Triangulations in non-Euclidean spaces

Monique Teillaud

Outline

Flat manifolds

3 Sphere

- 4 Hyperbolic space
- 5 Hyperbolic manifolds

Manifolds

Manifolds

Flat manifolds

3 Sphere

- 4 Hyperbolic space
- 5 Hyperbolic manifolds

Smooth manifold

Locally homeomorphic to a linear space. Atlas of charts

Smooth manifold: transition maps C^{∞}

Bounded set $D \subset \mathbb{R}^m$. $P \subset \mathbb{R}^m$ finite set of points.

• *P* is
$$\epsilon$$
-dense for *D*: $d(x, P) < \epsilon$ for all $x \in D$

• *P* is
$$\mu\epsilon$$
-separated is $d(p,q) \ge \mu\epsilon$ for all $p,q \in P$

P is a (μ, ϵ) -net for *D* if it is $\mu\epsilon$ -separated and ϵ -dense for *D*.

Usually $D = D_{\epsilon}(P) = \{x \in \operatorname{conv}(P) | d(x, \partial \operatorname{conv}(P)) \ge \epsilon\}$

Hypotheses

Bounded set $D \subset \mathbb{R}^m$. $P \subset \mathbb{R}^m$ finite set of points.

- *P* is ϵ -dense for *D*: $d(x, P) < \epsilon$ for all $x \in D$
- *P* is $\mu\epsilon$ -separated is $d(p,q) \ge \mu\epsilon$ for all $p,q \in P$

P is a (μ, ϵ) -net for *D* if it is $\mu\epsilon$ -separated and ϵ -dense for *D*.

Usually $D = D_{\epsilon}(P) = \{x \in \operatorname{conv}(P) \mid d(x, \partial \operatorname{conv}(P)) \ge \epsilon\}$

Set of points in \mathcal{M} indexed by $\mathcal{N} = \{i, \ldots, n\}$ For each $i \in \mathcal{N}$, subset of neighbors $\mathcal{N}_i \subset \mathcal{N}$. $\phi_i : \mathcal{N}_i \to U_i \subset \mathbb{R}^m$ injective Sampling condition $\epsilon_i > 0$ such that $P_i = \phi(\mathcal{N}_i)$ is a (μ, ϵ_i) -net for a small ball $B(p_i) \subset U_i, p_i = \phi(i)$. $(\epsilon_i \text{ and } \epsilon_j \text{ close if } p_i \text{ and } p_j \text{ close})$

Hypotheses

Set of points in \mathcal{M} indexed by $\mathcal{N} = \{i, \ldots, n\}$ For each $i \in \mathcal{N}$, subset of neighbors $\mathcal{N}_i \subset \mathcal{N}$. $\phi_i : \mathcal{N}_i \to U_i \subset \mathbb{R}^m$ injective Sampling condition $\epsilon_i > 0$ such that $P_i = \phi(\mathcal{N}_i)$ is a (μ, ϵ_i) -net for a small ball $B(p_i) \subset U_i, p_i = \phi(i)$. $(\epsilon_i \text{ and } \epsilon_j \text{ close if } p_i \text{ and } p_j \text{ close})$

Low metric distortion

 p_j close to $p_i \in U_i$ neighborhood $U_{ij} \subset U_i$ domain of the transition function φ_{ji} $|d_i(x, y) - d_j(\varphi_{ji}(x), \varphi_{ji}(y))| \le \xi d_i(x, y), \ \forall x, y \in U_{ij}$

Delaunay triangulation

For each $i \in \mathcal{N}$

- $DT(P_i)$ of the set of points P_i in \mathbb{R}^m
- $\operatorname{star}(i, \mathcal{N}) \simeq \operatorname{star}(p_i, DT(P_i))$

Delaunay triangulation

For each $i \in \mathcal{N}$

- $DT(P_i)$ of the set of points P_i in \mathbb{R}^m
- $\operatorname{star}(i, \mathcal{N}) \simeq \operatorname{star}(p_i, DT(P_i))$

Hypotheses

- Sampling condition
- Low distortion

•
$$d_i(\varphi_i(x), \varphi_i(y)) - d_{\mathcal{M}}(x, y)| \le \eta d_i(\varphi_i(x), \varphi_i(y))$$

for $x, y \in \varphi_i^{-1}(B(p_i))$, where $B(p_i)$ and η small

then the union of the stars form the Delaunay complex of ${\cal N}$ in ${\cal M}$ with respect to $d_{\cal M}$

(*) more exactly some perturbed point sets P'_i

Flat manifolds

Manifolds

Flat manifolds

- Motivation
- Closed Euclidean d-manifold
- Delaunay triangulation in X: Definition
- Sufficient conditions
- What if the conditions are not satisfied?
- Incremental algorithm
- Open questions

