4 Robustness issues: numerical issues, degenerate cases.

4.1 double arithmetic
(Assume rounding mode is to the nearest representable double).

4.1.1 Multiplication
For real numbers we have
\[\forall a, b, c \in \mathbb{R}, a, b, c > 0 \quad a < b \Rightarrow a \cdot c < b \cdot c \]

Now if a, b, and c are three non negative double such that (a<b) evaluates to true.
— Is \texttt{a*c<b*c} always true? (Prove or give a counter-example [write numbers in binary])
— Is \texttt{a*c<=b*c} always true? (Prove or give a counter-example [write numbers in binary])

4.1.2 Integers in double
Let \(x_1, x_2, x_3, y_1, y_2, y_3 \) integers between \(-2^b\) and \(2^b\).
Find the largest value of \(b \) so that you can prove that the expressions
\[
(x_2 - x_1) \times (y_3 - y_1) - (x_3 - x_1) \times (y_2 - y_1)
\]
and
\[
x_2 \times y_3 + x_3 \times y_1 + x_1 \times y_2 - x_3 \times y_2 - x_1 \times y_3 - x_2 \times y_1
\]
certainly evaluates the same.

4.1.3 A function
What does the following function return when called on a double in the open interval \(]-2^{51}, 2^{51}[\)?

```c
double WhoAmI(double x)
{
    double a = 6755399441055744.0; // 2^{51} + 2^{52}
    double s = x+0.5+a;
    double r = s-a;
    return r;
}
```

4.1 Correction:
4.1.1 Multiplication
\texttt{a*c<b*c} can be false.

\[
1.100\ldots001 \times 1.100\ldots001 = 10.010\ldots001100\ldots001
\]
round to 10.010\ldots010

\[
1.100\ldots001 \times 1.100\ldots0010 = 10.010\ldots01001\ldots0010
\]
round to 10.010\ldots010

\texttt{a*c<=b*c} is always true.
The true values \(ac \) and \(bc \) are in the correct order. The nearest representable values cannot be swapped.
4.1.2 Integers in double

They are both evaluations of the determinant \[
\begin{vmatrix}
1 & 1 & 1 \\
x_1 & x_2 & x_3 \\
y_1 & y_2 & y_3
\end{vmatrix}
\]
substracting the first column to the others or using the Sarrus rule. The sign give the orientation predicate.

— The first expression:
- \(x_2 - x_1\) type expressions use at most \(b+1\) bits
- \((x_2 - x_1) \cdot (y_3 - y_1)\) type expressions use at most \(2b+2\) bits
- \((x_2 - x_1) \cdot (y_3 - y_1) - (x_3 - x_1) \cdot (y_2 - y_1)\) uses at most \(2b+3\) bits

— The second expression:
- \(x_2 \cdot y_3\) type expressions use at most \(2b\) bits
- \(x_2 \cdot y_3 + x_3 \cdot y_1 + x_1 \cdot y_2 - x_3 \cdot y_2 - x_1 \cdot y_3 - x_2 \cdot y_1\) use at most \(2b+3\) bits

Thus if \(2b+3 \leq 53\), that is \(b \leq 25\), both computations are exact, since double have 53 significant bits. If \(b > 25\) rounding errors may creates differences between the evaluations of the two expressions.

4.1.3 A function

Answer: Rounding to closest integer.

Proof: \(2^{52} = 2^{52} + 2^{51} - 2^{51} < x + 0.5 + a < 2^{52} + 2^{51} + 2^{51} = 2^{53}\). So, the value of first significant bit of \(s\) is \(= 2^{52}\), and the value of the 53rd significant bit of \(s\) is \(2^0 = 1\). Since the rounding mode is to closest, \(s\) becomes the integer closest to \(x+0.5+a\). Finally, \(r\) is the integer that is closest to \(x+0.5\), that is integral part of \(x+1\).

4.2 Segment intersection

Let \(S_1\) and \(S_2\) be two line segments with endpoints \((x_1, y_1), (x_1', y_1'), (x_2, y_2)\), and \((x_2', y_2')\).

4.2.1 Orientation

Recall the expression of the orientation predicate: \(\text{is}_\text{ccw}(x_p, y_p, x_q, y_q, x_r, y_r)\).

4.2.2 Predicate for segment intersections

Write the predicate testing if \(S_1\) and \(S_2\) intersect using calls to \(\text{is}_\text{ccw}\).

4.2 Correction:

4.2.1 Orientation

\[
is_\text{ccw}(x_p, y_p, x_q, y_q, x_r, y_r)
\]
\[
d = (x_q - x_p) \cdot (y_r - y_p) - (x_r - x_p) \cdot (y_q - y_p);
\]
\[
\text{return } (d > 0);
\]

4.2.2 Predicate for segment intersections

\[
does_\text{intersect}(x_1, y_1, x_1', y_1', x_2, y_2, x_2', y_2')
\]
\[
\text{return } (\ (\ \text{is}_\text{ccw}(x_1, y_1, x_1', y_1', x_2, y_2)
\]
\[
\ne\ne\text{is}_\text{ccw}(x_1, y_1, x_1', y_1', x_2', y_2'))
\]
\[
\text{and } (\ \text{is}_\text{ccw}(x_1, y_1, x_2, y_2, x_2', y_2')
\]
\[
\ne\ne\text{is}_\text{ccw}(x_1', y_1', x_2, y_2, x_2', y_2'))\);
\]
5 Homework 5

5.1