Randomized algorithms for Delaunay triangulations

- Randomized backward analysis of binary trees
- Randomized incremental construction of Delaunay
- Jump and walk
- The Delaunay hierarchy
- Biased randomized incremental order
- Chew algorithm for convex polygon

Sorting

$-\infty \quad \bullet \infty$
 3-1

Sorting

3-2

Sorting
Binary tree
\bigcirc

4-1

Sorting
Binary tree

4-2

Sorting
Binary tree

4-3

Sorting
Binary tree

4-4

Sorting
Binary tree

4-5

Sorting
Binary tree

4-6

Sorting
Binary tree

4-7

Sorting
Binary tree

4-8

Sorting
Binary tree

4-9

Sorting
Binary tree

4-10

Sorting
Binary tree

4-11

Sorting
Binary tree

Sorting

Sorting

time
$5-2$

Sorting

$5-3$

Sorting

5-4

Sorting

5-5

Sorting

$5-6$

Sorting

5-7

Sorting

5-8

Sorting

$5-9$

Sorting

$6-1$

Sorting

Sorting

n

Localisation

$6-\overline{5}^{\infty}$

Sorting

Sorting

Localisation

$6-\overline{7}^{\infty}$

Sorting

Sorting

Sorting

Sorting

$6-11^{\infty}$

Sorting

7-1

Sorting
(8)

7-2

Sorting
©
$]-\infty, 8[\quad] 8, \infty[$
(4)
(14)

7-3

Sorting

Unbalanced binary tree
Quicksort

History graph
Conflict graph
$O(n \log n)$
Same analysis

Backwards analysis
Analyse last insertion and sum
Last object is a random object

Randomization

Backwards analysis for Delaunay triangulation

Delaunay triangulation

\sharp of triangles during incremental construction?

10-1

Delaunay triangulation

\sharp of triangles during incremental construction?

Delaunay triangulation

Delaunay triangulation

Alternative analysis

Triangle Δ with j stoppers

11-1

Alternative analysis

Triangle Δ with j stoppers

Probability that it exists in the triangulation of a sample of size α n

$$
\simeq \alpha^{3}(1-\alpha)^{j} \geq \alpha^{3}(1-\alpha)^{\frac{1}{\alpha}} \geq \frac{1}{4} \alpha^{3} \quad \text { if } 2 \leq j \leq \frac{1}{\alpha}
$$

11-2

Alternative analysis

Triangle Δ with j stoppers

Probability that it exists in the triangulation of a sample of size α n

$$
\simeq \alpha^{3}(1-\alpha)^{j} \geq \alpha^{3}(1-\alpha)^{\frac{1}{\alpha}} \geq \frac{1}{4} \alpha^{3} \quad \text { if } 2 \leq j \leq \frac{1}{\alpha}
$$

Size of the triangulation of the sample

$$
=\sum_{j=0}^{n} \mathbb{P}[\Delta \text { with } j \text { stoppers is there }] \times \sharp \Delta \text { with } j \text { stoppers }
$$

11-3

Alternative analysis

Triangle Δ with j stoppers

Probability that it exists in the triangulation of a sample of size α n

$$
\simeq \alpha^{3}(1-\alpha)^{j} \geq \alpha^{3}(1-\alpha)^{\frac{1}{\alpha}} \geq \frac{1}{4} \alpha^{3} \quad \text { if } 2 \leq j \leq \frac{1}{\alpha}
$$

Size of the triangulation of the sample

$$
\begin{aligned}
& =\sum_{j=0} \mathbb{P}[\Delta \text { with } j \text { stoppers is there }] \times \sharp \Delta \text { with } j \text { stoppers } \\
& \geq \sum_{j=0}^{1 / \alpha} \frac{\alpha^{3}}{4} \times \sharp \Delta \text { with } j \text { stoppers }
\end{aligned}
$$

