Randomized algorithms for Delaunay triangulations

- Randomized backward analysis of binary trees
- Randomized incremental construction of Delaunay
- Jump and walk
- The Delaunay hierarchy
- Biased randomized incremental order
- Chew algorithm for convex polygon

1

8

new drawing

time

 $6 - \overline{2}^{\infty}$

 $6 - \overline{3}^{\infty}$

 $6 - \overline{10}^{\circ}$

 ∞

 $6 - \overline{1}$

 ∞

Sorting

7 - 2

Sorting

Sorting

Unbalanced binary tree

History graph

Quicksort

Conflict graph

 $O(n \log n)$

Same analysis

Backwards analysis

Analyse last insertion and sum

Last object is a random object

Randomization

Backwards analysis for Delaunay triangulation

Delaunay triangulation

of triangles during incremental construction?

Delaunay triangulation

of triangles during incremental construction?

Triangle Δ with j stoppers \angle

Triangle Δ with j stoppers \angle

Probability that it exists in the triangulation of a sample of size αn

$$\simeq \alpha^3 (1-\alpha)^j \ge \alpha^3 (1-\alpha)^{\frac{1}{\alpha}} \ge \frac{1}{4}\alpha^3$$
 if $2 \le j \le \frac{1}{\alpha}$

Triangle Δ with j stoppers \angle

Probability that it exists in the triangulation of a sample of size αn

$$\simeq \alpha^3 (1-\alpha)^j \ge \alpha^3 (1-\alpha)^{\frac{1}{\alpha}} \ge \frac{1}{4}\alpha^3$$
 if $2 \le j \le \frac{1}{\alpha}$

$$= \sum_{j=0} \mathbb{P} \left[\Delta \text{ with } j \text{ stoppers is there} \right] \times \sharp \Delta \text{ with } j \text{ stoppers}$$

Triangle Δ with j stoppers \angle

Probability that it exists in the triangulation of a sample of size αn

$$\simeq \alpha^3 (1-\alpha)^j \ge \alpha^3 (1-\alpha)^{\frac{1}{\alpha}} \ge \frac{1}{4}\alpha^3$$
 if $2 \le j \le \frac{1}{\alpha}$

$$= \sum_{j=0}^{} \mathbb{P} \left[\Delta \text{ with } j \text{ stoppers is there} \right] \times \sharp \Delta \text{ with } j \text{ stoppers}$$

$$\geq \sum_{j=0}^{1/\alpha} \frac{\alpha^3}{4} \times \sharp \Delta \text{ with } j \text{ stoppers}$$

Triangle Δ with j stoppers $\angle i$

Probability that it exists in the triangulation of a sample of size αn

$$\simeq \alpha^3 (1-\alpha)^j \ge \alpha^3 (1-\alpha)^{\frac{1}{\alpha}} \ge \frac{1}{4}\alpha^3$$
 if $2 \le j \le \frac{1}{\alpha}$

$$= \sum_{j=0}^{n} \mathbb{P}\left[\Delta \text{ with } j \text{ stoppers is there}\right] \times \sharp \Delta \text{ with } j \text{ stoppers}$$

$$\geq \sum_{i=0}^{1/\alpha} \frac{\alpha^3}{4} \times \sharp \Delta \text{ with } j \text{ stoppers} = \alpha^3 \sharp \Delta \text{ with } \leq \frac{1}{\alpha} \text{ stoppers}$$

Triangle Δ with j stoppers \angle

Probability that it exists in the triangulation of a sample of size αn

$$\simeq \alpha^3 (1-\alpha)^j \ge \alpha^3 (1-\alpha)^{\frac{1}{\alpha}} \ge \frac{1}{4}\alpha^3$$
 if $2 \le j \le \frac{1}{\alpha}$

$$= \sum_{j=0}^{\infty} \mathbb{P}\left[\Delta \text{ with } j \text{ stoppers is there}\right] \times \sharp \Delta \text{ with } j \text{ stoppers } = O(\alpha n)$$

$$\geq \sum_{i=0}^{1/\alpha} \frac{\alpha^3}{4} \times \sharp \Delta \text{ with } j \text{ stoppers} = \alpha^3 \sharp \Delta \text{ with } \leq \frac{1}{\alpha} \text{ stoppers}$$

Triangle Δ with j stoppers \angle

Probability that it exists in the triangulation of a sample of size αn

$$\simeq \alpha^3 (1-\alpha)^j \ge \alpha^3 (1-\alpha)^{\frac{1}{\alpha}} \ge \frac{1}{4}\alpha^3$$
 if $2 \le j \le \frac{1}{\alpha}$

$$= \sum_{j=0}^{\infty} \mathbb{P}\left[\Delta \text{ with } j \text{ stoppers is there}\right] \times \sharp \Delta \text{ with } j \text{ stoppers } = O(\alpha n)$$

$$\geq \sum_{j=1}^{1/\alpha} \frac{\alpha^3}{4} \times \sharp \Delta \text{ with } j \text{ stoppers} = \alpha^3 \sharp \Delta \text{ with } \leq \frac{1}{\alpha} \text{ stoppers}$$

