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Roots of geometric probability
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ℓ/2
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Roots of geometric probability

p = p([0, ℓ]) =
2ℓ

πD

D
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Roots of geometric probability

Same question when dropping a polygonal line?

D
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Same question when dropping a convex body K?

D

K



default
Roots of geometric probability

p(∂K ) =
per(∂K)

πD
where per(∂K) : perimeter of ∂K

D

K



default
Roots of geometric probability

Notation

• pk(C ) probability to have exactly k intersections of C with the
lines
• f (C ) =

∑

k≥1 kpk(C ) mean number of intersections

Several juxtaposed needles

• f ([0, ℓ]), ℓ > 0, additive and increasing so f ([0, ℓ]) = αℓ, α > 0
• Similarly, f (C ) = αper(C )
• f (Circle of diameter D) = 2 = απD

• If C is the boundary of a convex body K with diam(K) < D,
f (C ) = 2p(C )



default
Extensions in integral geometry

K convex body of R2

Lp,θ = p(cos(θ), sin(θ)) + R(− sin(θ), cos(θ)), p ∈ R, θ ∈ [0, π)

Lp,θ
p

θ

per(∂K) =

∫ π

θ=0

∫ +∞

p=−∞
1(Lp,θ ∩K 6= ∅)dpdθ



default
Extensions in integral geometry

K convex body of R2

Lp,θ = p(cos(θ), sin(θ)) + R(− sin(θ), cos(θ)), p ∈ R, θ ∈ [0, π)

Lp,θ
p

θ

θ
K

diamθ(K)

per(∂K) =

∫ π

θ=0

∫ +∞

p=−∞
1(Lp,θ ∩K 6= ∅)dpdθ

Cauchy-Crofton formula

per(∂K) =

∫ π

θ=0

diamθ(K)dθ



default
Random points
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B2

B3

B4

• W convex body
• µ probability measure on W

• (Xi , i ≥ 1) independent µ-distributed variables

En = {X1, · · · ,Xn} (n ≥ 1)

• #(En ∩ B1) number of points in B1

◮ #(En ∩ B1) binomial variable
P(#(En ∩ B1) = k) =

(

n
k

)

µ(B1)
k(1− µ(B1))

n−k ,
0 ≤ k ≤ n

◮ #(En ∩ B1), · · · ,#(En ∩ Bn) not independent

(B1, · · · , Bn ∈ B(R2), Bi ∩ Bj = ∅, i 6= j)



default
Poisson point process

�
�
�
�

����

����

����

����
��

��
�
�
�
�

����

����

��

�� ��

��

����

��

����

��

��

��

��

�� ���� ��
��

��

��

����

B1

B2

B3

B4

Poisson point process with intensity measure µ :

locally finite subset X of Rd such that

◮ #(X ∩ B1) Poisson r.v. of mean µ(B1)

P(#(X ∩ B1) = k) = e−µ(B1) µ(B1)k

k! , k ∈ N

◮ #(X ∩ B1), · · · ,#(X ∩ Bn) independent

(B1, · · · , Bn ∈ B(Rd ), Bi ∩ Bj = ∅, i 6= j)



default
Poisson line tessellation

◮ X Poisson point process in R
2 of

intensity measure dpdθ

◮ For (p, θ) ∈ X, polar line

Lp,θ = p(cos(θ), sin(θ)) + (cos(θ), sin(θ))⊥

◮ Tessellation:
set of connected components of

R
d \

⋃

(p,θ)∈X

Lp,θ

Properties: invariance under translations and rotations

References: Meijering (1953), Miles (1964), Stoyan et al. (1987)
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default
Questions of interest

◮ Asymptotic study of the population of cells (means,
extremes): number of vertices, edge length in a window...

◮ Study of a particular cell

zero-cell C0 containing the origin

typical cell C chosen uniformly at random

Means, moments and distribution of functionals of the cell
(area, perimeter...),
asymptotic sphericality

J. Møller (1986), I. N. Kovalenko (1998), D. Hug, M. Reitzner & R. Schneider (2004)



default
Mean number of vertices per cell

• Each vertex from the tessellation is contained in exactly 4 cells.

