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Delaunay Triangulation: Applications

Reconstruction

Meshing
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From points

to shape

Reconstruction
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Reconstruction

Context

Delaunay is a good start (wanted result ⊂ Delaunay)

Crust 2D

0.4 sample ⇒ wanted result ⊂ crust

0.25 sample ⇒ crust ⊂ wanted result

Algorithm

3D
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Reconstruction Context

Sensor Point set (no structure or unknown)
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Reconstruction Context

Medical Images
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Reconstruction Context

Medical Images
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Reconstruction Context

Childbirth simulation

Surgery planning

Radiotherapy planing

Endoscopy simulation
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Reconstruction Context

Childbirth simulation

Surgery planning

Radiotherapy planing

Endoscopy simulation
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Reconstruction Context

Sensor Point set (no structure or unknown)

Scanner
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Reconstruction Context

Sensor Point set (no structure or unknown)

Scanner

Endoscope
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Reconstruction Context

Cultural heritage
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Reconstruction Context

Cultural heritage
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Reconstruction Context
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Reconstruction Context

Reverse engineering
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Reconstruction Context

Reverse engineering

Prototyping (3D print)

Quality control



4 - 13

Reconstruction Context

Sensor Point set (no structure or unknown)
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Reconstruction Context

Sensor Point set (no structure or unknown)

Laser illuminate in a plane
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Reconstruction Context

Sensor Point set (no structure or unknown)

Laser illuminate in a plane

Camera
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Reconstruction Context

Sensor Point set (no structure or unknown)

Laser illuminate in a plane

Camera

Image
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Reconstruction Context

Sensor Point set (no structure or unknown)

Laser illuminate in a plane

Camera

Get 3D position
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Reconstruction Context

Geology
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Reconstruction Context

Sensor Point set (no structure or unknown)

Geology



4 - 20

Reconstruction Context

Sensor Point set (no structure or unknown)

Abstract 3D problem that we can solve in 2D section
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Reconstruction Context

Sensor Point set (no structure or unknown)

Abstract 3D problem that we can solve in 2D section
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Reconstruction Context

Sensor Point set (no structure or unknown)

Abstract 3D problem that we can solve in 2D section

Can be solve using Voronoi diagrams
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Reconstruction Context

Sensor Point set (no structure or unknown)

Abstract 3D problem that we can solve in 2D section
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Reconstruction Delaunay is a good start

Medial axis of a curve (surface in 3D)

Locus of center of bitangent spheres
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Reconstruction Delaunay is a good start

Medial axis of a curve (surface in 3D)

Locus of center of bitangent spheres
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Reconstruction Delaunay is a good start

ε-sample of a curve

Local feature size:
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Reconstruction Delaunay is a good start

ε-sample of a curve

Local feature size:

x

lfs(x) = distance(x, medial axis)

lfs(x)
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Reconstruction Delaunay is a good start

ε-sample of a curve

Local feature size:

x

lfs(x) = distance(x, medial axis)

lfs(x)

Sample is an
if ∀x, Disk(x, ε·lfs(x))∩Sample 6= ∅
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Reconstruction Delaunay is a good start
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∀ Disk, Disk∩Curve has a single connected component

or Disk∩Medial axis 6= ∅
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Reconstruction Delaunay is a good start

∀ Disk, Disk∩Curve has a single connected component

or Disk∩Medial axis 6= ∅

Lemma:

Disk∩Curve has 2 cc A and B
A

B

a = closest of c on Curve(wlog on A)
b = closest of c on B

b

a

Moving from c to a dist to B ↗
reach center of bitangent disk

a′
c
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x

Reconstruction Delaunay is a good start

If Sample is a ε-sample, ε < 1

neighboring points along Curve are Delaunay neighbors

Theorem

x′
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If Sample is a ε-sample, ε < 1

neighboring points along Curve are Delaunay neighbors

Theorem
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x′

xx′ neighbors on curve
⇒ no points on cc xx′ in
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x

Reconstruction Delaunay is a good start

If Sample is a ε-sample, ε < 1
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Theorem
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x

Reconstruction Delaunay is a good start

If Sample is a ε-sample, ε < 1

neighboring points along Curve are Delaunay neighbors

Theorem

1-sampling ⇒ ⊂

x′

xx′ neighbors on curve
⇒ no points on cc xx′ in

Lemma
}⇒ no other cc ∩
⇒ empty
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Reconstruction Delaunay is a good start

Given a sampling
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Reconstruction Delaunay is a good start

Given a sampling

Compute Delaunay
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Reconstruction Delaunay is a good start

Given a sampling

Compute Delaunay

Search the good sequence of edges there
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Reconstruction Delaunay is a good start

1-sample is not enough



10 - 2

Reconstruction Delaunay is a good start

1-sample is not enough



10 - 3

Reconstruction Delaunay is a good start

1-sample is not enough
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Reconstruction Delaunay is a good start