3 Sphere

4 Hyperbolic space

Flat manifolds — Motivation

Manifolds

2 Flat manifolds

Motivation

- Closed Euclidean d-manifold
- Delaunay triangulation in X: Definition
- Sufficient conditions
- What if the conditions are not satisfied?
- Incremental algorithm
- Open questions

3 Sphere

4

Hyperbolic space

Motivation

Motivation

Needs for 3D periodic triangulations (3D flat torus) in astronomy, material engineering, nano-structures

Motivation

Crystallographic groups come up in structural molecular biology

"Biological structures and simulation are not living in a cubic box" (Bernauer)

Flat manifolds — Closed Euclidean *d*-manifold

Manifolds

Flat manifolds

Motivation

• Closed Euclidean *d*-manifold

- Delaunay triangulation in X: Definition
- Sufficient conditions
- What if the conditions are not satisfied?
- Incremental algorithm
- Open questions

Sphere

4

Hyperbolic space

 $\mathsf{Manifold}\ \mathbb{X}$

- closed: compact without boundary
- flat or Euclidean: every point has a neighborhood isometric to a neighborhood in \mathbb{R}^d

 $\mathsf{Manifold}\ \mathbb{X}$

- closed: compact without boundary
- flat or Euclidean: every point has a neighborhood isometric to a neighborhood in \mathbb{R}^d
- $\mathbb X$ diffeomorphic to $\mathbb R^d/\mathcal G$

where ${\mathcal{G}}$ group

- Bieberbach: discrete group of isometries of \mathbb{R}^d with compact quotient
- torsion-free: no fixed point

 $\mathsf{Manifold}\ \mathbb{X}$

- closed: compact without boundary
- flat or Euclidean: every point has a neighborhood isometric to a neighborhood in \mathbb{R}^d

$\mathbb X$ diffeomorphic to $\mathbb R^d/\mathcal G$

where ${\mathcal{G}}$ group

- Bieberbach: discrete group of isometries of \mathbb{R}^d with compact quotient
- torsion-free: no fixed point

$\forall d$, only a finite number of dD Bieberbach groups up to isomorphism

dimension 2:

- 17 wallpaper groups
- 2 closed Euclidean manifolds: torus and Klein bottle

$\forall d$, only a finite number of dD Bieberbach groups up to isomorphism

Monique Teillaud

Triangulations in non-Euclidean spaces

dimension 2:

- 17 wallpaper groups
- 2 closed Euclidean manifolds: torus and Klein bottle

dimension 3:

• 230 crystallographic groups

• 10 closed Euclidean manifolds (4 non-orientable) $\forall d$, only a finite number of dD Bieberbach groups up to isomorphism

Torus

Torus

 $\mathbb{T}^2 = \mathbb{R}^2 / \mathcal{G}$ $\mathcal{G} = \langle t_x, t_y \rangle$

Torus

$$\mathbb{T}^2 = \mathbb{R}^2 / \mathcal{G}$$

 $\mathcal{G} = \langle t_x, t_y \rangle$

Flat manifolds Closed Euclidean d-manifold

Torus

 $\mathbb{T}^2 = \mathbb{R}^2 / \mathcal{G}$ $\mathcal{G} = < t_x, t_y >$

Illustrations (2D)

Monique Teillaud

Klein bottle

$$\begin{split} \mathbb{K} &= \mathbb{R}^2 / \mathcal{G} \\ \mathcal{G} &= < r, t_y > \\ r \text{ glide reflexion} \end{split}$$

Klein bottle

 $\mathbb{K} = \mathbb{R}^2 / \mathcal{G}$ $\mathcal{G} = < r, t_y >$ *r* glide reflexion

Klein bottle

$$\begin{split} \mathbb{K} &= \mathbb{R}^2 / \mathcal{G} \\ \mathcal{G} &= < r, t_y > \\ r \text{ glide reflexion} \end{split}$$

Flat manifolds Closed Euclidean d-manifold

<mark>Illustratio</mark>ns (2D)

Monique Teillaud

Klein bottle

 $\mathbb{K} = \mathbb{R}^2 / \mathcal{G}$

 $\mathcal{G} = \langle r, t_{v} \rangle$

r glide reflexion

Flat manifolds — Delaunay triangulation in X: Definition

Manifolds

Flat manifolds

- Motivation
- Closed Euclidean *d*-manifold

• Delaunay triangulation in X: Definition

- Sufficient conditions
- What if the conditions are not satisfied?
- Incremental algorithm
- Open questions

Sphere

Hyperbolic space

illustration

 $\mathcal{G} = \langle t_x, t_y \rangle$ $\mathbb{X} = \mathbb{T}^2 = \mathbb{R}^2 / \mathcal{G}$ $\pi : \mathbb{R}^2 \to \mathbb{X}$

