Outline

1 Introduction
 • The CGAL Open Source Project
 • Contents of CGAL
 • The CGAL Kernels

2 2D, 3D Triangulations in CGAL
 • Introduction
 • Functionalities
 • Representation
 • Robustness
 • Software Design
Introduction

1 Introduction
 • The CGAL Open Source Project
 • Contents of CGAL
 • The CGAL Kernels

2 2D, 3D Triangulations in CGAL
 • Introduction
 • Functionalities
 • Representation
 • Robustness
 • Software Design
Introduction — The CGAL Open Source Project

1. Introduction
 - The CGAL Open Source Project
 - Contents of CGAL
 - The CGAL Kernels

2. 2D, 3D Triangulations in CGAL
 - Introduction
 - Functionalities
 - Representation
 - Robustness
 - Software Design
Goals

- Promote the research in Computational Geometry (CG)

- "make the large body of geometric algorithms developed in the field of CG available for industrial applications"

⇒ robust programs
History

- Development started in 1995
History

- Development started in 1995

- January, 2003: creation of Geometry Factory
 INRIA startup
 sells commercial licenses, support, customized developments

- November, 2003: Release 3.0 - Open Source Project
 - new contributors

- September, 2017: Release 4.11
License

- a few basic packages under LGPL
- most packages under GPLv3+
 - free use for Open Source code
 - commercial license needed otherwise
Distribution

• from github

• included in Linux distributions (Debian, etc)
• available through macport

• 2009: CGAL triangulations integrated in Matlab

• CGAL-bindings
 • CGAL triangulations, meshes, etc, can be used in Java or Python
 • implemented with SWIG
CGAL in numbers

- **N00,000 lines of C++ code**
- several platforms
 - g++ (Linux MacOS Windows), clang, VC++, etc
- > 1,000 downloads per month
- 50 developers registered on developer list
 (≈ 20 active)
Development process

- New contributions must be submitted to the Editorial board and reviewed.

- Automatic test suites running on all supported compilers/platforms
Users

List of identified users in various fields

- Art
- Architecture, Buildings Modeling, Urban Modeling
- Astronomy
- Computational Geometry and Geometric Computing
- Computer Graphics
- Computational Topology and Shape Matching
- Computer Vision, Image Processing, Photogrammetry
- Games, Virtual Worlds
- Geographic Information Systems
- Geology and Geophysics
- Geometry Processing
- Medical Modeling and Biophysics
- Mesh Generation and Surface Reconstruction
- 2D and 3D Modelers
- Molecular Modeling
- Motion Planning
- Particle Physics, Materials, Nanostructures, Microstructures, Fluid Dynamics
- Peer-to-Peer Virtual Environment
- Sensor Networks

More non-identified users...
Customers of Geometry Factory

(2013)
Introduction — Contents of CGAL

1 Introduction
 • The CGAL Open Source Project
 • Contents of CGAL
 • The CGAL Kernels

2 2D, 3D Triangulations in CGAL
 • Introduction
 • Functionalities
 • Representation
 • Robustness
 • Software Design
Structure

- Kernels
- Various packages
- Support Library
 - STL extensions, I/O, generators, timers...
Some packages

- Bounding Volumes
- Polyhedral Surface
- Boolean Operations

- Triangulations
- Voronoi Diagrams
- Mesh Generation

- Subdivision
- Simplification
- Parameterization

- Streamlines
- Ridge Detection
- Neighbour Search

- Lower Envelope
- Arrangement
- Intersection Detection
- Minkowski Sum
- PCA
- Polytope distance
- QP Solver

Introduction | Contents of CGAL
Introduction — The CGAL Kernels

1 Introduction
- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels

2 2D, 3D Triangulations in CGAL
- Introduction
- Functionalities
- Representation
- Robustness
- Software Design
- 2D, 3D, dD “rational” kernels
- 2D circular and 3D spherical kernels
In the kernels

- Elementary geometric objects
- Elementary computations on them

Primitives
- 2D, 3D, dD
- Point
- Vector
- Triangle
- Circle

Predicates
- comparison
- Orientation
- InSphere

Constructions
- intersection
- squared distance
- ...
Affine geometry

Point - Origin → Vector
Point - Point → Vector
Point + Vector → Point

Point + Point illegal

\[\text{midpoint}(a, b) = a + \frac{1}{2} \times (b-a) \]
Kernels and number types

Cartesian representation

| Point | \(x = \frac{hx}{hw} \) | \(y = \frac{hy}{hw} \) |

Homogeneous representation

| Point | \(hx \) | \(hy \) | \(hw \) |
Kernels and number types

Cartesian representation

<table>
<thead>
<tr>
<th>Point</th>
<th>$x = \frac{hx}{hw}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$y = \frac{hy}{hw}$</td>
</tr>
</tbody>
</table>

Homogeneous representation

<table>
<thead>
<tr>
<th>Point</th>
<th>hx</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hy</td>
</tr>
<tr>
<td></td>
<td>hw</td>
</tr>
</tbody>
</table>

- ex: Intersection of two lines -

\[
\begin{align*}
\begin{aligned}
\begin{cases}
 a_1x + b_1y + c_1 = 0 \\
 a_2x + b_2y + c_2 = 0
\end{cases}
\end{aligned}
\end{align*}
\]

\[
(x, y) = \begin{pmatrix}
 b_1 & c_1 \\
 b_2 & c_2 \\
 a_1 & b_1 \\
 a_2 & b_2
\end{pmatrix}
\begin{pmatrix}
 a_1 & c_1 \\
 a_2 & c_2
\end{pmatrix}
\]

\[
(hx, hy, hw) = \begin{pmatrix}
 b_1 & c_1 \\
 b_2 & c_2
\end{pmatrix}
\begin{pmatrix}
 a_1 & c_1 \\
 a_2 & c_2
\end{pmatrix}
\begin{pmatrix}
 a_1 & b_1 \\
 a_2 & b_2
\end{pmatrix}
\]
Kernels and number types