1-sample is not enough
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Reconstruction Crust 2D Algorithm
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Reconstruction Crust 2D Algorithm

Compute Voronoi diagram
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Reconstruction Crust 2D Algorithm

Keep Voronoi vertices
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Reconstruction Crust 2D Algorithm

Keep Voronoi vertices

Compute Delaunay triangulation
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Reconstruction Crust 2D Algorithm

Keep Voronoi vertices

Compute Delaunay triangulation

Keep edges between original points
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Reconstruction Crust 2D Algorithm

Keep edges between original points
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Reconstruction Crust 2D Algorithm
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Reconstruction Crust 2D Algorithm
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Reconstruction Crust 2D Algorithm
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Reconstruction Crust 2D Algorithm
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Reconstruction Crust 2D Algorithm
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Reconstruction Crust 2D Algorithm
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Reconstruction Crust 2D Algorithm
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Reconstruction Crust 2D Algorithm
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0.4 sample ⇒ wanted result ⊂ crustTheorem:

x

x′

x, x′ two neighboring points on Curve

Curve

Circle thru x and x′ centered on Curve

By contradiction assume v ∈

v intersects another cc of curve
(by Lemma)

θ R ≤ 2r sin θ
2

θ ≤
lfs
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tangent disk is empty

Reconstruction Crust 2D 0.4 sample ⇒ wanted result ⊂ crust

0.4 sample ⇒ wanted result ⊂ crustTheorem:

x

x′

x, x′ two neighboring points on Curve

Curve

Circle thru x and x′ centered on Curve

By contradiction assume v ∈

v intersects another cc of curve
(by Lemma)

θ R ≤ 2r sin θ
2

θ ≤
lfs
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Reconstruction Crust 2D 0.4 sample ⇒ wanted result ⊂ crust

0.4 sample ⇒ wanted result ⊂ crustTheorem:

x

x′

x, x′ two neighboring points on Curve

Curve

Circle thru x and x′ centered on Curve

By contradiction assume v ∈

v intersects another cc of curve
(by Lemma)

θ R ≤ 2r sin θ
2

θ ≤

lfs

ε

wlog lfs=1 and r ≤ ε
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Reconstruction Crust 2D 0.4 sample ⇒ wanted result ⊂ crust

0.4 sample ⇒ wanted result ⊂ crustTheorem:

x

x′

x, x′ two neighboring points on Curve

Curve

Circle thru x and x′ centered on Curve

By contradiction assume v ∈

v intersects another cc of curve
(by Lemma)

θ R ≤ 2r sin θ
2

θ ≤

lfs

ε

1

r

wlog lfs=1 and r ≤ ε
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Reconstruction Crust 2D 0.4 sample ⇒ wanted result ⊂ crust

0.4 sample ⇒ wanted result ⊂ crustTheorem:

x

x′

x, x′ two neighboring points on Curve

Curve

Circle thru x and x′ centered on Curve

By contradiction assume v ∈

v intersects another cc of curve
(by Lemma)

θ R ≤ 2r sin θ
2

θ ≤
α
2

r

r = 2 sin α
2
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Reconstruction Crust 2D 0.4 sample ⇒ wanted result ⊂ crust

0.4 sample ⇒ wanted result ⊂ crustTheorem:

x

x′

x, x′ two neighboring points on Curve

Curve

Circle thru x and x′ centered on Curve

By contradiction assume v ∈

v intersects another cc of curve
(by Lemma)

θ R ≤ 2r sin θ
2

θ ≤
α
2

x′
x β

β = π − π−α
2

1

r
r

r = 2 sin α
2
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Reconstruction Crust 2D 0.4 sample ⇒ wanted result ⊂ crust

0.4 sample ⇒ wanted result ⊂ crustTheorem:

x

x′

x, x′ two neighboring points on Curve

Curve

Circle thru x and x′ centered on Curve

By contradiction assume v ∈

v intersects another cc of curve
(by Lemma)

θ R ≤ 2r sin θ
2

≤ π
2 + arcsin r2

θ ≤
α
2

x′
x β

β = π − π−α
2

r

r = 2 sin α
2
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0.4 sample ⇒ wanted result ⊂ crustTheorem:

x

x′

x, x′ two neighboring points on Curve

Curve

Circle thru x and x′ centered on Curve

By contradiction assume v ∈

v intersects another cc of curve
(by Lemma)

θ R ≤ 2r sin θ
2

θ ≤ π
2 + arcsin r2
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Reconstruction Crust 2D 0.4 sample ⇒ wanted result ⊂ crust

0.4 sample ⇒ wanted result ⊂ crustTheorem:

x

x′

x, x′ two neighboring points on Curve

Curve

Circle thru x and x′ centered on Curve

By contradiction assume v ∈

v intersects another cc of curve
(by Lemma)