 ${\mathcal P}$ finite point set

illustration

 $\mathcal{G} = \langle t_x, t_y \rangle$ $\mathbb{X} = \mathbb{T}^2 = \mathbb{R}^2 / \mathcal{G}$ $\pi : \mathbb{R}^2 \to \mathbb{X}$

\mathcal{GP} infinite point set

illustration

 $\mathcal{G} = \langle t_x, t_y \rangle$ $\mathbb{X} = \mathbb{T}^2 = \mathbb{R}^2/\mathcal{G}$

 $\pi: \mathbb{R}^2 \to \mathbb{X}$

$\pi(DT(\mathcal{GP}))$ is not always a simplicial complex

One point in
$$\mathbb{T}^2$$

Monique Teillaud

$\pi(DT(\mathcal{GP}))$ is not always a simplicial complex

$\pi(DT(\mathcal{GP}))$ is not always a simplicial complex

One point in \mathbb{T}^2
$\pi(DT(\mathcal{GP}))$ is not always a simplicial complex

One point in \mathbb{T}^2 : self-edges

$\pi(DT(\mathcal{GP}))$ is not always a simplicial complex

One point in \mathbb{T}^3 : self-edges

$\pi(DT(\mathcal{GP}))$ is not always a simplicial complex

Cycle of length 2

Flat manifolds — Sufficient conditions

Manifolds

2 F

Flat manifolds

- Motivation
- Closed Euclidean d-manifold
- Delaunay triangulation in X: Definition
- Sufficient conditions
- What if the conditions are not satisfied?
- Incremental algorithm
- Open questions

3 Sphere

4

Hyperbolic space

Sufficient conditions

If the 1-skeleton of $\pi(DT(\mathcal{GP}))$ does not contain cycles of length ≤ 2 then $\pi(DT(\mathcal{GP}))$ is a triangulation of X

Sufficient conditions

```
If the 1-skeleton of \pi(DT(\mathcal{GP}))
does not contain cycles of length \leq 2
then \pi(DT(\mathcal{GP})) is a triangulation of X
```

•
$$\delta(\mathcal{G}) = \min_{p \in \mathbb{R}^d, g \in \mathcal{G}, g \neq 1_{\mathcal{G}}} \operatorname{dist}(p, gp)$$

• $\Delta(\mathcal{P})$ diameter of the largest empty ball

If $\Delta(\mathcal{GP}) < \frac{\delta(\mathcal{G})}{2}$ then $\pi(DT(\mathcal{GP}'))$ is a triangulation of X

for any finite $\mathcal{P}' \supseteq \mathcal{P}$

Flat manifolds — What if the conditions are not satisfied?

Manifolds

Flat manifolds

- Motivation
- Closed Euclidean *d*-manifold
- Delaunay triangulation in X: Definition
- Sufficient conditions
- What if the conditions are not satisfied?
- Incremental algorithm
- Open questions

Sphere

4 Hyperbolic space

Covering spaces

 ${\mathbb X}$ a topological space.

$$\begin{split} \rho: \tilde{\mathbb{X}} \to \mathbb{X} \text{ is a covering map,} \\ & \text{and } \tilde{\mathbb{X}} \text{ is a covering space of } \mathbb{X} \text{ if:} \end{split}$$

 $\forall x \in \mathbb{X}$

- $\exists V_x$ open neighborhood of x
- \exists a decomposition of $\rho^{-1}(V_x)$ as a family $\{U_{\alpha_x}\}$, $U_{\alpha_x} \subset \tilde{\mathbb{X}}$ pairwise disjoint

s.t. $\rho|_{U_{\alpha_x}}$ is a homeomorphism for each α_x .

If $h = \max_{x \in \mathbb{X}} |U_{\alpha_x}|$ is finite, then $\tilde{\mathbb{X}} = h$ -sheeted covering space.

Otherwise

Covering spaces

$$\mathcal{G} = < t_x, t_y >$$

 $\mathbb{X} = \mathbb{T}^2 = \mathbb{R}^2 / \mathcal{G}$

1-sheeted covering

Covering spaces

$$\mathcal{G} = \langle t_x, t_y \rangle$$

 $\mathbb{X}=\mathbb{T}^2=\mathbb{R}^2/\mathcal{G}$

$$\mathbb{R}^2/<2\cdot t_x, t_y>=2$$
-sheeted covering

Otherwise

Covering spaces

$$\mathcal{G} = \langle t_x, t_y \rangle$$

 $\mathbb{X} = \mathbb{T}^2 = \mathbb{R}^2 / \mathcal{G}$

$$\mathbb{R}^2/<2\cdot t_x, 2\cdot t_y>=$$
 4-sheeted covering

Otherwise

Covering spaces

- $\mathcal{G} = \langle t_x, t_y \rangle$
- $\mathbb{X} = \mathbb{T}^2 = \mathbb{R}^2 / \mathcal{G}$