11 - Size (order
$$\leq k$$
 Voronoi) $\leq \frac{\alpha n}{\alpha^3} = nk^2$

Triangle Δ with j stoppers \angle

Probability that it exists during the construction

$$= \frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1}$$

Triangle Δ with j stoppers \angle

Probability that it exists during the construction

$$= \frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1}$$

 \sharp of created triangles

$$=\sum_{j=0}^{\infty}\mathbb{P}\left[\Delta \text{ with } j \text{ stoppers appears}\right] imes \sharp \Delta \text{ with } j \text{ stoppers}$$

Triangle Δ with j stoppers \angle

Probability that it exists during the construction

$$= \frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1}$$

of created triangles

$$= \sum_{j=0}^{n} \mathbb{P}\left[\Delta \text{ with } j \text{ stoppers appears}\right] \times \sharp \Delta \text{ with } j \text{ stoppers}$$

$$=\sum_{j=0}^n \left(\mathbb{P}\left[\Delta \text{ with } j\right] - \mathbb{P}\left[\Delta \text{ with } j+1\right]\right) \times \sharp \Delta \text{ with } \leq j \text{ stoppers}$$

Triangle Δ with j stoppers A

Probability that it exists during the construction

$$= \frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1}$$

of created triangles

$$=\sum_{j=0}^{\infty}\mathbb{P}\left[\Delta \text{ with } j \text{ stoppers appears}\right] imes \sharp \Delta \text{ with } j \text{ stoppers}$$

$$=\sum_{j=0}^n \left(\mathbb{P}\left[\Delta \text{ with } j\right] - \mathbb{P}\left[\Delta \text{ with } j+1\right]\right) \times \sharp \Delta \text{ with } \leq j \text{ stoppers}$$

$$11 - \sum_{j=0}^{n} \frac{18}{j^4} \times nj^2 = O(n \sum_{j=0}^{n} \frac{1}{j^2}) = O(n)$$

Triangle Δ with j stoppers ζ

Conflict graph / History graph

It remains to analyze conflict location

Triangle Δ with j stoppers \angle

Probability that it exists during the construction

$$= \frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1}$$

of conflicts occuring

$$= \sum_{j=0}^{} j \times \mathbb{P} \left[\Delta \text{ with } j \text{ stoppers appears} \right] \times \sharp \Delta \text{ with } j \text{ stoppers}$$

Triangle Δ with j stoppers A

Probability that it exists during the construction

$$= \frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1}$$

of conflicts occuring

$$= \sum_{j=0}^{} j \times \mathbb{P} \left[\Delta \text{ with } j \text{ stoppers appears} \right] \times \sharp \Delta \text{ with } j \text{ stoppers}$$

$$=\sum_{j=0}^{n}j\times (\mathbb{P}\left[\Delta\text{ with }j\right]-\mathbb{P}\left[\Delta\text{ with }j+1\right])\times \sharp \Delta\text{ with }\leq j\text{ stoppers}$$

Triangle Δ with j stoppers \angle

Probability that it exists during the construction

$$= \frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1}$$

of conflicts occuring

$$= \sum_{j=0}^{\infty} j \times \mathbb{P}\left[\Delta \text{ with } j \text{ stoppers appears}\right] \times \sharp \Delta \text{ with } j \text{ stoppers}$$

$$=\sum_{j=0}^n j\times (\mathbb{P}\left[\Delta \text{ with } j\right]-\mathbb{P}\left[\Delta \text{ with } j+1\right])\times \sharp \Delta \text{ with } \leq j \text{ stoppers}$$

$$11 - \sum_{j=0}^{n} j \times \frac{18}{j^4} \times nj^2 = O(n \sum_{j=0}^{n} \frac{1}{j}) = O(n \log n)$$

Conflict graph

Conflict graph

Jump and walk (no distribution hypothesis)

17 - 1

Jump and walk (no distribution hypothesis) $\mathbb{E}\left[\sharp \text{ of } \bullet \text{ in } \bullet \right] = \frac{n}{k}$

$$\mathbb{E}\left[\sharp \text{ of } \bullet \text{ in}\left(\bullet\right)\right] = \frac{n}{k}$$

Jump and walk (no distribution hypothesis)