θ R ≤ 2r sin θ
2

θ ≤ π
2 + arcsin r2
≤ +

≤ r + 2r sin
(
π
4 + 1

2arcsin
r
2

)
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Reconstruction Crust 2D 0.4 sample ⇒ wanted result ⊂ crust

0.4 sample ⇒ wanted result ⊂ crustTheorem:

x

x′

x, x′ two neighboring points on Curve

Curve

Circle thru x and x′ centered on Curve

By contradiction assume v ∈

v intersects another cc of curve
(by Lemma)

θ R ≤ 2r sin θ
2

θ ≤ π
2 + arcsin r2
≤ +

≤ r + 2r sin
(
π
4 + 1

2arcsin
r
2

)
≤lfs= 1 contradiction is reachedif
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Reconstruction Crust 2D 0.4 sample ⇒ wanted result ⊂ crust

0.4 sample ⇒ wanted result ⊂ crustTheorem:

x

x′

x, x′ two neighboring points on Curve

Curve

Circle thru x and x′ centered on Curve

By contradiction assume v ∈

v intersects another cc of curve
(by Lemma)

θ R ≤ 2r sin θ
2

θ ≤ π
2 + arcsin r2
≤ +

≤ r + 2r sin
(
π
4 + 1

2arcsin
r
2

)
≤lfs= 1 contradiction is reachedif

r + 2r sin
(
π
4 + 1

2arcsin
r
2

)Plot
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Reconstruction Crust 2D 0.4 sample ⇒ wanted result ⊂ crust

0.4 sample ⇒ wanted result ⊂ crustTheorem:



14 - 1

Reconstruction Crust 2D 0.25 sample ⇒ crust ⊂ wanted result

Theorem: 0.25 sample ⇒ crust ⊂ wanted result
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Reconstruction Crust 2D 0.25 sample ⇒ crust ⊂ wanted result

Theorem: 0.25 sample ⇒ crust ⊂ wanted result

x

x′



14 - 3

Reconstruction Crust 2D 0.25 sample ⇒ crust ⊂ wanted result

Theorem: 0.25 sample ⇒ crust ⊂ wanted result

x

x′

Assume empty circle



14 - 4
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No Voronoi vertices there

=⇒
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Reconstruction Crust 2D 0.25 sample ⇒ crust ⊂ wanted result

Theorem: 0.25 sample ⇒ crust ⊂ wanted result

x

x′

Assume empty circle

No Voronoi vertices there

=⇒
No sample points there
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Reconstruction Crust 2D 0.25 sample ⇒ crust ⊂ wanted result

Theorem: 0.25 sample ⇒ crust ⊂ wanted result

x

x′

Assume empty circle
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Reconstruction Crust 2D 0.25 sample ⇒ crust ⊂ wanted result

Theorem: 0.25 sample ⇒ crust ⊂ wanted result

≤ π
2 + 2arcsin r2 α

4

β = π − π−α
2

r ' 2 sin α
4

r



14 - 8

Reconstruction Crust 2D 0.25 sample ⇒ crust ⊂ wanted result

Theorem: 0.25 sample ⇒ crust ⊂ wanted result

≤ π
2 + 2arcsin r2 α

4

β = π − π−α
2

r ' 2 sin α
4

rβ
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Reconstruction Crust 2D 0.25 sample ⇒ crust ⊂ wanted result

Theorem: 0.25 sample ⇒ crust ⊂ wanted result

x

x′

Assume empty circle

ψ

ψ ≥ π
4 − 2 arcsin r

2

biggest of two angles
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x

x′

Assume empty circle
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‖xy‖≥ 2 sinψ
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Reconstruction Crust 2D 0.25 sample ⇒ crust ⊂ wanted result

Theorem: 0.25 sample ⇒ crust ⊂ wanted result

x

x′

Assume empty circle

ψ

ψ ≥ π
4 − 2 arcsin r

2

biggest of two angles

2ψy

‖xy‖≥ 2 sinψ

By Lemma, circle xx′yintersects medial axis
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Reconstruction Crust 2D 0.25 sample ⇒ crust ⊂ wanted result

Theorem: 0.25 sample ⇒ crust ⊂ wanted result

x

x′

Assume empty circle

ψ

ψ ≥ π
4 − 2 arcsin r

2

biggest of two angles

2ψy

‖xy‖≥ 2 sinψ

Compute ε to ensure that

1
ε× encloses
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Reconstruction 3D
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Reconstruction 3D

Difficulty: sliver
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Reconstruction 3D

Difficulty: sliver

small sphere
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Reconstruction 3D
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Reconstruction 3D

Difficulty: sliver

small sphere four sample points

almost flat Delaunay tetrahedron



15 - 6
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Reconstruction 3D

Difficulty: sliver

small sphere four sample points

almost flat Delaunay tetrahedron

Which triangle belongs to reconstruction ?

