4 Robustness issues: numerical issues, degenerate cases.

4.1 double arithmetic

(Assume rounding mode is to the nearest represantable double).

4.1.1 Multiplication

For real numbers we have

$$
\forall a, b, c \in \mathbb{R}, a, b, c>0 \quad a<b \Rightarrow a \cdot c<b \cdot c
$$

Now if a, b, and c are three non negative double such that ($a<b$) evaluates to true. - Is $\mathrm{a} * \mathrm{c}<\mathrm{b} * \mathrm{c}$ always true ? (Prove or give a counter-example [write numbers in binary]) - Is $\mathrm{a} * \mathrm{c}<=\mathrm{b} * \mathrm{c}$ always true ? (Prove or give a counter-example [write numbers in binary])

4.1.2 Integers in double

Let $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ integers between -2^{b} and 2^{b}.
Find the largest value of b so that you can prove that the expressions
$\left(x_{2}-x_{1}\right) *\left(y 3-y_{1}\right)-\left(x_{3}-x_{1}\right) *\left(y_{2}-y_{1}\right)$
and
$x_{2} * y_{3}+x_{3} * y_{1}+x_{1} * y_{2}-x_{3} * y_{2}-x_{1} * y_{3}-x_{2} * y_{1}$
certainly evaluates the same.

4.1.3 A function

What does the following function return when called on a double in the open interval $]-2^{51}, 2^{51}[?$

```
double WhoAmI{double x}
    {
        double a = 6755399441055744.0; // 2^51 + 2^52
        double s = x+0.5+a;
        double r = s-a;
        return r;
    }
```


4.1 Correction:

4.1.1 Multiplication

$a * c<b * c$ can be false.

$1.100 \ldots 0001 \times 1.100 \ldots 0001$	$=$	$10.010 \ldots 001100 \ldots 0001$
	round to	$10.010 \ldots 010$
$1.100 \ldots 0001 \times 1.100 \ldots 0010$	$=$	$10.010 \ldots 01001 \ldots 0010$
	round to	$10.010 \ldots 010$

$\mathrm{a} * \mathrm{c}<=\mathrm{b} * \mathrm{c}$ is always true.
The true values $a c$ and $b c$ are in the correct order. The nearest reprentable values cannot be swapped.

4.1.2 Integers in double

They are both evaluations of the determinant $\left|\begin{array}{ccc}1 & 1 & 1 \\ x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3}\end{array}\right|$ substracting the first column to the others or using the Sarrus rule. The sign give the orientation predicate.

- The first expression:
$x_{2}-x_{1}$ type expressions use at most $b+1$ bits
$\left(x_{2}-x_{1}\right) *\left(y 3-y_{1}\right)$ type expressions use at most $2 b+2$ bits
$\left(x_{2}-x_{1}\right) *\left(y 3-y_{1}\right)-\left(x_{3}-x_{1}\right) *\left(y_{2}-y_{1}\right)$ uses at most $2 b+3$ bits
- The second expresssion :
$x_{2} * y_{3}$ type expressions use at most $2 b$ bits
$x_{2} * y_{3}+x_{3} * y_{1}+x_{1} * y_{2}-x_{3} * y_{2}-x_{1} * y_{3}-x_{2} * y_{1}$ use at most $2 b+3$ bits
Thus if $2 b+3 \leq 53$, that is $b \leq 25$, both computations are exact, since double have 53 significant bits. If $b>25$ rounding errors may creates differences between the evaluations of the two expresssions.

4.1.3 A function

Answer: Rounding to closest integer.
Proof: $2^{52}=2^{52}+2^{51}-2^{51}<x+0.5+a<2^{52}+2^{51}+2^{51}=2^{53}$. So, the value of first significant bit of s is $=2^{52}$, and the value of the $53^{r d}$ significant bit of s is $2^{0}=1$. Since the rounding mode is to closest, s becomes the integer closest to $x+0.5+a$. Finally, r is the integer that is closest to $x+0.5$, that is integral part of $x+1$.

4.2 Segment intersection

Let S_{1} and S_{2} be two line segments with endpoints $\left(x_{1}, y_{1}\right),\left(x_{1}^{\prime}, y_{1}^{\prime}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{2}^{\prime}, y_{2}^{\prime}\right)$.

4.2.1 Orientation

Recall the expression of the orientation predicate: is_ccw $\left(x_{p}, y_{p}, x_{q}, y_{q}, x_{r}, y_{r}\right)$.

4.2.2 Predicate for segment intersections

Write the predicate testing if S_{1} and S_{2} intersect using calls to is_ccw.

4.2 Correction:

4.2.1 Orientation

```
is_ccw \(\left(x_{p}, y_{p}, x_{q}, y_{q}, x_{r}, y_{r}\right)\)
\(\delta=\left(x_{q}-x_{p}\right) *\left(y r-y_{p}\right)-\left(x_{r}-x_{p}\right) *\left(y_{q}-y_{p}\right)\);
return ( \(\delta>0\) );
```


4.2.2 Predicate for segment intersections

```
does_intersect ( }\mp@subsup{x}{1}{},\mp@subsup{y}{1}{},\mp@subsup{x}{1}{\prime},\mp@subsup{y}{1}{\prime},\mp@subsup{x}{2}{},\mp@subsup{y}{2}{},\mp@subsup{x}{2}{\prime},\mp@subsup{y}{2}{\prime}
    return ( ( is_ccw (x, (x, y, x, , , y1, , x, , y2)
            \not= is_ccw ( }\mp@subsup{x}{1}{},\mp@subsup{y}{1}{},\mp@subsup{x}{1}{\prime},\mp@subsup{y}{1}{\prime},,\mp@subsup{x}{2}{\prime},\mp@subsup{y}{2}{\prime})
        and (is_ccw ( }\mp@subsup{x}{1}{},\mp@subsup{y}{1}{},\mp@subsup{x}{2}{},\mp@subsup{y}{2}{},\mp@subsup{x}{2}{\prime},\mp@subsup{y}{2}{\prime}
            # is_ccw ( }\mp@subsup{x}{1}{\prime},\mp@subsup{y}{1}{\prime},\mp@subsup{x}{2}{},\mp@subsup{y}{2}{},\mp@subsup{x}{2}{\prime},\mp@subsup{y}{2}{\prime})))
```

5 Homework 5
5.1

