1 Convex hull: definitions, classical algorithms.

1.1 Convex hull by triangulation

Consider the following convex hull algorithm:
Input : S a point set.
sort S by x-coordinate;
create a circular list with the three leftmost points of S
such that (u,u.next,u.next.next) is positively oriented and u rightmost;
$S=S \backslash\{u$, u.next, u.next.next $\}$;
while $S \neq \emptyset \quad\{$
$v=$ leftmost point in S;
$S=S \backslash\{v\}$;
$w=\operatorname{copy}(u) ; \bullet$
while (v, u, u.next) negative
$\{u=u . n e x t ;\} \bullet$
$v . n e x t=u$; u.pred $=v$;
while ($v, w, w . p r e d)$ positive
$\{w=w . p r e d ;\} \bullet$
v.pred $=w ;$ w.next $=v$;
$u=v$;
\}

1.1.1 Run the algorithm

Run (by hand) the algorithm on the example provided on the attached example and draw on the example the line segment $u v$ in green each time the code pass through the line of the code marked with a green dot, draw $u v$ in blue for the code line with a blue dot, and draw $w v$ in red for the code line with a red dot,

1.1.2 Complexity

What is the complexity of this algorithm on a set of n points (hint: use Euler relation).

Convex hull by triangulation
Run on the point set:

Complexity:

