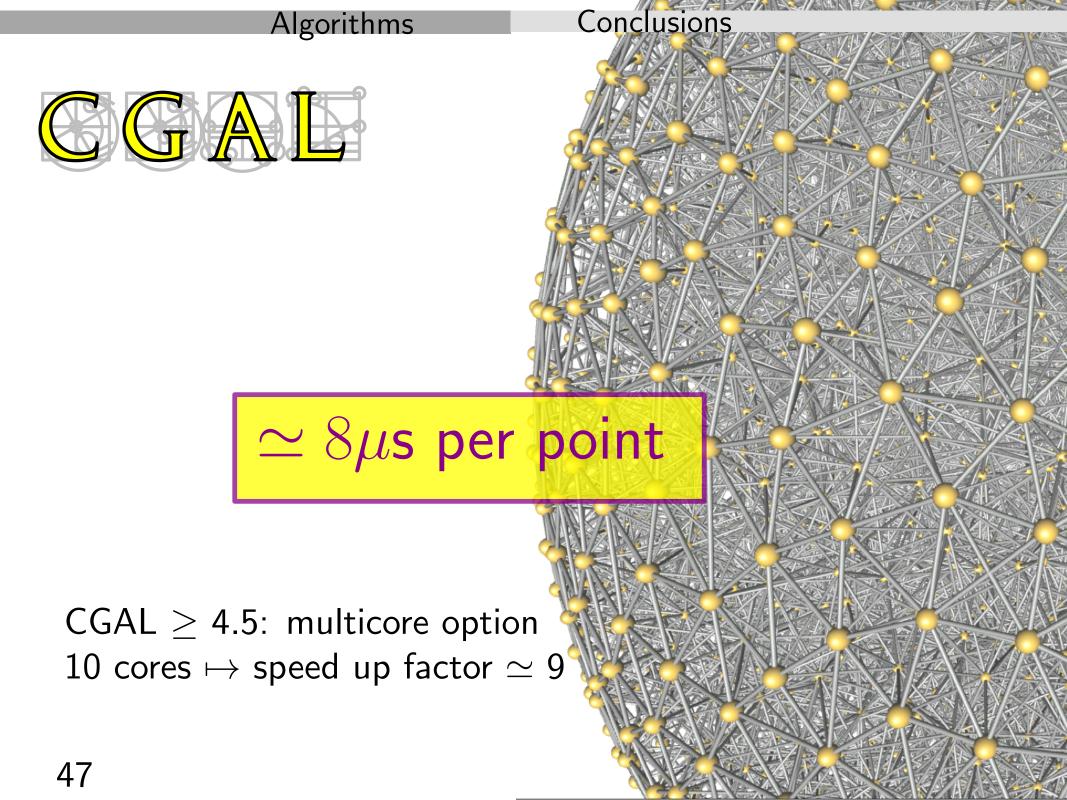


Vertex removal









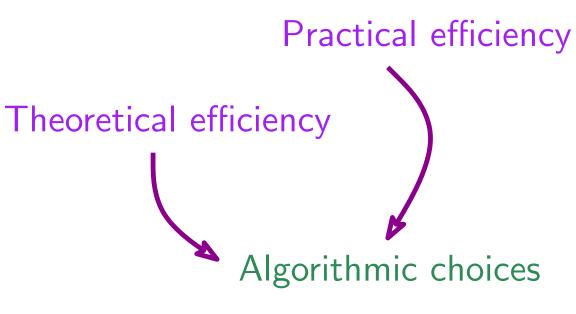
Conclusions

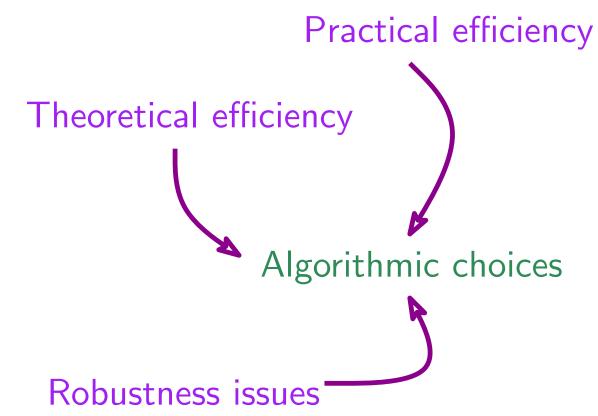
Algorithmic choices

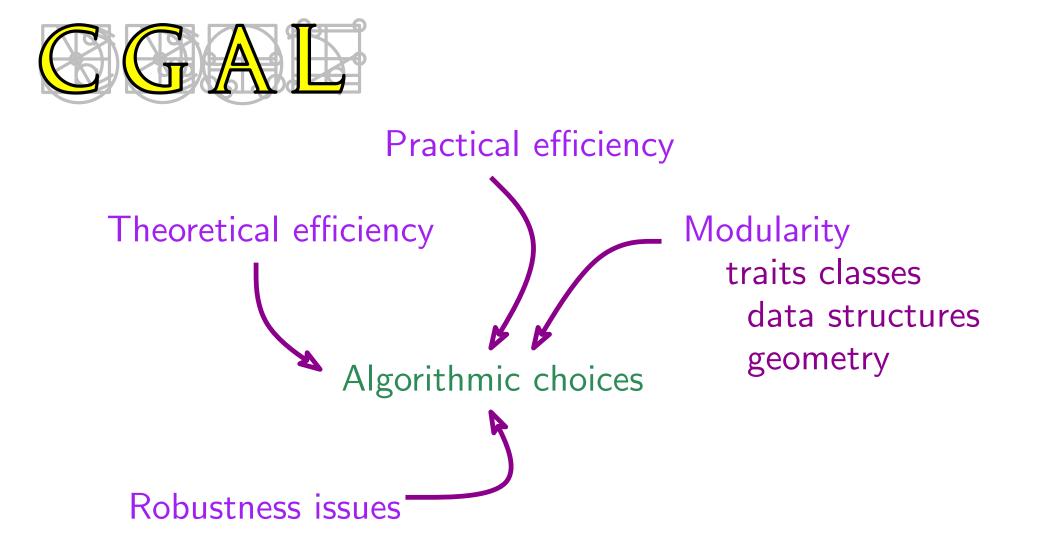
Conclusions

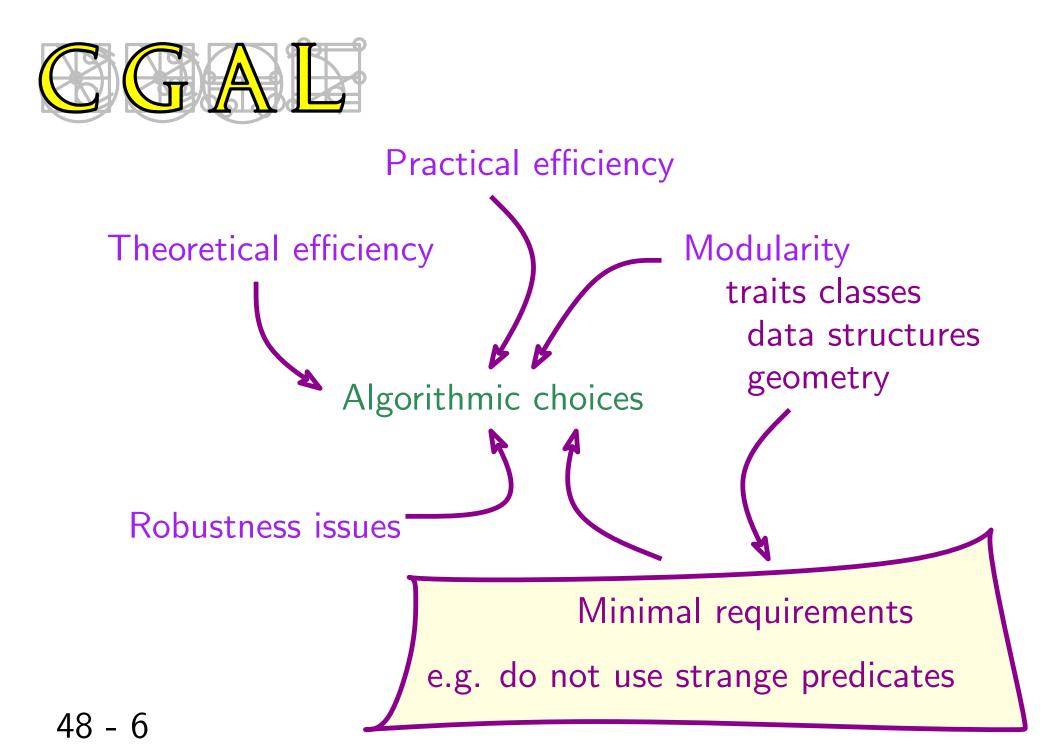
Theoretical efficiency

Algorithmic choices









Usable software subsumes

- clean mathematical foundations
- good algorithms
- adapted programming choices
- (some programming tricks)

- requires people with various skills
- raises interesting research questions

Conclusions

some challenges

Practical vs worst case size of Delaunay 3D

Conclusions

some challenges

Practical vs worst case size of Delaunay 3D

Known results $\Theta(n^2)$ worst case

 $\Theta(n)$ random in ball

 $\Omega(n)O(n\log n)$ random on polyhedron

 $O(n \log n)$ good sample of smooth generic surface

 $\Theta(n\log n)$ random on cylinder

49 - 2

Conclusions

some challenges

Practical vs worst case size of Delaunay 3D

Known results $\Theta(n^2)$ worst case Find good models of practical data $\Theta(n)$ random in ball (Smooth analysis) $\Omega(n)O(n\log n)$ random on polyhedron

 $O(n \log n)$ good sample of smooth generic surface

 $\Theta(n\log n)$ random on cylinder

49 - 3

some challenges

Practical vs worst case size of Delaunay 3D

Better algorithm for 3D deletion

10 μ s to insert

100 μ s to delete

some challenges

Practical vs worst case size of Delaunay 3D

Better algorithm for 3D deletion

One billion points

Needs memory efficient algorithms

Cache effects are already important

demos

web site www.cgal.org