If the conditions are not satisfied

One can construct a finitely-sheeted covering space of X:

 $X_{C} = \mathbb{R}^{d}/\mathcal{G}_{C} \quad \text{s.t.} \ \pi_{C}(DT(\mathcal{G}_{C}c_{C}(\mathcal{P}))) \text{ is a triangulation for any } \mathcal{P} \\ c_{C}(\mathcal{P}) = \# \text{sheets copies of } \mathcal{P}$

If the conditions are not satisfied

One can construct a finitely-sheeted covering space of X:

 $X_C = \mathbb{R}^d / \mathcal{G}_C$ s.t. $\pi_C(DT(\mathcal{G}_C c_C(\mathcal{P})))$ is a triangulation for any \mathcal{P} $c_C(\mathcal{P}) = \#$ sheets copies of \mathcal{P}

Proof uses

- each closed Euclidean *orbifold* has a *d*-torus as finitely-sheeted covering space
- it can be constructed

 $\mathbb{T}^2 = \text{2-sheeted} \\ \text{covering space of } \mathbb{K}$

Otherwise

If the conditions are not satisfied

One can construct a finitely-sheeted covering space of X:

 $\mathbb{X}_{C} = \mathbb{R}^{d}/\mathcal{G}_{C}$ s.t. $\pi_{C}(DT(\mathcal{G}_{C}c_{C}(\mathcal{P})))$ is a triangulation for any \mathcal{P} $c_{\mathcal{C}}(\mathcal{P}) = \#$ sheets copies of \mathcal{P}

If the conditions are not satisfied

$$\mathcal{G} = < t_x, t_y >$$
, $\mathbb{X} = \mathbb{T}^2 = \mathbb{R}^2/\mathcal{G}$

9-sheeted covering space

improved to 8-sheeted covering space

Flat manifolds — Incremental algorithm

Manifolds

Flat manifolds

- Motivation
- Closed Euclidean *d*-manifold
- Delaunay triangulation in X: Definition
- Sufficient conditions
- What if the conditions are not satisfied?
- Incremental algorithm
- Open questions

Sphere

4 Hyperbolic space

Incremental algorithm

• compute X_C

Incremental algorithm

X given

• compute \mathbb{X}_C

 \mathcal{P} given

- insert copies of points in DT_{χ_c}
- once diameter of largest empty ball $< \delta(\mathcal{G})/2$
 - remove copies
 - insert remaining points in DT_{\times}

Incremental algorithm

 $\mathbb X$ given

• compute X_C

 ${\mathcal P}$ given

- insert copies of points in $DT_{\mathbb{X}_C}$
- ullet once diameter of largest empty ball $<\delta(\mathcal{G})/2$
 - remove copies
 - insert remaining points in $DT_{\mathbb{X}}$

Computes

- $DT_{\mathbb{X}}(\mathcal{P})$ if possible
- $DT_{\mathbb{X}_{\mathcal{C}}}(\mathcal{P})$ otherwise

Incremental algorithm

X given

• compute \mathbb{X}_C

 \mathcal{P} given

- insert copies of points in DT_{χ_c}
- once diameter of largest empty ball $< \delta(\mathcal{G})/2$
 - remove copies
 - insert remaining points in DT_{\times}

Computes

- $DT_{\mathbb{X}}(\mathcal{P})$ if possible
- $DT_{\mathbb{X}_{\mathcal{C}}}(\mathcal{P})$ otherwise

works for orbifolds

Complexity

optimal randomized worst-case

•
$$O\left(n^{\lceil \frac{d}{2} \rceil} + \log n\right)$$
 time
• $O\left(n^{\lceil \frac{d}{2} \rceil}\right)$ space
complexity

using the Delaunay hierarchy

Implementation 3D flat torus (cubic domain)

3.5 and further

Implementation 3D flat torus (cubic domain)

3.5 and further

- Spatial sorting from CGAL
- Optional insertion of dummy points to force 1-sheeted covering •

Implementation 3D flat torus (cubic domain)

3.5 and further

- Spatial sorting from CGAL
- Optional insertion of dummy points to force 1-sheeted covering
- Data from research in cosmology
- Random points

1 million points in 23 seconds

2.33 GHz Intel Core 2 Duo processor

factor $\simeq 1.5$ compared to $_{\rm CGAL}$ Delaunay triangulation in \mathbb{R}^3 on large data sets

Implementation 3D flat torus (cubic domain)

Monique Teillaud

Triangulations in non-Euclidean spaces

27 / 92

Implementation 3D flat torus (cubic domain)

prototypes for periodic meshes

surface (Fisikopoulos)

using CGAL meshes

Implementation 3D flat torus (cubic domain)

prototypes for periodic meshes

volume (Bogdanov, Pellé)

using CGAL meshes

Implementation 3D flat torus (cubic domain)

applications, eg. topology of the cosmic web

Future

Flat manifolds — Open questions

Manifolds

Flat manifolds

- Open questions

Sphere 3

Future

Implementation

for more crystallographic groups...