11-4

Alternative analysis

Triangle Δ with j stoppers

Probability that it exists in the triangulation of a sample of size α n

$$
\simeq \alpha^{3}(1-\alpha)^{j} \geq \alpha^{3}(1-\alpha)^{\frac{1}{\alpha}} \geq \frac{1}{4} \alpha^{3} \quad \text { if } 2 \leq j \leq \frac{1}{\alpha}
$$

Size of the triangulation of the sample

$$
=\sum_{j=0} \mathbb{P}[\Delta \text { with } j \text { stoppers is there }] \times \sharp \Delta \text { with } j \text { stoppers }
$$

$$
\geq \sum_{j=0}^{1 / \alpha} \frac{\alpha^{3}}{4} \times \sharp \Delta \text { with } j \text { stoppers }=\alpha^{3} \sharp \Delta \text { with } \leq \frac{1}{\alpha} \text { stoppers }
$$

11-5

Alternative analysis

Triangle Δ with j stoppers

Probability that it exists in the triangulation of a sample of size α n

$$
\simeq \alpha^{3}(1-\alpha)^{j} \geq \alpha^{3}(1-\alpha)^{\frac{1}{\alpha}} \geq \frac{1}{4} \alpha^{3} \quad \text { if } 2 \leq j \leq \frac{1}{\alpha}
$$

Size of the triangulation of the sample

$$
=\sum \mathbb{P}[\Delta \text { with } j \text { stoppers is there }] \times \sharp \Delta \text { with } j \text { stoppers } \quad=O(\alpha n)
$$

$$
\geq \sum_{j=0}^{1 / \alpha} \frac{\alpha^{3}}{4} \times \sharp \Delta \text { with } j \text { stoppers }=\alpha^{3} \sharp \Delta \text { with } \leq \frac{1}{\alpha} \text { stoppers }
$$

11-6

Alternative analysis

Triangle Δ with j stoppers

Probability that it exists in the triangulation of a sample of size α n

$$
\simeq \alpha^{3}(1-\alpha)^{j} \geq \alpha^{3}(1-\alpha)^{\frac{1}{\alpha}} \geq \frac{1}{4} \alpha^{3} \quad \text { if } 2 \leq j \leq \frac{1}{\alpha}
$$

Size of the triangulation of the sample

$$
=\sum \mathbb{P}[\Delta \text { with } j \text { stoppers is there }] \times \sharp \Delta \text { with } j \text { stoppers } \quad=O(\alpha n)
$$

$$
\geq \sum_{j=0}^{1 / \alpha} \frac{\alpha^{3}}{4} \times \sharp \Delta \text { with } j \text { stoppers }=\alpha^{3} \sharp \Delta \text { with } \leq \frac{1}{\alpha} \text { stoppers }
$$

11- Size $\left(\right.$ order $\leq k$ Voronoi) $\leq \frac{\alpha n}{\alpha^{3}}=n k^{2}$

Alternative analysis

Triangle Δ with j stoppers

Probability that it exists during the construction

$$
=\frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1}
$$

11-8

Alternative analysis

Triangle Δ with j stoppers

Probability that it exists during the construction

$$
=\frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1}
$$

$\#$ of created triangles

$$
=\sum_{j=0}^{n} \mathbb{P}[\Delta \text { with } j \text { stoppers appears }] \times \sharp \Delta \text { with } j \text { stoppers }
$$

11-9

Alternative analysis

Triangle Δ with j stoppers

Probability that it exists during the construction

$$
=\frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1}
$$

$\#$ of created triangles

$$
=\sum_{j=0}^{n} \mathbb{P}[\Delta \text { with } j \text { stoppers appears }] \times \sharp \Delta \text { with } j \text { stoppers }
$$

$$
=\sum_{j=0}^{n}(\mathbb{P}[\Delta \text { with } j]-\mathbb{P}[\Delta \text { with } j+1]) \times \sharp \Delta \text { with } \leq j \text { stoppers }
$$