 $\mathbb{E}\left[\sharp \text{ of } \bullet \text{ in } \bullet\right] = \frac{n}{k}$

$$\frac{n}{k_1} + \frac{k_1}{k_2} + \frac{k_2}{k_3} + \dots$$

Walk length = $O\left(\frac{n}{k}\right)$

 $\frac{k_i}{k_{i+1}} = \alpha$

$$\mathbb{E}\left[\sharp \text{ of } \bullet \text{ in} \bullet\right] = \frac{n}{k}$$

$$\frac{n}{k_1} + \frac{k_1}{k_2} + \frac{k_2}{k_3} + \dots$$

Walk length = $O\left(\frac{n}{k}\right)$

 $\frac{k_i}{k_{i+1}} = \alpha$

choose
$$k = \sqrt[3]{n}$$

point location in $O(\alpha \log_{\alpha} n)$

point location in $O(\sqrt{\alpha}\log_{\alpha}n)$

Technical detail

Technical detail

Technical detail

Randomization

How many randomness is necessary?

If the data are not known in advance shuffle locally

Randomization

Drawbacks of random order

non locality of memory access

data structure for point location

____ Hilbert sort

Drawbacks of random order

non locality of memory access

data structure for point location

——— Hilbert sort

Walk should be fast

Last point is not at all a random point

_____ no control of degree of last point

Triangle Δ with j stoppers

Size (order
$$\leq k$$
 Voronoi) $\leq \frac{\alpha n}{\alpha^3} = nk^2$

Triangle Δ with j stoppers \angle

Probability that it exists during the construction

$$= \frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1}$$

Probability that it exists during the construction

$$=\underbrace{\frac{3}{j+3}\underbrace{\frac{2}{j+2}\underbrace{j+1}}_{j+1}}\quad \text{remains }\Theta(j^{-3})$$

Triangle Δ with j stoppers

Probability that it exists during the construction

$$= \underbrace{\frac{3}{j+3} \frac{2}{j+2}}_{j+2} \quad \text{remains } \Theta(j^{-3})$$

of created triangles

$$=\sum_{j=0}^{\infty}\mathbb{P}\left[\Delta \text{ with } j \text{ stoppers appears}\right] imes \sharp \Delta \text{ with } j \text{ stoppers}$$

$$\simeq O(\sum \frac{nj^2}{j^4}) = O(n)$$

Triangle Δ with j stoppers

Probability that it exists during the construction

$$= \underbrace{\frac{3}{j+3} \frac{2}{j+2}}_{j+2} \quad \text{remains } \Theta(j^{-3})$$

of conflicts occuring

$$= \sum_{j=0}^{} j \times \mathbb{P} \left[\Delta \text{ with } j \text{ stoppers appears} \right] \times \sharp \Delta \text{ with } j \text{ stoppers}$$

$$\simeq O(\sum j \frac{nj^2}{j^4}) = O(n \log n)$$

Delaunay 2D 1M random points

locate using Delaunay hierarchy 6 seconds

random order (visibility walk) 157 seconds

x-order 3 seconds

Hilbert order 0.8 seconds

Biased order (Spatial sorting) 0.7 seconds

Delaunay 2D 100K parabola points

locate using Delaunay hierarchy 0.3 seconds

random order (visibility walk) 128 seconds

x-order 632 seconds

Hilbert order 46 seconds

Biased order (Spatial sorting)

0.3 seconds

choose a point at random

Analysis

```
choose a point at random remove it from convex polygon remember its place compute Delaunay of n-1 points with relevant vertex-triangle pointers insert point, (location known)
```

Analysis

```
choose a point at random remove it from convex polygon remember its place compute Delaunay of n-1 points with relevant vertex-triangle pointers insert point, (location known)
```

O(1) [model]

Analysis

```
choose a point at random remove it from convex polygon remember its place compute Delaunay of n-1 points with relevant vertex-triangle pointers insert point, (location known)
```

Analysis

```
choose a point at random remove it from convex polygon remember its place compute Delaunay of n-1 points with relevant vertex-triangle pointers insert point, (location known) O(d^{\circ}p)
```

Analysis

$$O(d^{\circ}p) = O(1)$$

Analysis

$$\begin{cases}
O(1) \\
f(n-1)
\end{cases}$$

$$O(d^{\circ}p) = O(1)$$

Analysis

$$\begin{cases}
O(1) \\
f(n-1)
\end{cases}$$

$$O(d^{\circ}p) = O(1)$$

$$f(n) = f(n-1) + O(1)$$

Analysis

$$\begin{cases} O(1) \\ O(1) \end{cases}$$

$$f(n-1)$$

$$O(d^{\circ}p) = O(1)$$

$$f(n) = f(n-1) + O(1) = O(n)$$

Analysis

choose a point at random remove it from convex polygon remember its place compute Delaunay of n-1 points with relevant vertex-triangle pointers insert point, (location known)

$$\begin{cases}
O(1) \\
f(n-1)
\end{cases}$$

$$O(d^{\circ}p) = O(1)$$

$$f(n) = f(n-1) + O(1) = O(n)$$

[Chew 86]