Non-compact quotients

- always 1-cycles...
- data-structure? compactification of cylinder? in CGAL, $\mathbb{R}^2 \longrightarrow \mathbb{S}^2 \simeq \mathbb{R}^2 \cup \{\infty\}$

Sphere

3 Sphere

- 4 Hyperbolic space
- 5 Hyperbolic manifolds

Motivation

Geographic Information System

Information Visualization (pictures Larrea et al.)

Geophysics (picture Fohlmeister)

Delaunay triangulation on a sphere

Sphere $\mathcal{S} \in \mathbb{R}^3$.

Delaunay triangulation on a sphere

Sphere $S \in \mathbb{R}^3$.

Use the fact that all points are lying on the convex hull
Software

- QHULL (Barber et al.)
 Quick Hull algorithm, 3D convex hull
- HULL (Clarkson) Randomized incremental construction, 3D convex hull exact arithmetic on integers
- SUG *(Sugihara)* divide-and-conquer, 3D convex hull exact arithmetic on integers
- CGAL 3D Delaunay triangulation
- STRIPACK (Renka) Incremental with flips, Delaunay on sphere double number type (Fortran)

Using a 2D data structure

3D convex hull

where all points are lying on the convex hull

Using a 2D data structure

3D convex hull

where all points are lying on the convex hull

In practice: input points close to the sphere \longrightarrow

- Delaunay triangulation of the points projected onto the sphere OR
- Regular triangulation on the sphere

Incremental algorithm

Monique Teillaud

Regular triangulation in \mathbb{R}^2

weighted-point: $(p, r^2) \mapsto \text{circle } c$: center p, radius rpower product $pow(c, c') = \|pp'\|^2 - r^2 - r'^2$

Regular triangulation in \mathbb{R}^2

weighted-point: $(p, r^2) \mapsto \text{circle } c$: center p, radius rpower product $pow(c, c') = \|pp'\|^2 - r^2 - r'^2$

null radii \rightarrow Delaunay

Regular triangulation on \mathcal{S}

- ${\ensuremath{\, \circ }}$ Triangle ${\ensuremath{\, \rightarrow }}$ Triangle on the sphere
- ${\ensuremath{\,\circ}}$ Edge ${\ensuremath{\,\rightarrow}}$ Arc of great circle

Regular triangulation on ${\cal S}$

 $p \in \mathbb{R}^3 \mapsto \text{circle } c \text{ on } S.$

Regular triangulation on \mathcal{S}

power test \leftrightarrow orientation test

regular triangulation on $\mathcal{S}\leftrightarrow\mathsf{convex}$ hull in \mathbb{R}^3

Regular triangulation on \mathcal{S}

power test \leftrightarrow orientation test

regular triangulation on $\mathcal{S}\leftrightarrow\mathsf{convex}$ hull in \mathbb{R}^3

null radii \rightarrow Delaunay

Points on sphere

- null weights
- regular triangulation \leftrightarrow Delaunay
- *in_circle* predicate = orientation

coordinates = algebraic numbers of degree 2

Orientation predicate:

$$\operatorname{sign}(a_1\sqrt{\alpha_1}+a_2\sqrt{\alpha_2}+a_3\sqrt{\alpha_3}+a_4\sqrt{\alpha_4}),$$

 a_i, α_i rational

sign of algebraic number of degree ≤ 16 can be reduced to evaluating sign of polynomial expression see CGAL spherical kernel

Points close to the sphere

Regular triangulation \rightarrow hidden points?

Points close to the sphere

Regular triangulation \longrightarrow hidden points?

sphere S of radius RPoints close to S: $dist(p, S) \leq \delta$, $\forall p \in P$.

 $\forall p, q \in P, \ dist(p,q) > 2\sqrt{R\delta} \implies$ no point is hidden.

Implementation

• Dt_on_sphere<geom_traits, Triangulation_data_structure_2>

- Two geometric traits
 - points on sphere \longrightarrow algebraic numbers
 - points close to sphere \longrightarrow rational numbers

Experiments

Random points

(aborted when running time > 10 min or failure)

Experiments

Random points

(aborted when running time > 10 min or failure)

ords (logarithmic scal

Experiments

20,950 weather stations all around the world.