11-10

Alternative analysis

Triangle Δ with j stoppers

Probability that it exists during the construction

$$
=\frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1}
$$

$\#$ of created triangles
$=\sum_{j=0}^{n} \mathbb{P}[\Delta$ with j stoppers appears $] \times \sharp \Delta$ with j stoppers
$=\sum_{j=0}^{n}(\mathbb{P}[\Delta$ with $j]-\mathbb{P}[\Delta$ with $j+1]) \times \sharp \Delta$ with $\leq j$ stoppers
$11-\widetilde{\overline{1}} \sum_{j=0}^{n} \frac{18}{j^{4}} \times n j^{2}=O\left(n \sum \frac{1}{j^{2}}\right)=O(n)$

Alternative analysis

Triangle Δ with j stoppers

Conflict graph / History graph
It remains to analyze conflict location

11-12

Alternative analysis

Triangle Δ with j stoppers

Probability that it exists during the construction

$$
=\frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1}
$$

\sharp of conflicts occuring

$$
=\sum_{j=0} j \times \mathbb{P}[\Delta \text { with } j \text { stoppers appears }] \times \sharp \Delta \text { with } j \text { stoppers }
$$

$11-13$

Alternative analysis

Triangle Δ with j stoppers

Probability that it exists during the construction

$$
=\frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1}
$$

\sharp of conflicts occuring

$$
\begin{aligned}
& =\sum_{j=0}^{n} j \times \mathbb{P}[\Delta \text { with } j \text { stoppers appears }] \times \sharp \Delta \text { with } j \text { stoppers } \\
& =\sum_{j=0}^{n} j \times(\mathbb{P}[\Delta \text { with } j]-\mathbb{P}[\Delta \text { with } j+1]) \times \sharp \Delta \text { with } \leq j \text { stoppers }
\end{aligned}
$$

11-14

Alternative analysis

Triangle Δ with j stoppers

Probability that it exists during the construction

$$
=\frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1}
$$

$\#$ of conflicts occuring
$=\sum_{j=0}^{n} j \times \mathbb{P}[\Delta$ with j stoppers appears $] \times \sharp \Delta$ with j stoppers
$=\sum_{j=0}^{n} j \times(\mathbb{P}[\Delta$ with $j]-\mathbb{P}[\Delta$ with $j+1]) \times \sharp \Delta$ with $\leq j$ stoppers
$11-\simeq \overline{\overline{1} 5} \sum_{i=0}^{n} j \times \frac{18}{j^{4}} \times n j^{2}=O\left(n \sum \frac{1}{j}\right)=O(n \log n)$

History graph

12-1

History graph

12-2

History graph

12-3

History graph

12-4

History graph (Delaunay tree)

13-1

History graph (Delaunay tree)

Conflict graph

14-1

Conflict graph

Conflict graph

$14-3$

Conflict graph

14-4

Conflict graph

$14-5$

Conflict graph

$14-6$

Conflict graph

14-7

Walk

Walk

Walk

Walk

Walk

Jump and walk

Jump and walk

Jump and walk

Jump and walk

Jump and walk (no distribution hypothesis)

Jump and walk (no distribution hypothesis)

$$
\mathbb{E}[\# \text { of } \bullet \text { in } \bullet]=\frac{n}{k}
$$

Jump and walk (no distribution hypothesis)

$$
\mathbb{E}[\# \text { of } \bullet \text { in } \odot]=\frac{n}{k}
$$

Walk length $=O\left(\frac{n}{k}\right)$ choose $k=\sqrt[2]{n}$

Jump and walk (no distribution hypothesis)Delaunay hierarchy $\mathbb{E}[\#$ of \bullet in $\bullet]=\frac{n}{k}$ Walk length $=O\left(\frac{n}{k}\right)$ choose k

Jump and walk (no distribution hypothesis)Delaunay hierarchy $\mathbb{E}[\#$ of \bullet in $\bullet]=\frac{n}{k}$
Walk length $=O\left(\frac{n}{k}\right)$ choose k