Crust: Voronoi vertices may kill useful triangles
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Reconstruction 3D
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Reconstruction 3D
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Reconstruction 3D
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Reconstruction 3D

Pole = farthest of seed
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Reconstruction 3D

Pole = farthest of seed

2nd pole= farthest of 1st pole
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Reconstruction 3D

Pole = farthest of seed

2nd pole= farthest of 1st pole

Approximate normal

Approximate medial axis → crust
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Reconstruction 3D

Pole = farthest of seed

2nd pole= farthest of 1st pole

Approximate normal

Approximate medial axis → crust Do not kill slivers
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Meshing
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Meshing

Discretize space to solve (differential) equations

Finite elements

Finite differences
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Meshing

Discretize space to solve (differential) equations

Finite elements

Finite differences

Good mesh:

Control shape of elements (no small angles)

Control size of elements (adjust to function variability)

Minimize number of elements
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Meshing

Gallery

Structured meshes (advancing front, deformation)

Delaunay mesh refinement

[Ruppert]

off-centers

Delaunay mesh optimization

3D

protecting small angles
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Meshing Gallery
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Meshing Gallery
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Meshing

sharp features

Gallery
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Meshing Gallery
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Meshing Structured meshes

Regular grid
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Meshing Structured meshes

Regular grid

Shape
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Meshing Structured meshes

Regular grid

Shape

to fit the grid in the shape

Deform
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Meshing Structured meshes

Regular grid

Shape

to fit the grid in the shape

Deform
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Meshing Structured meshes

Shape
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Meshing Structured meshes

Advancing front

Shape
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Meshing Structured meshes

Advancing front

Shape
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Meshing Structured meshes

Advancing front

Shape
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Meshing Structured meshes

Shape
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Meshing Structured meshes

Add grid

Shape
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Meshing Structured meshes

Add grid

Shape

Triangulate
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Meshing Structured meshes

Shape

Triangulate

Uniform mesh
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Meshing Structured meshes

Shape
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Meshing Structured meshes

Shape
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Meshing Structured meshes

Shape

Triangulate
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Meshing Structured meshes

Shape

Triangulate

Adaptive mesh
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Meshing Delaunay mesh refinement [Ruppert]

Unstructured mesh

Use Delaunay (good angles property)

Add vertices



25 - 2

Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG
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Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG

Delaunay
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Meshing Delaunay mesh refinement [Ruppert]

Def: Edge encroached by vertex

if inside diametral circle
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Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG Encroached

Split at middle

Delaunay
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Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG

Delaunay
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Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG
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Meshing Delaunay mesh refinement [Ruppert]
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Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG
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Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG
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Meshing Delaunay mesh refinement [Ruppert]
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Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG

Delaunay refinement
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Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG

Delaunay

Small angle

Add circumcenter

refinement
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Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG

Delaunay

Small angle

Add circumcenter

refinement
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Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG

Delaunay refinement
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Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG

Delaunay

Angle is multiplied by 2
refinement
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Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG

Delaunay

Small angle

But circumcircle encroached

Split edge

refinement
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Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG

Delaunay

Small angle

But circumcircle encroached

Split edge

refinement
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Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG

Delaunay refinement
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Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG

Delaunay refinement
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Input: PSLG

Delaunay refinement
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Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG

Delaunay refinement
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Meshing Delaunay mesh refinement [Ruppert]

Input: PSLG

Delaunay refinement

Output: Mesh with angle guaranties
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Meshing Delaunay mesh refinement [Ruppert]

Small angles means < α < 20◦

Theorem: algorithm terminates with mesh of size O(optimal)
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Meshing Delaunay mesh refinement [Ruppert]

lfs: R2 → R

distance to second non incident segment
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lfs: R2 → R

distance to second non incident segment
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Meshing Delaunay mesh refinement [Ruppert]

lfs: R2 → R

distance to second non incident segment

p

lfs(p)
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Meshing Delaunay mesh refinement [Ruppert]

lfs: R2 → R
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Meshing Delaunay mesh refinement [Ruppert]

lfs: R2 → R

distance to second non incident segment

p
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Meshing Delaunay mesh refinement [Ruppert]

lfs: R2 → R

distance to second non incident segment

lfs(p)
p
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Meshing Delaunay mesh refinement [Ruppert]

Lemma: lfs(q) ≤ lfs(p) + ‖pq‖

p

q
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Meshing Delaunay mesh refinement [Ruppert]

Lemma: lfs(q) ≤ lfs(p) + ‖pq‖

p

qlfs(p)

two non-incident edges
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Meshing Delaunay mesh refinement [Ruppert]

Lemma: lfs(q) ≤ lfs(p) + ‖pq‖

p

qlfs(p)

two non-incident edges

lfs(p) + ‖pq‖
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Meshing Delaunay mesh refinement [Ruppert]