• Each vertex is the highest point from a unique cell with
probability 1.

• There are as many vertices as there are cells.

Conclusion. The mean number of vertices of a typical cell is 4.



default
Probability to belong to the zero-cell

0

C0

K

Consequence of the Cauchy-Crofton formula:
K convex body containing 0, C0 cell of the tessellation containing 0

P(K ⊂ C0) = exp

(

−
∫∫

1(Lp,θ ∩ K 6= ∅)dpdθ
)

= exp(−per(∂K))

Remark. In higher dimension, the perimeter is replaced by the mean width.



default
Poisson-Voronoi tessellation

◮ X Poisson point process in R
2 of

intensity measure dx

◮ For every nucleus x ∈ X, the cell
associated is

C (x |X) := {y ∈ R
2 :

‖y − x‖ ≤ ‖y − x ′‖ ∀x ′ ∈ X}

◮ Tessellation:
set of cells C (x |X)

Properties: invariance under translations and rotations

References: Descartes (1644), Gilbert (1961), Okabe et al. (1992)



default
Deterministic Voronoi grids



default
Mean number of vertices per cell

• Each vertex from the tessellation is contained in exactly 3 cells.

• Each vertex is the highest or lowest point from a unique cell with
probability 1.

• There are twice as many vertices as there are cells.

Conclusion. The mean number of vertices of a typical cell is 6.



default
Probability to belong to the zero-cell

0

C0

0

K

F0(K )

K convex body containing 0, C0 Voronoi cell C (0|X ∪ {0})

P(K ⊂ C0) = exp(−Vd(F0(K )))

where Vd is the volume and F0(K ) = ∪x∈KB(x , ‖x‖) flower of K



default
Plan

From game to theory: Buffon, integral geometry, random tessellations

From game to theory: 150 years of random convex hulls
Sylvester’s problem
Extension of Sylvester’s problem
Uniform model
Gaussian model
Asymptotic spherical shape
Mean and variance estimates

Addendum: some more models
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J. J. Sylvester, The Educational Times, Problem 1491 (1864)

Probability p(K ) that 4 independent points uniformly distributed in a convex

set K ⊂ R
2 with finite area are the vertices of a convex quadrilateral?
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default
Sylvester’s problem

B. Efron (1965) : p(K ) = 1− 4A(Triangle)

A(C )



default
Sylvester’s problem

W. Blaschke (1923) :

2

3
≤ p(K ) ≤ 1− 35

12π2 ≈ 0.70448



default
Extension of Sylvester’s problem

Probability that n independent points uniformly distributed in a
convex set of R2 with finite area are the vertices of a convex
polygon?

P. Valtr (1996) :

pn(T ) =
2n(3n − 3)!

[(n − 1)!]3(2n)!
pn(P) =

[

1

n!

(

2n − 2

n − 1

)]2



default
Extension of Sylvester’s problem

I. Bárány (1999) :

log pn(K ) =
n→∞

−2n log n+ n log

(

1

4
e2

PA(K )3

A(K )

)

+ o(n)

where PA(K ) is the affine perimeter of K

log pn(D) =
n→∞

−2n log n + n log(2π2e2) + o(n)
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Random convex hulls

◮ K convex body of Rd

◮ Kn: convex hull of n independent
points, uniformly distributed in K
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default
Random convex hulls

◮ K convex body of Rd

◮ Kn: convex hull of n independent
points, uniformly distributed in K

Considered functionals

fk(·): number of k-dimensional faces, 0 ≤ k ≤ d

Vd(·): volume



default
Explicit calculations

J. G. Wendel (1962): when K is symmetric,

P{0 6∈ Kn} = 2−(n−1)
d−1
∑

k=0

(

n − 1

k

)

(n ≥ d)

B. Efron (1965) : f0(·): # vertices, Vd (·): volume

Ef0(Kn) = n

(

1− EVd(Kn−1)

Vd(K )

)

C. Buchta (2005) : identities between higher moments

Conclusion: very few non asymptotic calculations are possible!



default
Proof of Efron’s relation

X1, · · · ,Xn independent and uniformly distributed in K :