Cartesian representation

Point

\[
x = \frac{hx}{hw} \\
y = \frac{hy}{hw}
\]

Homogeneous representation

Point

\[
hx \\
y \\
hw
\]

- ex: Intersection of two lines -

\[
\begin{align*}
a_1x + b_1y + c_1 &= 0 \\
a_2x + b_2y + c_2 &= 0
\end{align*}
\]

\[
(x, y) = \left(\begin{array}{cc}
b_1 & c_1 \\
\hline
b_2 & c_2 \\
\end{array} \right) - \left(\begin{array}{cc}
a_1 & c_1 \\
\hline
a_2 & c_2 \\
\end{array} \right) = \left(\begin{array}{cc}
a_1 b_2 - a_2 b_1 \\
\hline
a_1 b_2 - a_2 b_1 \\
\end{array} \right)
\]

Field operations

\[
(a_1 x_1 + b_1 y_1 + c_1, a_2 x_1 + b_2 y_1 + c_2) - (a_1 x_2 + b_1 y_2 + c_1, a_2 x_2 + b_2 y_2 + c_2) =
\]

\[
\left(\begin{array}{cc}
a_1 & b_1 \\
\hline
a_2 & b_2 \\
\end{array} \right)
\]

Ring operations

\[
(a_1 x_1 + b_1 y_1 + c_1, a_2 x_1 + b_2 y_1 + c_2) - (a_1 x_2 + b_1 y_2 + c_1, a_2 x_2 + b_2 y_2 + c_2) =
\]

\[
\left(\begin{array}{cc}
a_1 & b_1 \\
\hline
a_2 & b_2 \\
\end{array} \right)
\]
The “rational” Kernels

CGAL::Cartesian< FieldType >
CGAL::Homogeneous< RingType >

→ Flexibility

typedef double NumeroType;
typedef Cartesian< NumberType > Kernel;
typedef Kernel::Point_2 Point;
Arithmetic robustness issues

Rational Kernels:
Predicates = signs of polynomial expressions

Exact Geometric Computation
≠ exact arithmetics

Predicates evaluated exactly
Filtering Techniques (interval arithmetics, etc)
extact arithmetics only when needed

CGAL::Exact_predicates_inexact_constructions_kernel
Arithmetic robustness issues

typedef CGAL::Cartesian<NT> Kernel;
NT sqrt2 = sqrt(NT(2));
Kernel::Point_2 p(0,0), q(sqrt2,sqrt2);
Kernel::Circle_2 C(p,2); // squared radius 2
Arithmetic robustness issues

typedef CGAL::Cartesian<NT> Kernel;
NT sqrt2 = sqrt(NT(2));

Kernel::Point_2 p(0,0), q(sqrt2,sqrt2);
Kernel::Circle_2 C(p,2); // squared radius 2
assert(C.has_on_boundary(q));

OK if NT gives exact sqrt
assertion violation otherwise
The circular/spherical kernels

Circular/spherical kernels
- solve needs for e.g. intersection of circles.
- extend the CGAL (linear) kernels

Exact computations on algebraic numbers of degree 2
= roots of polynomials of degree 2

Algebraic methods reduce comparisons to computations of signs of polynomial expressions
Application of the 2D circular kernel

Computation of arrangements of 2D circular arcs and line segments

Pedro M.M. de Castro, Master internship
Application of the 3D spherical kernel

Computation of arrangements of 3D spheres

Sébastien Loriot, PhD thesis
2D, 3D Triangulations in CGAL

1 Introduction
- The CGAL Open Source Project
- Contents of CGAL
- The CGAL Kernels

2 2D, 3D Triangulations in CGAL
- Introduction
- Functionalities
- Representation
- Robustness
- Software Design
2D, 3D Triangulations in CGAL — Introduction

1 Introduction
 • The CGAL Open Source Project
 • Contents of CGAL
 • The CGAL Kernels

2 2D, 3D Triangulations in CGAL
 • Introduction
 • Functionalities
 • Representation
 • Robustness
 • Software Design
Simplicial complex

= set \mathbb{K} of $0,1,2,\ldots d$-faces such that
 - each face is a simplex
 - $\sigma \in \mathbb{K}, \tau \leq \sigma \Rightarrow \tau \in \mathbb{K}$
 - $\sigma, \sigma' \in \mathbb{K} \Rightarrow \sigma \cap \sigma' \leq \sigma, \sigma'$
Various triangulations

2D, 3D, dD Basic triangulations
2D, 3D, dD Delaunay triangulations
2D, 3D, dD Regular triangulations
Basic and Delaunay triangulations

Basic triangulations: incremental construction
Delaunay triangulations: empty sphere property
Regular triangulations

weighted point \(p^{(w)} = (p, w_p), p \in \mathbb{R}^3, w_p \in \mathbb{R} \)

\(p^{(w)} = (p, w_p) \) is a sphere of center \(p \) and radius \(\sqrt{w_p} \).

power product between \(p^{(w)} \) and \(z^{(w)} \)

\[\Pi(p^{(w)}, z^{(w)}) = \|p - z\|^2 - w_p - w_z \]

\(p^{(w)} \) and \(z^{(w)} \) are orthogonal iff \(\Pi(p^{(w)}, z^{(w)}) = 0 \)

(2D)
Regular triangulations

Power sphere of 4 weighted points in $\mathbb{R}^3 =$ unique common orthogonal weighted point. $z^{(w)}$ is regular iff $\forall p^{(w)}, \Pi(p^{(w)}, z^{(w)}) \geq 0$

Regular triangulations: generalization of Delaunay triangulations to weighted points. Dual of the power diagram.