Lemma:

There are constants CS ≥ CT ≥ 1 such that

At initialization, nearest vertex of vertex p
is at distance ≥ lfs(p)

Nearest vertex of circumcenter p of skinny triangle
is at distance ≥ 1

CT
lfs(p)

Nearest vertex of midpoint p of split segment
is at distance ≥ 1

CS
lfs(p)

Assume no angles ≥ 90◦ in input
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Meshing Delaunay mesh refinement [Ruppert]

Lemma:

There are constants CS ≥ CT ≥ 1 such that

At initialization, nearest vertex of vertex p
is at distance ≥ lfs(p)

Nearest vertex of circumcenter p of skinny triangle
is at distance ≥ 1

CT
lfs(p)

Nearest vertex of midpoint p of split segment
is at distance ≥ 1

CS
lfs(p)

Easy
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Meshing Delaunay mesh refinement [Ruppert]

p

NV (p)
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Meshing Delaunay mesh refinement [Ruppert]

p

NV (p)



29 - 4

Meshing Delaunay mesh refinement [Ruppert]

p

NV (p)
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Meshing Delaunay mesh refinement [Ruppert]

Lemma:

There are constants CS ≥ CT ≥ 1 such that

At initialization, nearest vertex of vertex p
is at distance ≥ lfs(p)

Nearest vertex of circumcenter p of skinny triangle
is at distance ≥ 1

CT
lfs(p)

Nearest vertex of midpoint p of split segment
is at distance ≥ 1

CS
lfs(p)
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Meshing Delaunay mesh refinement [Ruppert]

p

θ

skinny: θ < α
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Meshing Delaunay mesh refinement [Ruppert]

p

θ

skinny: θ < α

2θ

r

d

a

b wlog: a added after b
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Meshing Delaunay mesh refinement [Ruppert]

p

θ

skinny: θ < α

2θ

r

d

a

b wlog: a added after b

If a input vertex
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Meshing Delaunay mesh refinement [Ruppert]

p

θ

skinny: θ < α

2θ

r

d

a

b wlog: a added after b

If a input vertex

b also input vertex

lfs(a) ≤ d

by first statement
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Meshing Delaunay mesh refinement [Ruppert]

p

θ

skinny: θ < α

2θ

r

d

a

b wlog: a added after b

If a input vertex
lfs(a) ≤ d

If a circumcenter
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Meshing Delaunay mesh refinement [Ruppert]

p

θ

skinny: θ < α

2θ

r

d

a

b wlog: a added after b

If a input vertex
lfs(a) ≤ d

If a circumcenter

of circle of radius ≤ d

induction:

d ≥ 1
CT

lfs(a)
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Meshing Delaunay mesh refinement [Ruppert]

p

θ

skinny: θ < α

2θ

r

d

a

b wlog: a added after b

If a input vertex
lfs(a) ≤ d

If a circumcenter

of circle of radius ≤ d

induction:

d ≥ 1
CT

lfs(a)

lfs(a) ≤ CT d



30 - 9

Meshing Delaunay mesh refinement [Ruppert]

p

θ

skinny: θ < α

2θ

r

d

a

b wlog: a added after b

If a input vertex
lfs(a) ≤ d

If a circumcenter
lfs(a) ≤ CT d

If a midpoint
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Meshing Delaunay mesh refinement [Ruppert]

p

θ

skinny: θ < α

2θ

r

d

a

b wlog: a added after b

If a input vertex
lfs(a) ≤ d

If a circumcenter
lfs(a) ≤ CT d

If a midpoint

Induction:

d ≥ 1
CS

lfs(a)
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Meshing Delaunay mesh refinement [Ruppert]

p

θ

skinny: θ < α

2θ

r

d

a

b wlog: a added after b

If a input vertex
lfs(a) ≤ d

If a circumcenter
lfs(a) ≤ CT d

If a midpoint

Induction:

d ≥ 1
CS

lfs(a)

lfs(a) ≤ CSd
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Meshing Delaunay mesh refinement [Ruppert]

p

θ

skinny: θ < α

2θ

r

d

a

b wlog: a added after b

If a input vertex
lfs(a) ≤ d

If a circumcenter
lfs(a) ≤ CT d

If a midpoint
lfs(a) ≤ CSd
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Meshing Delaunay mesh refinement [Ruppert]

p

θ

skinny: θ < α

2θ

r

d

a

b wlog: a added after b

If a input vertex
lfs(a) ≤ d

If a circumcenter
lfs(a) ≤ CT d

If a midpoint
lfs(a) ≤ CSd
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Meshing Delaunay mesh refinement [Ruppert]

p

θ

skinny: θ < α

2θ

r

d

a

b wlog: a added after b

If a input vertex
lfs(a) ≤ d

If a circumcenter
lfs(a) ≤ CT d

If a midpoint
lfs(a) ≤ CSd

d = 2r sin θ
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Meshing Delaunay mesh refinement [Ruppert]

