4 Robustness issues: numerical issues, degenerate cases.

4.1 double arithmetic

(Assume rounding mode is to the nearest representable double).

4.1.1 Multiplication

For real numbers we have

 $\forall a, b, c \in \mathbb{R}, a, b, c > 0 \qquad a < b \Rightarrow a \cdot c < b \cdot c$

Now if a, b, and c are three non negative double such that (a<b) evaluates to true. — Is a*c<b*c always true ? (Prove or give a counter-example [write numbers in binary]) — Is a*c<=b*c always true ? (Prove or give a counter-example [write numbers in binary])

4.1.2 Integers in double

```
Let x_1, x_2, x_3, y_1, y_2, y_3 integers between -2^b and 2^b.
Find the largest value of b so that you can prove that the expressions (x_2 - x_1) * (y_3 - y_1) - (x_3 - x_1) * (y_2 - y_1)
and
```

 $x_2 * y_3 + x_3 * y_1 + x_1 * y_2 - x_3 * y_2 - x_1 * y_3 - x_2 * y_1$ certainly evaluates the same.

4.1.3 A function

What does the following function return when called on a double in the open interval $]-2^{51}, 2^{51}[?]$

```
double WhoAmI{double x}
{
    double a = 6755399441055744.0; // 2^51 + 2^52
    double s = x+0.5+a;
    double r = s-a;
    return r;
}
```

4.1 Correction:

4.1.1 Multiplication

a*c<b*c can be false.

```
\begin{array}{rcl} 1.100\ldots 0001 \times 1.100\ldots 0001 & = & 10.010\ldots 001100\ldots 0001 \\ round \ to & 10.010\ldots 010 \\ 1.100\ldots 0001 \times 1.100\ldots 0010 & = & 10.010\ldots 01001\ldots 0010 \\ round \ to & 10.010\ldots 010 \end{array}
```

a*c<=b*c is always true.

The true values ac and bc are in the correct order. The nearest reprentable values cannot be swapped.

4.1.2 Integers in double

They are both evaluations of the determinant $\begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$ substracting the first column to the

others or using the Sarrus rule. The sign give the orientation predicate.

— The first expression:

 $x_2 - x_1$ type expressions use at most b + 1 bits

 $(x_2 - x_1) * (y_3 - y_1)$ type expressions use at most 2b + 2 bits

 $(x_2 - x_1) * (y_3 - y_1) - (x_3 - x_1) * (y_2 - y_1)$ uses at most 2b + 3 bits

— The second expresssion :

 $x_2 * y_3$ type expressions use at most 2b bits

 $x_2 * y_3 + x_3 * y_1 + x_1 * y_2 - x_3 * y_2 - x_1 * y_3 - x_2 * y_1$ use at most 2b + 3 bits

Thus if $2b + 3 \le 53$, that is $b \le 25$, both computations are exact, since double have 53 significant bits. If b > 25 rounding errors may creates differences between the evaluations of the two expressions.

4.1.3 A function

Answer: Rounding to closest integer.

Proof: $2^{52} = 2^{52} + 2^{51} - 2^{51} < x + 0.5 + a < 2^{52} + 2^{51} + 2^{51} = 2^{53}$. So, the value of first significant bit of **s** is $= 2^{52}$, and the value of the 53^{rd} significant bit of **s** is $2^0 = 1$. Since the rounding mode is to closest, **s** becomes the integer closest to x+0.5+a. Finally, **r** is the integer that is closest to x+0.5, that is integral part of x+1.

4.2 Segment intersection

Let S_1 and S_2 be two line segments with endpoints (x_1, y_1) , (x'_1, y'_1) , (x_2, y_2) , and (x'_2, y'_2) .

4.2.1 Orientation

Recall the expression of the orientation predicate: $is_ccw(x_p, y_p, x_q, y_q, x_r, y_r)$.

4.2.2 Predicate for segment intersections

Write the predicate testing if S_1 and S_2 intersect using calls to is_ccw.

4.2 Correction:

4.2.1 Orientation

$$\begin{split} & \texttt{is_ccw}(x_p, y_p, x_q, y_q, x_r, y_r) \\ & \delta = (x_q - x_p) * (yr - y_p) - (x_r - x_p) * (y_q - y_p); \\ & \texttt{return} \ (\delta > 0); \end{split}$$

4.2.2 Predicate for segment intersections

5 Homework 5

5.1