The power sphere of all simplices is regular.
2D, 3D Triangulations in CGAL — Functionalities

1 Introduction
 - The CGAL Open Source Project
 - Contents of CGAL
 - The CGAL Kernels

2 2D, 3D Triangulations in CGAL
 - Introduction
 - Functionalities
 - Representation
 - Robustness
 - Software Design
General functionalities

- Traversal of a 2D (3D) triangulation
 - passing from a face (cell) to its neighbors
 - iterators to visit all faces (cells) of a triangulation
 - circulators (iterators) to visit all faces (cells) incident to a vertex
 - circulators to visit all cells around an edge
General functionalities

- Traversal of a 2D (3D) triangulation
 - passing from a face (cell) to its neighbors
 - iterators to visit all faces (cells) of a triangulation
 - circulators (iterators) to visit all faces (cells) incident to a vertex
 - circulators to visit all cells around an edge

- Point location query

- Insertion, removal, flips
General functionalities

- Traversal of a 2D (3D) triangulation
 - passing from a face (cell) to its neighbors
 - iterators to visit all faces (cells) of a triangulation
 - circulators (iterators) to visit all faces (cells) incident to a vertex
 - circulators to visit all cells around an edge

- Point location query

- Insertion, removal, flips

- is_valid
 checks local validity (sufficient in practice)
 not global validity
Traversing a 3D triangulation:

Iterators

- `All_cells_iterator`
- `All_faces_iterator`
- `All_edges_iterator`
- `All_vertices_iterator`

Finite Iterators

- `Finite_cells_iterator`
- `Finite_faces_iterator`
- `Finite_edges_iterator`
- `Finite_vertices_iterator`

Circulators

- `Cell_circulator`: cells incident to an edge
- `Facet_circulator`: facets incident to an edge

```cpp
All_vertices_iterator vit;
for (vit = T.all_vertices_begin();
    vit != T.all_vertices_end(); ++vit)
    ...
```
Traversal of a 3D triangulation

Around a vertex

incident cells and facets, adjacent vertices

```
template < class OutputIterator >
OutputIterator
  t.incident_cells
    ( Vertex_handle v, OutputIterator cells)
```
Point location, insertion, removal

basic triangulation:

Delaunay triangulation:
3D Flip

if convex position

3 tetrahedra

2 tetrahedra
Additional functionalities for Delaunay triangulations

Nearest neighbor queries
Voronoi diagram
2D, 3D Triangulations in CGAL — Representation

1. Introduction
 - The CGAL Open Source Project
 - Contents of CGAL
 - The CGAL Kernels

2. 2D, 3D Triangulations in CGAL
 - Introduction
 - Functionalities
 - Representation
 - Robustness
 - Software Design
The main algorithm

Incremental algorithm

- fully dynamic (point insertion, vertex removal)
- any dimension
- easier to implement
- efficient in practice
- ...
Needs

Walking in a triangulation

Access to

- vertices of a simplex
- neighbors of a simplex

in constant time
2D - Representation based on faces

Vertex

Face_handle v_face

Face

Vertex_handle vertex[3]
Face_handle neighbor[3]
Edges are implicit: std::pair< f, i >
where \(f \) = one of the two incident faces.

From one face to another
\[n = f \rightarrow \text{neighbor}(i) \]
\[j = n \rightarrow \text{index}(f) \]

more efficient than half-edges
3D - Representation based on cells

Vertices are explicit:
- `Vertex`:
 - `Cell_handle v_cell`

Cells are explicit:
- `Cell`:
 - `Vertex_handle vertex[4]`
 - `Cell_handle neighbor[4]`

Faces are implicit: `std::pair< c, i >` where `c` = one of the two incident cells.

Edges are implicit: `std::pair< u, v >` where `u, v` = vertices.
3D - Representation based on cells

From one cell to another

\[n = c \rightarrow \text{neighbor}(i) \]
\[j = n \rightarrow \text{index}(c) \]
The infinite region

Triangulation of a set of points = partition of the **convex hull** into simplices.

The infinite region has **non-constant** size

Add a **bounding box**?
The infinite region

Triangulation of a set of points = partition of the **convex hull** into simplices.

The infinite region has **non-constant** size

Add a **bounding box**?

- requires to know points in advance
The infinite region

Triangulation of a set of points = partition of the convex hull into simplices.

The infinite region has non-constant size

Add a bounding box?

- requires to know points in advance
- creates ugly simplices
The infinite region

Triangulation of a set of points = partition of the convex hull into simplices.

Add an infinite vertex

→“triangulation” of the infinite region

- Every cell is a “simplex”.
- Any facet is incident to two cells.
The infinite region

Triangulation of a set of points = partition of the convex hull into simplices.

Add an infinite vertex

→ “triangulation”
 of the infinite region

- Every cell is a “simplex”.
- Any facet is incident to two cells.