p

θ

skinny: θ < α

2θ

r

d

a

b wlog: a added after b

If a input vertex
lfs(a) ≤ d

If a circumcenter
lfs(a) ≤ CT d

If a midpoint
lfs(a) ≤ CSd

lfs(a) ≤ 2CSr sin θ
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Meshing Delaunay mesh refinement [Ruppert]

p

θ

skinny: θ < α

2θ

r

d

a

b wlog: a added after b

If a input vertex
lfs(a) ≤ d

If a circumcenter
lfs(a) ≤ CT d

If a midpoint
lfs(a) ≤ CSd

lfs(a) ≤ 2CSr sin θ

lfs(p) ≤ lfs(a) + r
Lemma
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Meshing Delaunay mesh refinement [Ruppert]

p

θ

skinny: θ < α

2θ

r

d

a

b wlog: a added after b

If a input vertex
lfs(a) ≤ d

If a circumcenter
lfs(a) ≤ CT d

If a midpoint
lfs(a) ≤ CSd

lfs(a) ≤ 2CSr sin θ

lfs(p) ≤ lfs(a) + r
Lemma

≤ r(1 + 2CS sinα)
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Meshing Delaunay mesh refinement [Ruppert]

p

θ

skinny: θ < α

2θ

r

d

a

b wlog: a added after b

If a input vertex
lfs(a) ≤ d

If a circumcenter
lfs(a) ≤ CT d

If a midpoint
lfs(a) ≤ CSd

lfs(a) ≤ 2CSr sin θ

lfs(p) ≤ lfs(a) + r
Lemma

≤ r(1 + 2CS sinα)
OK if CT ≥ 1 + 2CS sinα
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Meshing Delaunay mesh refinement [Ruppert]

Lemma:

There are constants CS ≥ CT ≥ 1 such that

At initialization, nearest vertex of vertex p
is at distance ≥ lfs(p)

Nearest vertex of circumcenter p of skinny triangle
is at distance ≥ 1

CT
lfs(p)

Nearest vertex of midpoint p of split segment
is at distance ≥ 1

CS
lfs(p)
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Meshing Delaunay mesh refinement [Ruppert]

p

a
a is creating the edge split

r
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Meshing Delaunay mesh refinement [Ruppert]

p

a

r

a midpoint
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Meshing Delaunay mesh refinement [Ruppert]

p

a

r

a midpoint

of non incident segment

(⇐angle condition)

‖pa‖ ≥ lfs(p) ≥ 1
CS

lfs(p)



31 - 5

Meshing Delaunay mesh refinement [Ruppert]

p

a

r

a midpoint

of non incident segment

(⇐angle condition)

‖pa‖ ≥ lfs(p) ≥ 1
CS

lfs(p)

‖pa‖ ≥ 1
CS

lfs(p)



31 - 6

Meshing Delaunay mesh refinement [Ruppert]

p

a

r

a midpoint
‖pa‖ ≥ 1

CS
lfs(p)

a circumcenter(not inserted)
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Meshing Delaunay mesh refinement [Ruppert]

p

a

r

a midpoint
‖pa‖ ≥ 1

CS
lfs(p)

a circumcenter(not inserted)r′

Induction:

r′ ≥ 1
CT

lfs(a)
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Meshing Delaunay mesh refinement [Ruppert]

p

a

r

a midpoint
‖pa‖ ≥ 1

CS
lfs(p)

a circumcenter(not inserted)r′

Induction:

r′ ≥ 1
CT

lfs(a)

r′ ≤
√
2r

√
2r
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Meshing Delaunay mesh refinement [Ruppert]

p

a

r

a midpoint
‖pa‖ ≥ 1

CS
lfs(p)

a circumcenter(not inserted)r′

Induction:

r′ ≥ 1
CT

lfs(a)

r′ ≤
√
2r

lfs(p ≤ lfs(a) + r
Lemma



31 - 10

Meshing Delaunay mesh refinement [Ruppert]

p

a

r

a midpoint
‖pa‖ ≥ 1

CS
lfs(p)

a circumcenter(not inserted)r′

Induction:

r′ ≥ 1
CT

lfs(a)

r′ ≤
√
2r

lfs(p ≤ lfs(a) + r
Lemma

≤ r′CT + r
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Meshing Delaunay mesh refinement [Ruppert]

p

a

r

a midpoint
‖pa‖ ≥ 1

CS
lfs(p)

a circumcenter(not inserted)r′

Induction:

r′ ≥ 1
CT

lfs(a)

r′ ≤
√
2r

lfs(p ≤ lfs(a) + r
Lemma

≤ r′CT + r

≤ r(
√
2CT + 1)
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Meshing Delaunay mesh refinement [Ruppert]

p

a

r

a midpoint
‖pa‖ ≥ 1

CS
lfs(p)

a circumcenter(not inserted)r′

Induction:

r′ ≥ 1
CT

lfs(a)

r′ ≤
√
2r

lfs(p ≤ lfs(a) + r
Lemma

≤ r′CT + r

≤ r(
√
2CT + 1)