17-5

Jump and walk (no distribution hypothesis)Delaunay hierarchy $\mathbb{E}[\#$ of \bullet in $\bullet]=\frac{n}{k}$

$$
\frac{n}{k_{1}}+\frac{k_{1}}{k_{2}}
$$

Walk length $=O\left(\frac{n}{k}\right)$ choose k

17-6

Jump and walk (no distribution hypothesis)Delaunay hierarchy

$$
\mathbb{E}[\# \text { of } \bullet \text { in } \odot]=\frac{n}{k}
$$

$$
\frac{n}{k_{1}}+\frac{k_{1}}{k_{2}}+\frac{k_{2}}{k_{3}}+\ldots
$$

$$
\text { Walk length }=O\left(\frac{n}{k}\right)
$$

$$
\text { Choose } k=
$$

17-7

Jump and walk (no distribution hypothesis)Delaunay hierarchy

$$
\mathbb{E}[\# \text { of } \bullet \text { in } \odot]=\frac{n}{k}
$$

$$
\frac{n}{k_{1}}+\frac{k_{1}}{k_{2}}+\frac{k_{2}}{k_{3}}+\ldots
$$

Walk length $=O\left(\frac{n}{k}\right)$ choose $k=$ toly \quad choose $\frac{k_{i}}{k_{i+1}}=\alpha$

17-8

Jump and walk (no distribution hypothesis)Delaunay hierarchy $\mathbb{E}[\#$ of \bullet in $\bullet]=\frac{n}{k} \quad \frac{n}{k_{1}}+\frac{k_{1}}{k_{2}}+\frac{k_{2}}{k_{3}}+\ldots$
Walk length $=O\left(\frac{n}{k}\right)$
choose $\frac{k_{i}}{k_{i+1}}=\alpha$
point location in $O\left(\alpha \log _{\alpha} n\right)$

17-9

Jump and walk (no distribution hypothesis)Delaunay hierarchy

$$
\mathbb{E}[\# \text { of } \bullet \text { in } \bullet]=\frac{n}{k} \quad \frac{n}{k_{1}}+\frac{k_{1}}{k_{2}}+\frac{k_{2}}{k_{3}}+\ldots
$$

Walk length $=O\left(\frac{n}{k}\right)$
choose $\frac{k_{i}}{k_{i+1}}=\alpha$
point location in $O\left(\alpha \log _{\alpha} n\right)$
point location in $O\left(\sqrt{\alpha} \log _{\alpha} n\right)$

Technical detail
Walk length $=O(\sharp$ of \bullet in $\odot)=O\left(\frac{n}{k}\right)$

18-1

Technical detail
Walk length $=O(\sharp$ of \bullet in $\odot)=O\left(\frac{n}{k}\right)$

18-2

Technical detail

Randomization

How many randomness is necessary?

If the data are not known in advance shuffle locally

Randomization

Drawbacks of random order

non locality of memory access
 data structure for point location

$\longrightarrow \quad$ Hilbert sort

20

Drawbacks of random order
non locality of memory access
data structure for point location
$\longrightarrow \quad$ Hilbert sort
Walk should be fast
Last point is not at all a random point
$\longrightarrow \quad$ no control of degree of last point
22

Triangle Δ with j stoppers

24-1

Triangle Δ with j stoppers

Size $\left(\right.$ order $\leq k$ Voronoi) $\leq \frac{\alpha n}{\alpha^{3}}=n k^{2}$

24-2

Triangle Δ with j stoppers

Probability that it exists during the construction

$$
=\frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1}
$$

24-3

Triangle Δ with j stoppers

Probability that it exists during the construction

$$
=\frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1} \text { remains } \Theta\left(j^{-3}\right)
$$

24-4

Triangle Δ with j stoppers

Probability that it exists during the construction

$$
=\frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1} \text { remains } \Theta\left(j^{-3}\right)
$$

$\#$ of created triangles

$$
\begin{aligned}
& =\sum_{j=0}^{n} \mathbb{P}[\Delta \text { with } j \text { stoppers appears }] \times \sharp \Delta \text { with } j \text { stoppers } \\
& \simeq O\left(\sum \frac{n j^{2}}{j^{4}}\right)=O(n)
\end{aligned}
$$