Triangulation of \mathbb{R}^d

\cong

Triangulation of the topological sphere S^d.
Geometry vs. combinatorics

Each finite vertex stores a point
Geometry vs. combinatorics

Each **finite** vertex stores a point

There is **NO point** in the infinite vertex

infinite simplex = half-space
Dimensions in a 3D triangulation

dim 0

dim 1

dim 2

dim 3

a 4-dimensional triangulated sphere
Dimensions

Adding a point outside the current affine hull:
From $d = 1$ to $d = 2$
2D, 3D Triangulations in CGAL — Robustness

1 Introduction
 • The CGAL Open Source Project
 • Contents of CGAL
 • The CGAL Kernels

2 2D, 3D Triangulations in CGAL
 • Introduction
 • Functionalities
 • Representation
 • Robustness
 • Software Design
Arithmetic robustness

see above

Benchmarks

2.3 GHz, 16 GByte workstation

CGAL 3.9 (Release mode)
Arithmetic robustness

see above

Benchmarks
2.3 GHz, 16 GByte workstation
3.9 (Release mode)

Delaunay triangulation - 10 Mpoints

<table>
<thead>
<tr>
<th>Kernel</th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartesian < double ></td>
<td>9.7 sec</td>
<td>75 sec</td>
</tr>
<tr>
<td>Exact_predicates_inexact_constructions_kernel</td>
<td>10.6 sec</td>
<td>82 sec</td>
</tr>
</tbody>
</table>
Arithmetic robustness

see above

Benchmarks

2.3 GHz, 16 GByte workstation

CGAL 3.9 (Release mode)

Delaunay triangulation - 10 Mpoints

<table>
<thead>
<tr>
<th>Kernel</th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartesian < double</td>
<td></td>
<td></td>
</tr>
<tr>
<td>may loop (or crash) !</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exact_predicates_inexact_constructions_kernel</td>
<td>10.6 sec</td>
<td>82 sec</td>
</tr>
</tbody>
</table>
Degenerate cases

Cospherical points

Any triangulation is a Delaunay triangulation
Degenerate cases

Vertex removal

1- remove the tetrahedra incident to $v \rightarrow$ hole
Degenerate cases

Vertex removal

1- remove the tetrahedra incident to \(v \) ➔ hole
2- retriangulate the hole
Degenerate cases

Vertex removal

Cocircular points

Several possible Delaunay triangulations of a *facet* of the hole

Triangulation of the hole must be compatible with the rest of the triangulation
Degenerate cases

Remark on the general question:

H given polyhedron with triangulated facets. Find a Delaunay triangulation of H keeping its facets?

Not always possible:
Degenerate cases

Allowing flat tetrahedra?

k cocircular points on a facet

2D triangulation of the facet induced by tetrahedra in the hole

\[
\begin{align*}
\text{sequence of } O(k^2) \text{ edge flips} \\
\end{align*}
\]

2D triangulation of the facet induced by tetrahedra outside the hole

\[\text{edge flip} \leftrightarrow \text{flat tetrahedron}\]
Degenerate cases

Allowing flat tetrahedra?

\(k \) cocircular points on a facet

2D triangulation of the facet induced by tetrahedra in the hole

\[\vdots \]

sequence of \(O(k^2) \) edge flips

\[\vdots \]

2D triangulation of the facet induced by tetrahedra outside the hole

dge flip \(\longleftrightarrow \) flat tetrahedron

Unacceptable
Degenerate cases

Symbolic perturbation of \texttt{in_sphere} predicate

- Algorithm working even in degenerate situations
- No flat tetrahedra
- Perturbed predicate easy to code

CGAL: only publicly available software proposing a \texttt{fully dynamic} 3D Delaunay/regular triangulation.
Robustness

Dassault Systèmes
Robustness

Pictures by Pierre Alliez
2D, 3D Triangulations in CGAL — Software Design

1 Introduction
 • The CGAL Open Source Project
 • Contents of CGAL
 • The CGAL Kernels

2 2D, 3D Triangulations in CGAL
 • Introduction
 • Functionalities
 • Representation
 • Robustness
 • Software Design
Traits class

Triangulation_2<Traits, TDS>

Geometric traits classes provide:
Geometric objects + predicates + constructors

Flexibility:
- The Kernel can be used as a traits class for several algorithms
- Otherwise: Default traits classes provided
- The user can plug his/her own traits class
Traits class

Generic algorithms

Delaunay_Triangulation_2<Traits, TDS>

Traits parameter provides:
- Point
- orientation test, in_circle test
Traits class

2D Kernel used as traits class

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Delaunay_triangulation_2<K> Delaunay;

• 2D points: coordinates \((x, y)\)
• orientation, \text{in}_\text{circle}
Traits class

Changing the traits class

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Projection_traits_xy_3< K > Traits;
typedef CGAL::Delaunay_triangulation_2< Traits > Terrain;

- 3D points: coordinates \((x, y, z)\)
- orientation, in_circle:
 on \(x\) and \(y\) coordinates only
Layers

Triangulation_3< Traits, TDS >

Triangulation
Geometry
location

Data Structure
Combinatorics
insertion

Geometric information
Additional information

Triangulation_data_structure_3< Vb, Cb > ;
Vb and Cb have default values.
Layers

The base level
Concepts `VertexBase` and `CellBase`.

Provide
- Point + access function + setting
- incidence and adjacency relations (access and setting)

Several models, parameterised by the `traits` class.
Changing the Vertex_base and the Cell_base

Diagram showing the relationships between VertexBase, CellBase, UserVB, UserCB, and their respective traits and functionality.
Changing the Vertex_base and the Cell_base

First option: Triangulation_vertex_base_with_info_3

When the additional information does not depend on the TDS

```cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
#include <CGAL/IO/Color.h>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Triangulation_vertex_base_with_info_3
       <CGAL::Color,K> Vb;

typedef CGAL::Triangulation_data_structure_3<Vb> Tds;

typedef CGAL::Delaunay_triangulation_3<K, Tds> Delaunay;

typedef Delaunay::Point Point;
```
Changing the Vertex_base and the Cell_base