OK if CS ≥ 1 +
√
2CT
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OK if CT ≥ 1 + 2CS sinα

Meshing Delaunay mesh refinement [Ruppert]

OK if CS ≥ 1 +
√
2CT
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OK if CT ≥ 1 + 2CS sinα

Meshing Delaunay mesh refinement [Ruppert]

OK if CS ≥ 1 +
√
2CT

CT ≥ 1 + 2(1 +
√
2CT ) sinα

CT−1
2(1+

√
2CT )

≥ sinα
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OK if CT ≥ 1 + 2CS sinα

Meshing Delaunay mesh refinement [Ruppert]

OK if CS ≥ 1 +
√
2CT

CT ≥ 1 + 2(1 +
√
2CT ) sinα

CT−1
2(1+

√
2CT )

≥ sinα

CT

CT−1
2(1+

√
2CT )

1
2
√
2
' sin 20.7◦
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OK if CT ≥ 1 + 2CS sinα

Meshing Delaunay mesh refinement [Ruppert]

OK if CS ≥ 1 +
√
2CT

CT ≥ 1 + 2(1 +
√
2CT ) sinα

CT−1
2(1+

√
2CT )

≥ sinα Choose α ≤ 20◦

CT := 1+2 sinα
1−2
√
2 sinα

CS := 1+
√
2

1−2
√
2 sinα
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OK if CT ≥ 1 + 2CS sinα

Meshing Delaunay mesh refinement [Ruppert]

OK if CS ≥ 1 +
√
2CT

CT ≥ 1 + 2(1 +
√
2CT ) sinα

CT−1
2(1+

√
2CT )

≥ sinα Choose α ≤ 20◦

CT := 1+2 sinα
1−2
√
2 sinα

CS := 1+
√
2

1−2
√
2 sinα

20◦

51

74
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OK if CT ≥ 1 + 2CS sinα

Meshing Delaunay mesh refinement [Ruppert]

OK if CS ≥ 1 +
√
2CT

CT ≥ 1 + 2(1 +
√
2CT ) sinα

CT−1
2(1+

√
2CT )

≥ sinα Choose α ≤ 20◦

CT := 1+2 sinα
1−2
√
2 sinα

CS := 1+
√
2

1−2
√
2 sinα

20◦

51

74

10◦

2.7

4.8
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Meshing Delaunay mesh refinement [Ruppert]

Lemma: no vertex close to the last inserted vertex



33 - 2

Meshing Delaunay mesh refinement [Ruppert]

Lemma: no vertex close to the last inserted vertex

Theorem: no vertex close to another vertex
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Meshing Delaunay mesh refinement [Ruppert]

Lemma: no vertex close to the last inserted vertex

Theorem: no vertex close to another vertex

∀p, q ∈ Output; ‖pq‖ ≥ 1
CS+1 lfs(p)
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Meshing Delaunay mesh refinement [Ruppert]

Lemma: no vertex close to the last inserted vertex

Theorem: no vertex close to another vertex

∀p, q ∈ Output; ‖pq‖ ≥ 1
CS+1 lfs(p)

p after q
‖pq‖ ≥ 1

CS
lfs(p) ≥ 1

CS+1 lfs(p)
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Meshing Delaunay mesh refinement [Ruppert]

Lemma: no vertex close to the last inserted vertex

Theorem: no vertex close to another vertex

∀p, q ∈ Output; ‖pq‖ ≥ 1
CS+1 lfs(p)

p after q
‖pq‖ ≥ 1

CS
lfs(p) ≥ 1

CS+1 lfs(p)

q after p
‖pq‖ ≥ 1

CS
lfs(q) ≥ lfs(p)−‖pq‖

CS

‖pq‖ ≥ 1
CS+1 lfs(p)
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Meshing Delaunay mesh refinement [Ruppert]

Theorem: number of vertices in ouput is O
Ä∫

1
lfs2(x)

dx
ä
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Meshing Delaunay mesh refinement [Ruppert]

Theorem: number of vertices in ouput is O
Ä∫

1
lfs2(x)

dx
ä

1
CS+1 lfs(p)

is empty
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Theorem: number of vertices in ouput is O
Ä∫

1
lfs2(x)

dx
ä

1
CS+1 lfs(p)

is empty
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Meshing Delaunay mesh refinement [Ruppert]

Theorem: number of vertices in ouput is O
Ä∫

1
lfs2(x)

dx
ä

1
CS+1 lfs(p)

is empty
1
2 ·

1
CS+1 lfs(p)

are disjoint
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Meshing Delaunay mesh refinement [Ruppert]