Ef0(Kn) = E

n
∑

k=1

1{Xk 6∈ Conv(Xi ,i 6=k)}

= nE[E[1{Xn 6∈ Conv(X1,··· ,Xn−1)}|X1, · · · ,Xn−1]]

= nE

[

1− Vd(Conv(X1, · · · ,Xn−1))

Vd(K )

]

= n

(

1− EVd(Kn−1)

Vd(K )

)



default
Gaussian model

◮ Φd (x) :=
1

(2π)d/2
e−‖x‖2/2, x ∈ R

d ,
d ≥ 2

◮ Kn : convex hull of n independent
points with common density Φd



default
Gaussian model

◮ Φd (x) :=
1

(2π)d/2
e−‖x‖2/2, x ∈ R

d ,
d ≥ 2

◮ Kn : convex hull of n independent
points with common density Φd



default
Simulations of the uniform model

K50, K disk K50, K square
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default
Simulations of the Gaussian model

K50 K100 K500



default
Gaussian polytopes: spherical shape

K50 K100 K500



default
Gaussian polytopes: spherical shape

K5000 K50000



default
Asymptotic spherical shape

Geffroy (1961) :

dH(Kn,B(0,
√

2 log(n))) →
n→∞

0 a.s.

K50000



default
Comparison between uniform and Gaussian

K50 uniform/disk K100 uniform/disk K500 uniform/disk

K50 Gaussian K100 Gaussian K500 Gaussian



default
Closeness to the spherical shape

εn

Uniform case in the ball:

εn ≈
n→∞

cd
log(n)

n
2

d+1

Gaussian case:

εn ≈
n→∞

c ′d
log(2 log(n))√

2 log(n)



default
Asymptotic means

A. Rényi & R. Sulanke (1963), H. Raynaud (1970), R. Schneider & J. Wieacker (1978), I. Bárány & C. Buchta (1993)

E[fk(Kn)] Vd(K )− E[Vd(Kn)]
or E[Vd(Kn)]

Uniform, smooth ∼ c
(1)
d,k(K ) n

d−1
d+1 ∼ c

(4)
d,d (K ) n−

2
d+1

Gaussian ∼ c
(2)
d,k log

d−1
2 (n) ∼ c

(5)
d,d log

d
2 (n)

Uniform, polytope ∼ c
(3)
d,k(K ) logd−1(n) ∼ c

(6)
d,d (K ) n−1 logd−1(n)

c
(i)
d,k , 0 ≤ k ≤ d , explicit constants depending on d , k and K



default
Variance estimates

M. Reitzner (2005), V. Vu (2006), I. Bárány & V. Vu (2007), I. Bárány & M. Reitzner (2009)

Var[fk(Kn)] Var[Vd (Kn)]

Uniform, smooth Θ(n
d−1
d+1 ) Θ(n−

d+3
d+1 )

Gaussian Θ(log
d−1
2 (n)) Θ(log

d−3
2 (n))

Uniform, polytope Θ(logd−1(n)) Θ(n−2 logd−1(n))



default
Contributions

◮ Limiting variances for fk(Kλ) and Vd(Kλ): existence and
explicit calculation of the constants

◮ Asymptotic normality of the distributions of fk(Kλ) and
Vd(Kλ)

◮ Limiting shape of Kλ for the uniform model in the ball and
the Gaussian model

Joint works with T. Schreiber (Toruń, Poland) and J. E. Yukich (Lehigh, USA)



default
Asymptotic shape

0

−→

Π↑ := {(v , h) ∈ R
d−1 × R : h ≥ ‖v‖2

2 }, Π↓ := {(v , h) ∈ R
d−1 ×R : h ≤ −‖v‖2

2 }

Half-space translate of Π↓

Sphere containing O translate of ∂Π↑

Convexity Parabolic convexity

Extreme point (x + Π↑) not completely covered

k-face of Kλ Parabolic k-face

RλVd Vd



default
Some more models

◮ Random geometric graphs: nearest-neighbor, Delaunay,
Gabriel...

◮ Boolean model



default

Thank you for your attention!
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