First option: Triangulation_vertex_base_with_info_3

When the additional information does not depend on the TDS

```cpp
int main()
{
    Delaunay T;
    T.insert(Point(0,0,0)); T.insert(Point(1,0,0));
    T.insert(Point(0,1,0)); T.insert(Point(0,0,1));
    T.insert(Point(2,2,2)); T.insert(Point(-1,0,1));

    // Set the color of finite vertices of degree 6 to red.
    Delaunay::Finite_vertices_iterator vit;
    for (vit = T.finite_vertices_begin();
         vit != T.finite_vertices_end(); ++vit)
    if (T.degree(vit) == 6)
        vit->info() = CGAL::RED;

    return 0;
}
```
Changing the \texttt{Vertex_base} and the \texttt{Cell_base}

Third option: write new models of the concepts
Changing the Vertex_base and the Cell_base

Second option: the “rebind” mechanism

- Vertex and cell base classes:
 - initially given a dummy TDS template parameter:

 dummy TDS provides the types that can be used by the vertex and cell base classes (such as handles).

- inside the TDS itself,

 vertex and cell base classes are rebound to the real TDS type

→ the same vertex and cell base classes are now parameterized with the real TDS instead of the dummy one.
Changing the Vertex_base and the Cell_base

Second option: the “rebind” mechanism

Diagram:

- **Triangulation Data Structure**
- **Derivation**
- **Types**
- **Template parameters**
- **Rebind_TDS**

Optional User and/or Geometric Additions:

- UserVB<...,DSVB<TDS=Self>>
- UserCB<...,DSCB<TDS=Self>>

Template parameters:

- DSVertexBase<TDS=Dummy>
- DSCellBase<TDS=Dummy>
Changing the Vertex_base and the Cell_base
Second option: the “rebind” mechanism

```cpp
template< class GT, class Vb= Triangulation_vertex_base<GT> >
class My_vertex : public Vb
{
  typedef typename Vb::Point Point;
  typedef typename Vb::Cell_handle Cell_handle;

  template < class TDS2 >
  struct Rebind_TDS {
    typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
    typedef My_vertex<GT, Vb2> Other;
  };

  My_vertex() {}
  My_vertex(const Point&p) : Vb(p) {}
  My_vertex(const Point&p, Cell_handle c) : Vb(p, c) {}
...}
```
Changing the Vertex_base and the Cell_base

Second option: the “rebind” mechanism

Example

```cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_3.h>
```
Changing the Vertex_base and the Cell_base

Second option: the “rebind” mechanism

Example

```cpp
template < class GT, class Vb=CGAL::Triangulation_vertex_base_3<GT> >
class My_vertex_base : public Vb {
    typedef typename Vb::Vertex_handle Vertex_handle;
    typedef typename Vb::Cell_handle Cell_handle;
    typedef typename Vb::Point Point;

    template < class TDS2 > struct Rebind_TDS {
        typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
        typedef My_vertex_base<GT, Vb2> Other;
    };

    My_vertex_base() {}
    My_vertex_base(const Point& p) : Vb(p) {}
    My_vertex_base(const Point& p, Cell_handle c) : Vb(p, c) {}

    Vertex_handle vh;
    Cell_handle ch;
};
```
Changing the Vertex_base and the Cell_base

Second option: the “rebind” mechanism

Example

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::
 Triangulation_data_structure_3< My_vertex_base<K> > Tds;
typedef CGAL::
 Delaunay_triangulation_3< K, Tds > Delaunay;
typedef Delaunay::Vertex_handle Vertex_handle;
typedef Delaunay::Point Point;

int main()
{
 Delaunay T;
 Vertex_handle v0 = T.insert(Point(0,0,0));
 ... v1; v2; v3; v4; v5;
 // Now we can link the vertices as we like.
 v0->vh = v1; v1->vh = v2;
 v2->vh = v3; v3->vh = v4;
 v4->vh = v5; v5->vh = v0;
 return 0;
}
Algorithms

Basic incremental algorithm
Locate by walk
Locate using randomized data structures
Vertex removal in 2D
Conclusions
Algorithms

Basic incremental algorithm

Locate by walk

Locate using randomized data structures

Vertex removal in 2D

Conclusions
Find conflicts

Geometry

3 - 4
Remove triangles

Combinatorics
Star the hole

Combinatorics
Algorithms

Basic incremental algorithm

Locate by walk
 - Straight walk
 - Visibility walk
 - Structural filtering
 - Walk shape

Locate using randomized data structures

Vertex removal in 2D

Conclusions
straight walk
straight walk
straight walk
straight walk
straight walk
straight walk
Exit edge?
One orientation predicate
straight walk

Exit edge?

One orientation predicate
End of walk?
A second orientation predicate
straight walk

End of walk?

A second orientation predicate
straight walk

degeneracies
Algorithms

straight walk

degeneracies

(Imagine 3D...)

6 - 12
Basic incremental algorithm

Locate by walk
 Straight walk
 Visibility walk
 Structural filtering
 Walk shape

Locate using randomized data structures

Vertex removal in 2D

Conclusions
visibility walk
visibility walk
visibility walk
visibility walk
Algorithms

Locate by walk

visibility walk
visibility walk
visibility walk

Triangle with two exits

One orientation predicate
visibility walk

Triangle with one exit
1.5 orientation predicate

One predicate if this neighbor tried first

Two predicates if this neighbor tried first
visibility walk

1.25 orientation predicate?
Visibility vs straight walk
Visibility vs straight walk 2D and 3D

fewer predicates per crossed edge

similar number of crossed edges

experimental / theoretical
Visibility vs straight walk

Speed improvement?
Visibility vs straight walk

Walk in Delaunay 1 Mpoints

Speed improvement?