Theorem: number of vertices in ouput is O
Ä∫

1
lfs2(x)

dx
ä

1
CS+1 lfs(p)

is empty
1
2 ·

1
CS+1 lfs(p)

are disjoint∫
1

lfs2(x)
dx ≥

∫
Disks

1
lfs2(x)

dx
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Meshing Delaunay mesh refinement [Ruppert]

Theorem: number of vertices in ouput is O
Ä∫

1
lfs2(x)

dx
ä

1
CS+1 lfs(p)

is empty
1
2 ·

1
CS+1 lfs(p)

are disjoint∫
1

lfs2(x)
dx ≥

∫
Disks

1
lfs2(x)

dx

lfs(x) ≤ lfs(p) + r
x p

r

≥
∑

Disks

∫
Disk

1
(lfs(p)+r)2 dx
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Meshing Delaunay mesh refinement [Ruppert]

Theorem: number of vertices in ouput is O
Ä∫

1
lfs2(x)

dx
ä

1
CS+1 lfs(p)

is empty
1
2 ·

1
CS+1 lfs(p)

are disjoint∫
1

lfs2(x)
dx ≥

∫
Disks

1
lfs2(x)

dx

lfs(x) ≤ lfs(p) + r
x p

r

≥
∑

Disks

∫
Disk

1
(lfs(p)+r)2 dx∫

Disk
1

(lfs(p)+r)2 dx = πr2

(lfs(p)+r)2 = πr2

(2(CS+1)r+r)2 = π
2CS+3
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Theorem: number of vertices in ouput is O
Ä∫

1
lfs2(x)

dx
ä

1
CS+1 lfs(p)

is empty
1
2 ·

1
CS+1 lfs(p)

are disjoint∫
1

lfs2(x)
dx ≥

∫
Disks

1
lfs2(x)

dx

lfs(x) ≤ lfs(p) + r
x p

r

≥
∑

Disks

∫
Disk

1
(lfs(p)+r)2 dx

≥ ]vertices π
2CS+3
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Meshing Delaunay mesh refinement [Ruppert]

Optimality (up to a constant)
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Meshing Delaunay mesh refinement small angles

Assume no angles ≥ 90◦ in input
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Meshing Delaunay mesh refinement small angles

Assume no angles ≥ 90◦ in input
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Meshing Delaunay mesh refinement small angles

Assume no angles ≥ 90◦ in input
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Meshing Delaunay mesh refinement small angles

Assume no angles ≥ 90◦ in input
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Meshing Delaunay mesh refinement small angles

Assume no angles ≥ 90◦ in input
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Meshing Delaunay mesh refinement small angles

Assume no angles ≥ 90◦ in input
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Meshing Delaunay mesh refinement small angles

Assume no angles ≥ 90◦ in input
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Meshing Delaunay mesh refinement small angles

Assume no angles ≥ 90◦ in input

Protect vertices
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Meshing Delaunay mesh refinement small angles

Assume no angles ≥ 90◦ in input

Protect vertices
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Meshing Delaunay mesh refinement off-centers

Very skinny triangle

≤ α
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Meshing Delaunay mesh refinement off-centers

Very skinny triangle

Insert circumcenter

≤ α
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Meshing Delaunay mesh refinement off-centers

Very skinny triangle

Insert circumcenter

Still skinny triangle≤ α

≤ α
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Meshing Delaunay mesh refinement off-centers

Very skinny triangle

Insert circumcenter

Still skinny triangle

Off center is point

that creates

a non skinny triangle

≤ α

= α
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Meshing Delaunay mesh refinement off-centers

Very skinny triangle

Insert circumcenter

Still skinny triangle

Off center is point

that creates

a non skinny triangle

≤ α

= α

Same theoretical guarantees

Save 30% in practice
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Meshing Delaunay mesh optimization

LLoyd iteration
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Meshing Delaunay mesh optimization

LLoyd iteration
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Meshing Delaunay mesh optimization

LLoyd iteration
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Meshing Delaunay mesh optimization

LLoyd iteration Move to barycenter

Clip by some boundary
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Meshing Delaunay mesh optimization

LLoyd iteration
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Meshing Delaunay mesh optimization

LLoyd iteration
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Meshing Delaunay mesh optimization

LLoyd iteration
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Meshing Delaunay mesh optimization

LLoyd iteration Reach a nice point distribution
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Meshing Delaunay mesh optimization

Alternate

Delaunay mesh refinement

Lloyd smooting or different kind of smoothing
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Meshing Delaunay mesh optimization
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Meshing Delaunay mesh optimization
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Meshing Delaunay mesh optimization
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Meshing 3D

Constraints: edges and faces

Point to insert may be encroached by edges or faces
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The end