Approach	Time (in secs)
1st	0.57
2nd	0.14
DT3	0.25
QHULL	0.35
STRIPACK	fails

Hard cases

STRIPACK fails for e.g. 1,500 points.

Monique Teillaud

Triangulations in non-Euclidean spaces

Memory usage

Approach	Bytes per vertex
1st	113
2nd	113
DT3	174
QHULL	288

Hyperbolic space

2 Flat manifolds

4 Hyperbolic space

- Motivation
- Background
- The space of circles
- Delaunay triangulation / Voronoi diagram
- Algorithms

5 Hyperbolic manifolds

Hyperbolic space — Motivation

Manifolds

Flat manifolds 2

Sphere 3

Hyperbolic space 4

- Motivation

- Delaunay triangulation / Voronoi diagram

5 Hyperbolic manifolds

Delaunay triangulation of points lying in two parallel planes

Delaunay triangulation of points lying in two non-parallel planes

Hyperbolic space — Background

Manifolds

Flat manifolds

3 Sphere

4 Hyperbolic space

Motivation

Background

- The space of circles
- Delaunay triangulation / Voronoi diagram
- Algorithms

5 Hyperbolic manifolds

The Poincaré disk model

The Poincaré disk model

The Poincaré disk model

Delaunay triangulation

empty hyperbolic circles

=

 $\begin{array}{c} \text{empty } \textbf{Euclidean circles} \\ \text{contained in } \mathcal{B} \end{array}$

Hyperbolic space — The space of circles

- 1 Manifolds
- 2 Flat manifolds

3 Sphere

- Motivation
- Background
- The space of circles
- Delaunay triangulation / Voronoi diagram
- Algorithms

5 Hyperbolic manifolds

Observation

circle *C* has rational equation iff point $\sigma_C = (x_c, y_c, x_c^2 + y_c^2 - r^2)$ is rational

Hyperbolic space — Delaunay triangulation / Voronoi diagram

Flat manifolds

3 Sphere

Hyperbolic space

- Delaunay triangulation / Voronoi diagram ۲

More generally

- Delaunay triangulation
- Voronoi diagram

can be computed using only rational computations

(embedding of Voronoi vertices is algebraic)

More generally

- Delaunay triangulation
- Voronoi diagram

can be computed using only rational computations

(embedding of Voronoi vertices is algebraic)

in any dimension

Algorithms

Hyperbolic space — Algorithms

Manifolds

Flat manifolds 2

Sphere 3

Hyperbolic space 4

- Delaunay triangulation / Voronoi diagram
- Algorithms

5 Hyperbolic manifolds

Extraction scheme

The graph of d-simplices (adjacency through facets) of

 $(DT_{\mathbb{R}}(\mathcal{P}) \setminus DT_{\mathbb{H}}(\mathcal{P})) \cup \{\text{infinite simplices of } DT_{\mathbb{R}}(\mathcal{P})\}$

is connected.

algorithm digs into the triangulation from the outside

dangling k-faces detected (easy way in 2d)

Algorithms

Dynamic variant

Insertion of p

simplices outside the link of p in $DT_{\mathbb{R}}(\mathcal{P}_{i-1} \cup \{p\})$ don't need to be tested.

Algorithms

Implementation in 2D

Exact

Degenerate cases handled

Extra cost \simeq 2 to 20% to filter out non hyperbolic simplices \simeq 10 seconds for 10 million points (MacBookPro 2.6GHz)

Hyperbolic manifolds

Manifolds

2 Flat manifolds

3 Sphere

5

4 Hyperbolic space

Hyperbolic manifolds

- Introduction
- The Bolza surface
- Delaunay triangulation
- Implementation
- Open questions

Introduction

Hyperbolic manifolds — Introduction

Manifolds

Flat manifolds 2

Sphere 3

Hyperbolic space 4

Hyperbolic manifolds 5 Introduction

Flat vs. hyperbolic

Flat vs. hyperbolic

Gaussian curvature

$$\kappa(x_0) = \lim_{r \to 0} 12 \frac{\pi r^2 - A(r)}{\pi r^4}$$

Flat vs. hyperbolic

Gaussian curvature

$$\kappa(x_0) = \lim_{r \to 0} 12 \frac{\pi r^2 - A(r)}{\pi r^4}$$

Gauss-Bonnet

$$\int_{S} \kappa dA = 2\pi \cdot \chi(S)$$

Euler characteristics $\chi(S) = 2 - 2g$, where g = genus

torus $g \ge 2 \longrightarrow$ locally hyperbolic

Introduction

Motivation

[Chossat, Faye, Faugeras]

[Balazs, Voros]

Introduction

Hyperbolic translations

Hyperbolic translations

Hyperbolic manifolds — The Bolza surface

Manifolds

Flat manifolds

3 Sphere

5

4 Hyperbolic space

Hyperbolic manifolds

Introduction

The Bolza surface

- Delaunay triangulation
- Implementation
- Open questions

Properties

- Closed, compact, orientable surface of genus 2.
- Constant negative curvature \rightarrow locally hyperbolic metric.
- The most symmetric of all genus-2 surfaces.