- Straight: 324 µs
- Visibility: 285 µs
- 3D: 97 µs
Visibility vs straight walk

Speed improvement?

Walk in Delaunay 1 Mpoints

- Straight: 324 μs
- Visibility: 285 μs
- 3D: 97 μs

Much easier to code

no degeneracies to handle!
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Triangulation_3.h>

#include <iostream> #include <fstream>
#include <cassert>
#include <list> #include <vector>

typedef
 CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Triangulation_3<K> Triangulation;

typedef Triangulation::Cell_handle Cell_handle;
typedef Triangulation::Vertex_handle Vertex_handle;
typedef Triangulation::Locate_type Locate_type;
typedef Triangulation::Point Point;
```cpp
int main()
{
    std::list<Point> L;
    L.push_front(Point(0,0,0));
    L.push_front(Point(1,0,0));
    L.push_front(Point(0,1,0));
    Triangulation T(L.begin(), L.end());
    int n = T.number_of_vertices();

    std::vector<Point> V(3);
    V[0] = Point(0,0,1);
    V[1] = Point(1,1,1);
    V[2] = Point(2,2,2);
    n = n + T.insert(V.begin(), V.end());

    assert( n == 6 );
    assert( T.is_valid() );
}```
Locate_type lt;
int li, lj;
Point p(0,0,0);
Cell_handle c = T.locate(p, lt, li, lj);
assert( lt == Triangulation::VERTEX );
assert( c->vertex(li)->point() == p );

Vertex_handle v = c->vertex( (li+1)&3 );
Cell_handle nc = c->neighbor(li);
int nli;
assert( nc->has_vertex( v, nli ) );
std::ofstream oFileT("output",std::ios::out);
oFileT << T;
Triangulation T1;
std::ifstream iFileT("output",std::ios::in);
iFileT >> T1;
assert( T1.is_valid() );
assert(T1.number_of_vertices() == T.number_of_vertices());
assert( T1.number_of_cells() == T.number_of_cells() );
return 0;
Algorithms

Basic incremental algorithm

Locate by walk
  - Straight walk
  - Visibility walk
  - Structural filtering
    - Walk shape

Locate using randomized data structures

Vertex removal in 2D

Conclusions
visibility walk - structural filtering
visibility walk - structural filtering
visibility walk - structural filtering

Walk may loop (not in Delaunay)
visibility walk - structural filtering

Walk may loop (not in Delaunay)

Robustness issue:
- Non certified arithmetic
- Rounding errors
- Wrong decisions during walk
visibility walk - structural filtering

Walk may loop (not in Delaunay)

Robustness issue:
may loop
even in Delaunay
visibility walk - structural filtering

Algorithms

Locate by walk

Walk may loop (not in Delaunay)

Robustness issue:
may loop
even in Delaunay
But only in very special configurations
Orientation predicates

Certify all along the walk

285 $\mu$seconds

Certify after a while, just in case

220 $\mu$seconds

2D

Walk in Delaunay 1 Mpoints
visibility walk - structural filtering

Orientation predicates

Certify all along the walk

285 $\mu$seconds  97 $\mu$seconds

Certify after a while, just in case

220 $\mu$seconds  81 $\mu$seconds

2D  3D

Walk in Delaunay 1 Mpoints
Basic incremental algorithm

Locate by walk
  - Straight walk
  - Visibility walk
  - Structural filtering
  - Walk shape

Locate using randomized data structures

Vertex removal in 2D

Conclusions
visibility walk - walk shape
Visibility walk - walk shape
visibility walk - walk shape

Leftmost
visibility walk - walk shape

In between
visibility walk - walk shape
visibility walk - walk shape

Turn counterclockwise from previous

Rightmost
Turn clockwise from previous

Leftmost
Balance left and right turns

first with proba $\frac{1}{3}$

first with proba $\frac{2}{3}$
visibility walk - walk shape

Walk in Delaunay 1 Mpoints

Leftmost 220 $\mu$seconds
Balanced 188 $\mu$seconds
### Walk in Delaunay 1 Mpoints

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time (μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight walk</td>
<td>324</td>
</tr>
<tr>
<td>Visibility walk</td>
<td>285</td>
</tr>
<tr>
<td>Structural filtering</td>
<td>220</td>
</tr>
<tr>
<td>Balanced walk</td>
<td>188</td>
</tr>
</tbody>
</table>
Algorithms

Basic incremental algorithm

Locate by walk

Locate using randomized data structures
  The Delaunay tree
  The Delaunay hierarchy
  Biased randomized insertion order

Vertex removal in 2D

Conclusions
Algorithms

Basic incremental algorithm
Locate by walk
Locate using randomized data structures
  The Delaunay tree
  The Delaunay hierarchy
  Biased randomized insertion order
Vertex removal in 2D
Conclusions
the Delaunay tree
the Delaunay tree
the Delaunay tree
the Delaunay tree

Algorithms

Locate using data structures
the Delaunay tree

locate based on incircle predicate

# triangles in the Delaunay tree
the Delaunay tree

How many triangles created by the last point?
the Delaunay tree

Algorithms

Locate using data structures

How many triangles created by the last point?
the Delaunay tree

How many triangles created by the last point?
the Delaunay tree

locate based on incircle predicate

# triangles in the Delaunay tree

$= 6n$ (randomized)
Algorithms

- Basic incremental algorithm
- Locate by walk
- Locate using randomized data structures
  - The Delaunay tree
  - The Delaunay hierarchy
  - Biased randomized insertion order
- Vertex removal in 2D
- Conclusions
the Delaunay hierarchy

Algorithms Locate using data structures
the Delaunay hierarchy
the Delaunay hierarchy
the Delaunay hierarchy

Algorithms

Locate using data structures

Query

Nearest Neighbor
the Delaunay hierarchy

Algorithms

Locate using data structures

Query

Nearest Neighbor
the Delaunay hierarchy
the Delaunay hierarchy
the Delaunay hierarchy
The Delaunay tree

locate based on incircle predicate

\# triangles in the Delaunay tree

= 6n (randomized)
The Delaunay hierarchy

based on orientation predicate

\# triangles in the hierarchy can be chosen

\[ = 1.03 \times 2n \text{ (expected)} \]

The Delaunay tree

locate based on incircle predicate

\# triangles in the Delaunay tree

\[ = 6n \text{ (randomized)} \]
The Delaunay hierarchy

based on orientation predicate

\[ \# \text{ triangles in the hierarchy} = 1.03 \times 2n \text{ (expected)} \]

can be chosen

\[ O(n \log n) \]

The Delaunay tree

locate based on incircle predicate

\[ \# \text{ triangles in the Delaunay tree} = 6n \text{ (randomized)} \]
The Delaunay hierarchy

based on orientation predicate

$\#$ triangles in the hierarchy can be chosen

$= 1.03 \times 2n$ (expected)

2.3 seconds

50000 random points (original benchmarks in 2000).

The Delaunay tree

locate based on incircle predicate

$\#$ triangles in the Delaunay tree

$= 6n$ (randomized)

17 seconds
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Random.h>

#include <vector>
#include <cassert>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Delaunay_triangulation_3<K, CGAL::Fast_location> Delaunay;
typedef Delaunay::Point Point;
int main()
{
    Delaunay T;
    std::vector<Point> P;
    for (int z=0 ; z<20 ; z++)
