
Computational Geometry Lectures 2018-19

Olivier Devillers & Marc Pouget

Homework and Exam

https://members.loria.fr/Olivier.Devillers/Master2-ENS-Lyon/

The validation of the course will rely on the homework and a personal work presented in a
written report and an oral presentation. This personal work can be a the presentation of a research
article or a software project using CGAL.

• Homework.
A homework sheet will be given at the end of the four first lectures, and must be completed
for the next friday.

• Research papers
A list of research papers will be available on the web site November 1st. Each student must
prepare
— A presentation (12 mn+questions) of a research paper

You have to choose your article/project before November 15th (by mail to Olivier.Devillers@inria.fr).

Please synchronize, two students are not allowed to choose the same paper.
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Research papers for presentations
[1] Siu-Wing Cheng, Tamal K Dey, Herbert Edelsbrunner, Michael A Facello, and Shang-Hua

Teng. Silver exudation. Journal of the ACM (JACM), 47(5):883–904, 2000. doi:10.1145/
355483.355487.

[2] L. P. Chew and S. Fortune. Sorting helps for Voronoi diagrams. Algorithmica, 18:217–228,
1997. doi:10.1007/BF02526034.

[3] Jeff Erickson. Dense point sets have sparse Delaunay triangulations or “. . . but not too nasty”.
Discrete & Computational Geometry, 33:83–115, 2005. doi:10.1007/s00454-004-1089-3.

[4] Leonidas Guibas and David Marimont. Rounding arrangements dynamically. Internat. J.
Comput. Geom. Appl., 8:157–176, 1998. doi:10.1142/S0218195998000096.

[5] J. Hershberger. Finding the upper envelope of n line segments in O(n log n) time. Inform.
Process. Lett., 33:169–174, 1989. doi:10.1016/0020-0190(89)90136-1.

[6] John Hershberger. Stable snap rounding. Computational Geometry, 46(4):403–416, 2013.
doi:10.1016/j.comgeo.2012.02.011.

[7] David G. Kirkpatrick and Raimund Seidel. The ultimate planar convex hull algorithm? SIAM
Journal on Computing, 15(1):287–299, 1986. doi:10.1137/0215021.

[8] R. Seidel. A simple and fast incremental randomized algorithm for computing trapezoidal
decompositions and for triangulating polygons. Comput. Geom. Theory Appl., 1(1):51–64,
1991. doi:10.1016/0925-7721(91)90012-4.

[9] Jonathan Richard Shewchuk. Adaptive precision floating-point arithmetic and fast robust
geometric predicates. Discrete & Computational Geometry, 18(3):305–363, October 1997.
URL: https://www.cs.cmu.edu/~quake/robust.html.

[10] Richard Shewchuk. Star splaying: an algorithm for repairing Delaunay triangulations and
convex hulls. In Proceedings of the twenty-first annual symposium on Computational geometry,
pages 237–246. ACM, 2005. URL: http://www.cs.berkeley.edu/~jrs/papers/star.pdf.
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Software projects

Note regarding the graphic interface:

• Start from the CGAL demo of the Triangulation_2, and replace the action done by one of
its buttons by the action requested for the project. This is easier than trying to add a new
button.

1 Software project: Crust
The algorithm (see lecture ‘Reconstruction’) is the following:

Input: S a set of n points in the plane.
Output: A set of line segments between points of S.

• Let V be the set of vertices of the Voronoi diagram of S

• Compute Del(V ∪ S)

• Output the edges of Del(V ∪ S) between two points of S

1.1 Static version
Using CGAL, code the above algorithm. Be careful that you need to have two types of points in
the Del(V ∪ S). The user of your program should have to click the input points and ask for the
computation.

1.2 Incremental version
Propose an incremental version. When a new point is added the crust must be updated (without
recomputing everything from scratch).

1.3 Dynamic version
Propose a dynamic version. The user should be able to add a new point or to remove an existing
point (without recomputing everything from scratch).
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2 Software project: experiments on Poisson Delaunay trian-
gulation

Generate a random point set according to Poisson point distribution of density 1 and extract
several parameters from its Delaunay triangulation.

Make several trial (compute average value and standard deviation). Look at how the results
depend from the density.

2.1 Extremal values
In a window [0,

√
n]2 compute the highest degree of a vertex, the smallest distance between two

points, the longest Delaunay edge.

2.2 Origin neighborhood
Compute the distance between the origin and its closest neighbor, its second closest neighbor,. . . ,
20th closest neighbor. Compute the sum of the lengthes of the edges of all triangles in conflict
with the origin and the perimeter of the union of these triangles. Propose a way to generate points
in a lazy manner to improve running times.
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3 Software project: Moving points
Let S be a set of points in the plane. The usual way to compute the Delaunay triangulation is to
“spatial sort” the points (i.e. put them in an order the preserve locality, still being random enough
for randomized complexity) and to incrementally insert the points, starting the point location
using the previously inserted point as hint.

The nearest neighbor of the point would be a better hint but we usually don’t know this point.
If the point set moves (slowly) we may compute the new triangulation inserting the points in
the same order using as hint the new position of the nearest neighbor (at insertion time) of the
previous position of the currently inserted point. This idea is presented in [1].

3.1
Using CGAL, code the above algorithm. The user should be able to enter input sites eiter by
clicking or by choosing an option “random point set”. Then the motion should start. Running
times must be printed (adding a pause between two consecutive steps will help the user better
visualize the progress made).

It should be necessary to restart from scratch from time to time when points have moved too
much.

Several possibility can be used for the motion:
— Brownian motion (random at each time step)
— Jumping balls (random direction and reflect on the boundary)
— Lloyd (see below)

3.2 Lloyd motion
Let S be a given set of sites in a 2D square. Lloyd’s algorithm works iteratively as follows: at each
step,

1. Compute the Voronoi diagram of S.

2. Move each site p ∈ S to the center of mass of its Voronoi cell. (When the cell of p is not
contained in the square, move p to the center of mass of its Voronoi cell clipped by the
square.)

3. Update S to the set of moved sites and restart at 1.

Implement this algorithm using the 2D Delaunay triangulation package of CGAL.

Reference
[1] Olivier Devillers. Delaunay Triangulation of Imprecise Points, Preprocess and Actually Get

a Fast Query Time. Journal of Computational Geometry, 2(1):30–45, 2011. URL: https:
//hal.inria.fr/inria-00595823, doi:10.20382/jocg.v2i1a3.
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