Formal definition

Fuchsian group \mathcal{G} with finite presentation

$$\mathcal{G} = \left\langle \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \mid \mathsf{abcd}\overline{\mathsf{a}}\overline{\mathsf{b}}\overline{\mathsf{c}}\overline{\mathsf{d}} \right\rangle$$

 \mathcal{G} contains only translations (and 1)

Formal definition

Fuchsian group \mathcal{G} with finite presentation

$$\mathcal{G} = \left\langle a, b, c, d \mid abcd\overline{a}\overline{b}\overline{c}\overline{d} \right\rangle$$

 ${\cal G}$ contains only translations (and 1) Bolza surface

$$\mathcal{M}=\mathbb{H}^2/\mathcal{G}$$

with projection map $\pi_{\mathcal{M}}:\mathbb{H}^2\to\mathcal{M}$

Formal definition

2-torus and octagon

Hyperbolic octagon

Voronoi diagram of \mathcal{GO} $\mathbb{H}^2 =$ universal covering of the Bolza surface

Hyperbolic octagon

Fundamental domain $\mathcal{D}_{O} = \text{Dirichlet region of } O$

Hyperbolic octagon

"Original" domain \mathcal{D} : contains exactly one point of each orbit

Hyperbolic manifolds — Delaunay triangulation

Manifolds

2 Flat manifolds

3 Sphere

5

4 Hyperbolic space

Hyperbolic manifolds

- Introduction
- The Bolza surface
- Delaunay triangulation
- Implementation
- Open questions

$$\mathsf{Systole} \; \mathsf{sys} \, (\mathcal{M}) = \mathsf{minimum} \; \mathsf{length} \; \mathsf{of} \; \mathsf{a}$$

non-contractible loop on $\ensuremath{\mathcal{M}}$

Systole sys
$$(\mathcal{M}) =$$

$\begin{array}{c} \mbox{minimum length of a} \\ \mbox{non-contractible loop on } \mathcal{M} \end{array}$

$\pi_{\mathcal{M}}(\underline{\mathsf{DT}}_{\mathbb{H}}(\mathcal{GS}))$

Systole sys $(\mathcal{M}) =$ minimum length of a non-contractible loop on \mathcal{M}

 $\begin{array}{ll} S \text{ set of points in } \mathbb{H}^2 \\ \delta_S = & \text{diameter of largest disks in } \mathbb{H}^2 \\ & \text{not containing any point of } \mathcal{GS} \end{array}$

 $\delta_S < \frac{1}{2} \operatorname{sys}(\mathcal{M})$

 $\implies \pi_{\mathcal{M}}(\underbrace{\mathsf{DT}}_{\mathbb{H}}(\mathcal{GS})) = \underbrace{\mathsf{DT}}_{\mathcal{M}}(S)$ is a simplicial complex

⇒ The usual incremental algorithm can be used

Two ways to satisfy
$$\delta_{\mathcal{S}} < rac{1}{2}$$
 sys (\mathcal{M})

(similar to flat case)

Increase the systole

- work in a covering space
- 32 < number of sheets \leq 128
- genus increased!...

non-practical

Two ways to satisfy
$$\delta_{\mathcal{S}} < rac{1}{2}$$
 sys (\mathcal{M})

(similar to flat case)

- Increase the systole
 - work in a covering space
 - 32 < number of sheets \leq 128
 - genus increased!...

non-practical

- ② Reduce the size of the largest empty disk
 - use dummy points

Dummy points

Dummy points

Dummy points

Dummy points

Algorithm

- initialize with dummy points
- ② insert points
- ③ remove dummy points

Hyperbolic manifolds — Implementation

Manifolds

Flat manifolds 2

Sphere 3

5

Hyperbolic space 4

Hyperbolic manifolds

- Implementation

Notation

 $g(O), \ g \in \mathcal{G}$, denoted as g $\mathcal{D}_g = g(\mathcal{D}_O), \ g \in \mathcal{G}$ $\mathcal{N} = \{g \in \mathcal{G} \mid \mathcal{D}_g \cap \mathcal{D}_O \neq \emptyset\}$ $\mathcal{D}_{\mathcal{N}} = igcup_{g \in \mathcal{N}} \mathcal{D}_g$

Property of $\underline{\mathsf{DT}}_{\mathbb{H}}(\mathcal{GS})$

 $S \subset \mathcal{D}$ input point set s.t. criterion $\delta_S < \frac{1}{2} \operatorname{sys}(\mathcal{M})$ holds

 σ face of $\underline{\mathsf{DT}}_{\mathbb{H}}(\mathcal{GS})$ with at least one vertex in $\overline{\mathcal{D}}$

 $\longrightarrow \sigma$ is contained in $\mathcal{D}_{\mathcal{N}}$

Fact: sys $(\mathcal{M}) \leq \ell(g_k), \ k = 0, \dots, 8$

Fact:

$${
m sys}\left({\mathcal M}
ight)\leq \ell(g_k),\;k=0,\dots,8$$
 Get disks with radius $rac{1}{2}\ell(g_k).$

$$\delta_{\mathcal{S}} < rac{1}{2} \operatorname{sys} \left(\mathcal{M}
ight) \leq rac{1}{2} \ell(g_k)$$

Fact: sys $(\mathcal{M}) \leq \ell(g_k), \ k = 0, \dots, 8$ Get disks with radius $\frac{1}{2}\ell(g_k)$.

$$\delta_{\mathcal{S}} < rac{1}{2} \operatorname{sys} \left(\mathcal{M}
ight) \leq rac{1}{2} \ell(g_k)$$

• case 1: center on vertex

Fact: sys $(\mathcal{M}) \leq \ell(g_k), \ k = 0, \dots, 8$ Cet disks with radius $\frac{1}{2}\ell(g_k)$

Get disks with radius $\frac{1}{2}\ell(g_k)$.

$$\delta_{\mathcal{S}} < rac{1}{2} \operatorname{sys} \left(\mathcal{M}
ight) \leq rac{1}{2} \ell(g_k)$$

• case 1: center on vertex

• case 2: center on side midpoint

Fact: sys $(\mathcal{M}) \leq \ell(g_k), \ k = 0, \dots, 8$ Get disks with radius $\frac{1}{2}\ell(g_k)$.

$$\delta_{\mathcal{S}} < rac{1}{2} \operatorname{sys} (\mathcal{M}) \leq rac{1}{2} \ell(g_k)$$

• case 1: center on vertex

- case 2: center on side midpoint
- case 3: center elsewhere on side

Fact: sys $(\mathcal{M}) \leq \ell(g_k), \ k = 0, \dots, 8$ Get disks with radius $\frac{1}{2}\ell(g_k)$.

$$\delta_{\mathcal{S}} < rac{1}{2} \operatorname{sys} \left(\mathcal{M}
ight) \leq rac{1}{2} \ell(g_k)$$

case 1: center on vertex
case 2: center on side midpoint
case 3: center elsewhere on side
face ⊂ disk ⊂ U_γ ⊂ D_N

Canonical representative of a face

Each face of $\underline{DT}_{\mathcal{M}}(S)$ has infinitely many pre-images in $\underline{DT}_{\mathbb{H}}(\mathcal{GS})$

Canonical representative of a face

Representation

Representation

Representation

Point Insertion

Point Insertion

Point Insertion

Computations on translations

Dehn's algorithm (slightly modified)

Predicates

$$\underline{\text{Orientation}}(p,q,r) = \text{sign} \begin{vmatrix} p_x & p_y & 1 \\ q_x & q_y & 1 \\ r_x & r_y & 1 \end{vmatrix}$$

$$\underline{\operatorname{InCircle}}(p,q,r,s) = \operatorname{sign} \begin{vmatrix} p_{x} & p_{y} & p_{x}^{2} + p_{y}^{2} & 1 \\ q_{x} & q_{y} & q_{x}^{2} + q_{y}^{2} & 1 \\ r_{x} & r_{y} & r_{x}^{2} + r_{y}^{2} & 1 \\ s_{x} & s_{y} & s_{x}^{2} + s_{y}^{2} & 1 \end{vmatrix}$$

Predicates

Suppose that the points in S are rational.

Input of the predicates can be images of these points under $\nu \in \mathcal{N}$.

$$g_k(z) = rac{lpha z + e^{ik\pi/4}\sqrt{2lpha}}{e^{-ik\pi/4}\sqrt{2lpha} z + lpha}, \quad lpha = 1 + \sqrt{2}, \quad k = 0, 1, ..., 7$$

the <u>Orientation</u> predicate has algebraic degree at most 20
the InCircle predicate has algebraic degree at most 72

Point coordinates represented with CORE::Expr \rightarrow (filtered) exact evaluation of predicates

Hyperbolic manifolds — Open questions

Manifolds

Flat manifolds

3 Sphere

5

4 Hyperbolic space

Hyperbolic manifolds

- Introduction
- The Bolza surface
- Delaunay triangulation
- Implementation
- Open questions

Open questions

- Higher genus
- Other metrics
- . . .

Non-trivial mathematics