        for (int y=0 ; y<20 ; y++)
            for (int x=0 ; x<20 ; x++)
                P.push_back(Point(x,y,z));

    Delaunay T(P.begin(), P.end());
    assert( T.number_of_vertices() == 8000 );

    for (int i=0; i<10000; ++i)
        T.nearest_vertex
            ( Point(CGAL::default_random.get_double(0,20),
                CGAL::default_random.get_double(0,20),
                CGAL::default_random.get_double(0,20)) );

    return 0; }

**Algorithms**

- Basic incremental algorithm
- Locate by walk
- Locate using randomized data structures
  - The Delaunay tree
  - The Delaunay hierarchy
  - Biased randomized insertion order
- Vertex removal in 2D
- Conclusions
Efficiency of incremental algorithms depends on the order of insertion.
Efficiency of incremental algorithms depends on the order of insertion.

Locate is easy if you know a vertex nearby.

Natural idea: sort the points, locate from previous.
biased random insertion order

Hilbert curve

(picture from Wikipedia)
biased random insertion order

Hilbert order
biased random insertion order

close geometrically ⇐⇒ close in the insertion order with high probability

⇒ point location
  • previous cell in cache memory → faster start
  • previous point close → shorter walk

⇒ memory locality improved
  → speed-up in data structure

Hilbert order
biased random insertion order
biased random insertion order

Biased order (Spatial sorting)
biased random insertion order
biased random insertion order

Hilbert sort + std::random_shuffle

- points still close enough for speed-up
- some randomness for randomized algorithms

Biased order (Spatial sorting)
biased random insertion order

Hilbert sort + std::random_shuffle

• points still close enough for speed-up
• some randomness for randomized algorithms

template < class InputIterator >
int 
t.insert (InputIterator first, InputIterator last)
Algorithms

Locate using data structures

Delaunay 2D 1M random points

locate using Delaunay hierarchy 6 seconds
random order 157 seconds
$x$-order 3 seconds
Hilbert order 0.8 seconds
Biased order (Spatial sorting) 0.7 seconds
Delaunay 2D 100K parabola points

locate using Delaunay hierarchy 0.3 seconds

random order 128 seconds

$x$-order 632 seconds

Hilbert order 46 seconds

Biased order (Spatial sorting) 0.3 seconds
Construction of Delaunay 10 M random points

Delaunay tree  \( \sim 10 \text{ mn (estimate)} \)

Delaunay hierarchy  90 seconds

Biased random order  10.6 seconds
Algorithms

Basic incremental algorithm
Locate by walk
Locate using randomized data structures
Vertex removal in 2D

Conclusions
Algorithms

Vertex removal
Algorithms

Vertex removal
Basic incremental algorithm
Locate by walk
Locate using randomized data structures
Vertex removal in 2D
  Boundary expansion
  Triangulate and sew
  Flip the hole
  Low degree optimization
Conclusions
boundary expansion

release 3.5, 2D implementation
boundary expansion

release 3.5, 2D implementation
boundary expansion

release 3.5, 2D implementation

find new incident triangle in linear time
boundary expansion

release 3.5, 2D implementation
boundary expansion

release 3.5, 2D implementation
Algorithms

- Basic incremental algorithm
- Locate by walk
- Locate using randomized data structures
- Vertex removal in 2D
  - Boundary expansion
  - Triangulate and sew
  - Flip the hole
  - Low degree optimization

Conclusions
triangulate and sew

current \texttt{CGAL} implementation in 3D
Algorithm: Delaunay of neighbors

current **CGAL** implementation in 3D

triangulate and sew
triangulate and sew

current **CGAL** implementation in 3D

delete extra triangles and sew
triangulate and sew

current **CGAL** implementation in 3D

not implemented in 2D

delete extra triangles and sew
Algorithms

- Basic incremental algorithm
- Locate by walk
- Locate using randomized data structures
- Vertex removal in 2D
  - Boundary expansion
  - Triangulate and sew
  - Flip the hole
- Low degree optimization

Conclusions
flip the hole
flip the hole

triangulate from any vertex
flip the hole

queue of edges to be checked
flip the hole

a bit faster
Algorithms

Basic incremental algorithm
Locate by walk
Locate using randomized data structures
Vertex removal in 2D
  Boundary expansion
  Triangulate and sew
  Flip the hole
  Low degree optimization

Conclusions
low degree optimization

degree 3
low degree optimization

degree 3

almost nothing to do
low degree optimization

degree 4

vertex removal
low degree optimization

just one incircle test to decide

degree 4
low degree optimization

degree 5
low degree optimization

"star" the pentagon from the right vertex
low degree optimization

"star" the pentagon from the right vertex

degree 5
low degree optimization

“star” the pentagon from the right vertex

degree 5

"star" the pentagon from the right vertex
low degree optimization

degree 5

"star" the pentagon from the right vertex
low degree optimization

"star" the pentagon from the right vertex

degree 5
low degree optimization

"star" the pentagon from the right vertex

degree 5
low degree optimization

degree 5

Decision tree
low degree optimization

degree 5

Decision tree

$3 \in 012$

no

yes

$4 \in 023$

$4 \in 012$

$4 \in 013$

$4 \in 123$

$4 \in 023$

$v_0$

$v_2$

$v_4$

$v_0$

$v_2$

$v_4$
low degree optimization

degree 6

14 results

39 - 7
low degree optimization

degree 6
Decision tree
low degree optimization

degree 6
Decision tree

Algorithms
Vertex removal
low degree optimization

Decision tree

degree 6

6 incircle predicates

40 - 3
low degree optimization

degree 7
Decision tree
low degree optimization

symmetric tree

10 incircle predicates

degree 7
Decision tree
low degree optimization

<table>
<thead>
<tr>
<th>degree</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8*</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>† results</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>42</td>
<td>132</td>
<td>429</td>
</tr>
<tr>
<td>† leaves</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>24</td>
<td>130</td>
<td>≈500</td>
<td></td>
</tr>
<tr>
<td>[\log_2 #results]</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>tree height</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>≈14</td>
<td></td>
</tr>
<tr>
<td>† lines of code</td>
<td>30</td>
<td>40</td>
<td>90</td>
<td>280</td>
<td>700</td>
<td>≈2500</td>
<td></td>
</tr>
</tbody>
</table>

* not implemented. The sizes of the tree and the code are estimated
Algorithms  Vertex removal

**low degree optimization**

**Remarks on implementation**

limited memory allocation, use old faces "in place"

re-use as many neighbor links as possible
Remarks on implementation

limited memory allocation, use old faces “in place”
re-use as many neighbor links as possible

tree implementation