24-5

Triangle Δ with j stoppers

Probability that it exists during the construction

$$
=\frac{3}{j+3} \frac{2}{j+2} \frac{1}{j+1} \text { remains } \Theta\left(j^{-3}\right)
$$

\sharp of conflicts occuring

$$
\begin{aligned}
& =\sum_{j=0}^{n} j \times \mathbb{P}[\Delta \text { with } j \text { stoppers appears }] \times \sharp \Delta \text { with } j \text { stoppers } \\
& \simeq O\left(\sum j \frac{n j^{2}}{j^{4}}\right)=O(n \log n)
\end{aligned}
$$

24-6

Delaunay 2D 1M random points
locate using Delaunay hierarchy
random order (visibility walk)
x-order
Hilbert order
Biased order (Spatial sorting)

6 seconds
157 seconds
3 seconds
0.8 seconds
0.7 seconds

25-1

Delaunay 2D 100K parabola points
locate using Delaunay hierarchy 0.3 seconds
random order (visibility walk) 128 seconds
x-order
632 seconds
Hilbert order
46 seconds
Biased order (Spatial sorting)
0.3 seconds

25-2

Delaunay of points in convex position

29-1

Delaunay of points in convex position

29-2

Delaunay of points in convex position choose a point at random

29-3

Delaunay of points in convex position

29-4

Delaunay of points in convex position
choose a point at random remove it from convex polygon remember its place
$29-5$

Delaunay of points in convex position

29-6

Delaunay of points in convex position

29-7

Delaunay of points in convex position

29-8

Delaunay of points in convex position

29-9

Delaunay of points in convex position

29-10

Delaunay of points in convex position
Analysis
choose a point at random
remove it from convex polygon
remember its place
compute Delaunay of $n-1$ points
with relevant vertex-triangle pointers
insert point, (location known)

Delaunay of points in convex position
Analysis
choose a point at random $O(1)$ [model]
remove it from convex polygon
remember its place
compute Delaunay of $n-1$ points
with relevant vertex-triangle pointers
insert point, (location known)

Delaunay of points in convex position
Analysis
choose a point at random
remove it from convex polygon
remember its place
compute Delaunay of $n-1$ points
with relevant vertex-triangle pointers
insert point, (location known)

Delaunay of points in convex position
Analysis
choose a point at random
remove it from convex polygon
remember its place

compute Delaunay of $n-1$ points
with relevant vertex-triangle pointers
insert point, (location known)
$O\left(d^{\circ} p\right)$

30-4

Delaunay of points in convex position
Analysis
choose a point at random
remove it from convex polygon
remember its place

compute Delaunay of $n-1$ points
with relevant vertex-triangle pointers
insert point, (location known)
$O\left(d^{\circ} p\right)=O(1)$

Delaunay of points in convex position
Analysis
choose a point at random
remove it from convex polygon
remember its place

compute Delaunay of $n-1$ points
with relevant vertex-triangle pointers $f(n-1)$
insert point, (location known)
$O\left(d^{\circ} p\right)=O(1)$

Delaunay of points in convex position
Analysis
choose a point at random
remove it from convex polygon
remember its place

compute Delaunay of $n-1$ points
with relevant vertex-triangle pointers $f(n-1)$
insert point, (location known)
$O\left(d^{\circ} p\right)=O(1)$
$f(n)=f(n-1)+O(1)$

Delaunay of points in convex position
Analysis
choose a point at random
remove it from convex polygon
remember its place

compute Delaunay of $n-1$ points
with relevant vertex-triangle pointers $f(n-1)$
insert point, (location known)
$O\left(d^{\circ} p\right)=O(1)$
$f(n)=f(n-1)+O(1)=O(n)$

Delaunay of points in convex position
Analysis
choose a point at random
remove it from convex polygon
remember its place
compute Delaunay of $n-1$ points
with relevant vertex-triangle pointers $f(n-1)$
insert point, (location known)
$O\left(d^{\circ} p\right)=O(1)$
$f(n)=f(n-1)+O(1)=O(n)$
[Chew 86]

