Days of department 1

Rounding polygonal meshes

Léo Valque
Float = mantis * \(2^{\text{exponent}}\)

- Integer of \(d\) digits
- Integer of \(k\) digits
Float Number

\[f_1 \times f_2 = m_1 \times m_2 \times 2^{e_1 + e_2} \]

\(d_1\) digits \hspace{1cm} \(d_2\) digits

\(d_1 + d_2\) digits
Intersection of Segments

coordinates use d digits
Intersection of Segments

Coordinates use d digits

Rational with numerator and denominator use $3d$ digits
Rounding Issues in 2D
Rounding Issues in 2D

Problem
Rounding Issues in 3D

Boolean operations on solids

Intersection of four icosahedra

Need to round the output coordinates

[Zhou et al. 2016]
Boolean operations on solids

Intersection of four icosahedra

Need to round the output coordinates

Thingiverse: 10K meshes 45% with self intersections

Mesh repair (elimination of self-intersections)

Zhou et al. [SIGGRAPH 2016] exact arithmetic
Rounding Issues in 3D

Boolean operations on solids

Intersection of four icosahedra

Need to round the output coordinates

Thingiverse: 10K meshes 45% with self intersections

Mesh repair (elimination of self-intersections)

Zhou et al. [SIGGRAPH 2016] exact arithmetic

Naive rounding fails (self-intersections) in 2.2%
Snap Rounding Problem

Given a set of interior disjoint faces in 3D (or segments in 2D)
Round the vertices coordinates on a grid – Allow subdivisions

Preserve the geometry
Bound the distance between a face and its rounded image

Preserve the topology “up to collapses”:
Snap Rounding Problem

Given a set of interior disjoint faces in 3D (or segments in 2D)
Round the vertices coordinates on a grid – Allow subdivisions

Preserve the geometry
Bound the distance between a face and its rounded image

Preserve the topology “up to collapses”:

Subdivisions are needed
NP-hard to round simple polygons with fixed precision, bounded Hausdorff distance, and preserving the topology

[Milenkovic, Nackman, 1990]
Snap Rounding Problem

Given a set of interior disjoint faces in 3D (or segments in 2D)
Round the vertices coordinates on a grid – Allow subdivisions

Preserve the geometry
Bound the distance between a face and its rounded image

Preserve the topology “up to collapses”:
Subdivisions are needed
Collapses or unbounded distance may be needed
2D Snap Rounding

Well understood in 2D

1986 Greene, Yao
1997 Goodrich, Guibas, Hershberger, Tanenbaum

1998 Guibas and Marimont

1999 Hobby
2002 Halperin, Packer
2007 de Berg, Halperin, Overmars
2008 Hershberger
2013 Hershberger
Well understood in 2D

We round coordinates on the integer grid [Guibas & Marimont 98]

- Pixels that contain a vertex of the arrangement are tagged *hot*
- Segments that intersect a hot pixel are subdivided in that pixel
- All vertices are rounded to their pixels centers
2D Snap Rounding

Well understood in 2D

We round coordinates on the integer grid [Guibas & Marimont 98]

– Pixels that contain a vertex of the arrangement are tagged hot
– Segments that intersect a hot pixel are subdivided in that pixel
– All vertices are rounded to their pixels centers

![Diagram of 2D Snap Rounding](image)
2D Snap Rounding

Well understood in 2D

We round coordinates on the integer grid [Guibas & Marimont 98]

– Pixels that contain a vertex of the arrangement are tagged *hot*
– Segments that intersect a hot pixel are subdivided in that pixel
– All vertices are rounded to their pixels centers
2D Snap Rounding

Well understood in 2D
We round coordinates on the integer grid \cite{GuibasMarimont98}

\begin{itemize}
\item Pixels that contain a vertex of the arrangement are tagged *hot*
\item Segments that intersect a hot pixel are subdivided in that pixel
\item All vertices are rounded to their pixels centers
\end{itemize}
3D Snap Rounding

1990 CCCG, Milenkovic. Face lattices in \mathbb{R}^d Incorrect in 3D

1997 CAGD, Fortune High-level algo for plane-based polyhedra
 Does not generalize to vertex-based polyhedra

1999 DCG, Fortune
 – The algorithm is very intricate
 – Coordinates are rounded to integer multiples of about $1/n$

No satisfying solution
3D Snap Rounding

1990 CCCG, Milenkovic. Face lattices in \mathbb{R}^d Incorrect in 3D

1997 CAGD, Fortune High-level algo for plane-based polyhedra Does not generalize to vertex-based polyhedra

1999 DCG, Fortune
- The algorithm is very intricate
- Coordinates are rounded to integer multiples of about $1/n$

No satisfying solution

2020 DCG, S. Lazard, W. Lenhart, O. Devillers
Assume that vertices are rounded to the center of their voxel.

During rounding, a vertex might traverse a face.
Assume that vertices are rounded to the center of their voxel.
During rounding, a vertex might traverse a face.

Faces should be retriangulated.
The new edges may intersect other edges when rounded.

Unknown if such approaches always terminates.
The difficulty of 3D Snap Rounding

Second example: Nice but flawed algorithm

Project all edges on the xy-plane
Subdivide them as in 2D snap rounding
Add the boundaries of hot pixels (to avoid recursion) & Triangulate
Lift this triangulation vertically back on all faces
Round all vertices to the centers of their voxels
Second example: Nice but flawed algorithm

Project all edges on the xy-plane
Subdivide them as in 2D snap rounding
Add the boundaries of hot pixels (to avoid recursion) & Triangulate
Lift this triangulation vertically back on all faces
Round all vertices to the centers of their voxels
The difficulty of 3D Snap Rounding

Second example: Nice but flawed algorithm

Project all edges on the xy-plane
Subdivide them as in 2D snap rounding
Add the boundaries of hot pixels (to avoid recursion) & Triangulate
Lift this triangulation vertically back on all faces
Round all vertices to the centers of their voxels

Blue: connect 3 pixels
Yellow: connect 2 pixels
Grey: in 1 pixel
The difficulty of 3D Snap Rounding

Second example: Nice but flawed algorithm

Project all edges on the xy-plane
Subdivide them as in 2D snap rounding
Add the boundaries of hot pixels (to avoid recursion) & Triangulate
Lift this triangulation vertically back on all faces
Round all vertices to the centers of their voxels
The difficulty of 3D Snap Rounding

Second example: Nice but flawed algorithm

Project all edges on the xy-plane
Subdivide them as in 2D snap rounding
Add the boundaries of hot pixels (to avoid recursion) & Triangulate
Lift this triangulation vertically back on all faces
Round all vertices to the centers of their voxels

Flaw:

- Yellow triangle rounded to a segment
- Lifted 3D triangles
- Rounded to vertical triangles that may intersect
The difficulty of 3D Snap Rounding

Second example: Nice but flawed algorithm

Project all edges on the xy-plane
Subdivide them as in 2D snap rounding
Add the boundaries of hot pixels (to avoid recursion) & Triangulate
Lift this triangulation vertically back on all faces
Round all vertices to the centers of their voxels

Flaw:

Fortune’s solution [1999]:
Avoid vertical rounding of the faces by using a finer grid
(integer multiples of $\approx 1/n$)
Second example: Nice but flawed algorithm

Project all edges on the xy-plane
Subdivide them as in 2D snap rounding
Add the boundaries of hot pixels (to avoid recursion) & Triangulate
Lift this triangulation vertically back on all faces
Round all vertices to the centers of their voxels

Flaw:

Fortune’s solution [1999]:
Avoid vertical rounding of the faces by using a finer grid
(integer multiples of $\approx 1/n$)

Nice but flawed algorithm
Our Algorithm

WHILE Some proper intersections occur:

0. add involved faces in F_C.

IF F_C has changed:

1. Collapse faces close to one another.

2. Project the faces on the floor, subdivide them and lift.

ELSE

3. Partition intersecting features into xy-parallel slabs.

4. Triangulate the faces and simulate again the rounding.
Our Algorithm

WHILE Some proper intersections occur:

0. add involved faces in F_C.

IF F_C has changed:

1. Collapse faces close to one another.

2. Project the faces on the floor, subdivide them and lift.

ELSE

3. Partition intersecting features into xy-parallel slabs.

4. Triangulate the faces and simulate again the rounding.
1. Collapse the faces that are close to one another

We deform iteratively the input faces ordered arbitrarily from F_1 to F_n

For i from 2 to n

Project the points of F_i along y onto F_1, \ldots, F_{i-1}, in order

iff the points project at distance at most 1

Create, if needed, new faces that connect the boundary of the projected points to their pre-image
1. Collapse the faces that are close to one another

We deform iteratively the input faces ordered arbitrarily from F_1 to F_n

For i from 2 to n

Project the points of F_i along y onto F_1, \ldots, F_{i-1}, in order

iff the points project at distance at most 1

Create, if needed, new faces that connect

the boundary of the projected points to their pre-image

any plane $x = \text{cst}$
1. Collapse the faces that are close to one another

We deform iteratively the input faces ordered arbitrarily from F_1 to F_n

For i from 2 to n

Project the points of F_i along y onto F_1, \ldots, F_{i-1}, in order

iff the points project at distance at most 1

Create, if needed, new faces that connect
the boundary of the projected points to their pre-image

any plane $x = \text{cst}$
Our Algorithm

WHILE Some proper intersections occur:

0. add involved faces in F_C.

IF F_C has changed:
 1. Collapse faces close to one another.
 2. Project the faces on the floor, subdivide them and lift.
ELSE
 3. Partition intersecting features into xy-parallel slabs.
 4. Triangulate the faces and simulate again the rounding.
2. Project faces on the floor, subdivide them and lift.

- For all pair of faces at distance at most 1. Project them on the floor and subdivide them.
2. Project faces on the floor, subdivide them and lift.

- For all pair of faces at distance at most 1. Project them on the floor and subdivide them.
- Lift it back on 3D faces and subdivide them.
Our Algorithm

WHILE Some proper intersections occur:

0. add involved faces in F_C.

IF F_C has changed:

1. Collapse faces close to one another.

2. Project the faces on the floor, subdivide them and lift.

ELSE

3. Partition intersecting features into xy-parallel slabs.

4. Triangulate the faces and simulate again the rounding.
3. Partition intersecting features into xy-parallel slabs

Narrow slab: Region in between two side walls $x = c \pm \frac{1}{2}, \ c \in \mathbb{Z}$

Wide slabs: Region bounded by two consecutive thin slabs
3. Partition intersecting features into xy-parallel slabs

- For all pair of faces at distance that intersect during the virtual rounding.
3. Partition intersecting features into xy-parallel slabs

- For all pair of faces at distance that intersect during the virtual rounding.
- Define a narrow slab for each of they’re vertices.
3. Partition intersecting features into xy-parallel slabs

- For all pair of faces at distance that intersect during the virtual rounding.
- If they’re cut, define a narrow slab for each of they’re vertices.
- Subdivide the 2 faces by thoses slabs
3. Partition intersecting features into xy-parallel slabs

- For all pair of faces at distance that intersect during the virtual rounding.
- If they’re cut, define a narrow slab for each of they’re vertices.
- Subdivide the 2 faces by thoses slabs
- Subdivide by thoses slabs the faces at distance 1 from these 2 faces to keep faces consistent on the floor.
Our Algorithm

WHILE Some proper intersections occur:

0. add involved faces in F_C.

IF F_C has changed:
 1. Collapse faces close to one another.
 2. Project the faces on the floor, subdivide them and lift.
ELSE
 3. Partition intersecting features into xy-parallel slabs.
 4. Triangulate the faces and simulate again the rounding.
4. Triangulate the faces in narrow slabs

Project along x all faces on $x = c$
In plane $x = c$, subdivide all edges
as in 2D snap rounding
Triangulate and lift back on the faces in F_C
4. Triangulate the faces in narrow slabs

Project along x all faces on $x = c$
In plane $x = c$, subdivide all edges as in 2D snap rounding
Triangulate and lift back on the faces in F_C
4. Triangulate the faces in narrow slabs

Project along x all faces on $x = c$
In plane $x = c$, subdivide all edges as in 2D snap rounding

Triangulate and lift back on the faces in F_C

This may create vertices in the side-wall boundaries $x = c \pm \frac{1}{2}$ shared with the adjacent thick slabs
4. Triangulate the faces between narrow slabs

Between narrow slabs
Faces are trapezoids with identical or disjoint floor projections
4. Triangulate the faces between narrow slabs

Between narrow slabs
Faces are trapezoids with identical or disjoint floor projections

- Triangulate with diagonals whose floor projections are consistent
4. Triangulate the faces between narrow slabs

Between narrow slabs
Faces are trapezoids with identical or disjoint floor projections

- Triangulate with diagonals whose floor projections are consistent
- Further triangulate with the vertices just created in the adjacent narrow slabs
Our Algorithm

WHILE Some proper intersections occur:

0. add involved faces in F_C.

IF F_C has changed:

1. Collapse faces close to one another.

2. Project the faces on the floor, subdivide them and lift.

ELSE

3. Partition intersecting features into xy-parallel slabs.

4. Triangulate the faces and simulate again the rounding.
Recap

Three Critical Operations:
1. Collapse the faces that are close to one another
2. Project faces on the floor, subdivide them and lift.
3. Partition the space into xy-parallel slabs

Rather simple algorithm Delicate proof of correctness
Preserve the geometry L_∞ Hausdorff distance $\leq 3/2$
Preserve the topology “up to collapses”
Bad worst-case complexity: $O(n^{17})$ space and $O(n^{44})$ time
$O(n^5)$ space and $O(n^{6.5})$ time under some hypotheses
We conjecture $O(n)$ and $O(n \log n)$ time under stronger hypotheses.
Conclusion and current works

First algorithm for snap rounding sets of polygons in 3D on a fixed-size grid

We have a first implementation of this algorithm.

We quickly test it on 5,390 of meshes by rounding coordinates from double to simple precision.

641 of them present a proper intersection after naive rounding.

188 of them a round in less than 10min by our algorithm.

Debug and Optimisation are in progress to improve this result.
Thank You!