```python
if incircle(...)
 if incircle(...)
 if incircle(...)
 use_this_shape(face0, face1, face2...)
 else
 use_other_shape(face2, face3, face4...)
 else
 use_other_shape(face2, face3, face4...)
```

......
deletion time per vertex

10µs

Boundary expansion

Flip the hole

small degrees

degree
Algorithms

Vertex removal

deletion time per vertex

10µs

Boundary expansion

Flip the hole

small degrees

degree
Algorithms

Vertex removal

deletion time per vertex

Boundary expansion

Flip the hole

small degrees

init (load memory)

degree

10µs

3.5

3.6

init (load memory)
Algorithms

Vertex removal

deletion time per vertex

boundary expansion

degree distribution

small degrees

init (load memory)

# points

30%

degree

3.5

3.6

10 µs
Algorithms

- Basic incremental algorithm
- Locate by walk
- Locate using randomized data structures
- Vertex removal in 2D
- Conclusions
$\approx 1\mu s \text{ per point}$
CGAL

$\approx 8 \mu s \text{ per point}$

CGAL $\geq 4.5$: multicore option
10 cores $\leftrightarrow$ speed up factor $\approx 9$
Algorithmic choices
Theoretical efficiency

Algorithmic choices
Algorithmic choices

Theoretical efficiency

Practical efficiency

Algorithmic choices
Algorithmic choices

Theoretical efficiency

Practical efficiency

Algorithmic choices

Robustness issues
Algorithmic choices

Theoretical efficiency

Practical efficiency

Modularity
- traits
- classes
- data structures
- geometry

Robustness issues
Algorithmic choices

Practical efficiency

Theoretical efficiency

Modularity
- traits classes
- data structures
- geometry

Robustness issues

Minimal requirements
- e.g. do not use strange predicates
Usable software subsumes

- clean mathematical foundations
- good algorithms
- adapted programming choices
- (some programming tricks)

- requires people with various skills
- raises interesting research questions
some challenges

Practical vs worst case size of Delaunay 3D
Practical vs worst case size of Delaunay 3D

Known results

$\Theta(n^2)$ worst case

$\Theta(n)$ random in ball

$\Omega(n)O(n \log n)$ random on polyhedron

$O(n \log n)$ good sample of smooth generic surface

$\Theta(n \log n)$ random on cylinder
Practical vs worst case size of Delaunay 3D

Known results

\( \Theta(n^2) \) worst case

\( \Theta(n) \) random in ball

\( \Omega(n) O(n \log n) \) random on polyhedron

\( O(n \log n) \) good sample of smooth generic surface

\( \Theta(n \log n) \) random on cylinder

Find good models of practical data

(Smooth analysis)
some challenges

Practical vs worst case size of Delaunay 3D

Better algorithm for 3D deletion

10 $\mu$s to insert

100 $\mu$s to delete
some challenges

Practical vs worst case size of Delaunay 3D

Better algorithm for 3D deletion

One billion points

Needs memory efficient algorithms

Cache effects are already important
demos

web site www.cgal.org