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Roots of geometric probability

Georges-Louis Leclerc, Comte de Buffon (1733)

Probability p that a needle of length ¢ dropped on a floor made of
parallel strips of wood of same width D > ¢ will lie across a line?
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R and © independent r.v., uniformly distributed on ]0, %[ and ] —
There is intersection when 2R < £ cos(©).

/% /% os(®) qrdd 20
p= =
O0=— r=0
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Same question when dropping a polygonal line?
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Same question when dropping a convex body K7
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0K
p(OK) = %D) where per(9K) : perimeter of 9K
m
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Roots of geometric probability

Notation

e pi (%) probability to have exactly k intersections of € with the
lines
o (€)= >~ kpk(¢) mean number of intersections

Several juxtaposed needles

e 7([0,4]), £ > 0, additive and increasing so f([0,/]) = a/, o > 0
e Similarly, f(%¢) = aper(%)

o f(Circle of diameter D) =2 = axD

e If @ is the boundary of a convex body K with diam(K) < D,
f(€) = 2p(%)



K convex body of R?

Lp.o = p(cos(f),sin(#)) + R(—sin(#), cos(d)), per, b <o,n)

per(aK):/aﬂ /p+oo

1(Lpo NK # #)dpdo
=0 =—00
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Extensions in integral geometry

K convex body of R?
Lp.o = p(cos(f),sin(#)) + R(—sin(#), cos(d)), per, b <o,n)

6=0 =—00

™ +oo
per(9K) = / / 1(Lys MK # 0)dpdo
P
Cauchy-Crofton formula

per(@K):/ diamgp(K)dé
=0



Random points

e W convex body
e (i probability measure on W
® (X;,i > 1) independent p-distributed variables

En={X1, -, Xp} (=1

e #(&, N B1) number of points in B;

. B » #(&, N By) binomial variable
B e ' P(#(E, N B1) = k) = (})p(By)* (1 — u(B1))" %,
- 0<k<n

» #(E,NB1), -+ ,#(E,N By) not independent

(B1, -+ ,Bn € B(R?), BiN B =0,i+#])



Bs

B

Poisson point process with intensity measure
locally finite subset X of RY such that

» #(X N B;) Poisson r.v. of mean u(B;)

N B, v
B, el

P(#(X N By) = k) = e~ n(BBBY 1y

» #(XNB1), -, #(XN B,) independent

(B1, - -

<, Bn € B(RY), BiNB; =0,i#))
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Poisson line tessellation

» X Poisson point process in R? of
intensity measure dpdf

S 4
i

» For (p,8) € X, polar line

Ly = p(cos(8),sin(0)) + (cos(8),sin(#))*+

» Tessellation:
set of connected components of

RN (] Lps

(p,0)eX

Properties: invariance under translations and rotations
References: Meijering (1953), Miles (1964), Stoyan et al. (1987)
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Questions of interest

» Asymptotic study of the population of cells (means,
extremes): number of vertices, edge length in a window...

» Study of a particular cell

zero-cell Cy containing the origin

typical cell C chosen uniformly at random

Means, moments and distribution of functionals of the cell
(area, perimeter...),
asymptotic sphericality

J. Mgller (1986), I. N. Kovalenko (1998), D. Hug, M. Reitzner & R. Schneider (2004)



Mean number of vertices per cell

e Fach vertex from the tessellation is contained in exactly 4 cells.

e Fach vertex is the highest point from a unique cell with
probability 1.

e There are as many vertices as there are cells.

Conclusion. The mean number of vertices of a typical cell is 4.



Probability to belong to the zero-cell

Consequence of the Cauchy-Crofton formula:
K convex body containing 0, Cy cell of the tessellation containing 0

P(KC G) = exp (— //I(Lp,g NK # @)dpd@)
= exp(—per(9K))

Remark. In higher dimension, the perimeter is replaced by the mean width.



Poisson-Voronoi tessellation

» X Poisson point process in R? of
intensity measure dx

» For every nucleus x € X, the cell
associated is

C(x|X):={y e R?:
ly = xl < lly = X[| vx" € X}

» Tessellation:
set of cells C(x|X)

Properties: invariance under translations and rotations
References. Descartes (1644), Gilbert (1961), Okabe et al. (1992)






Mean number of vertices per cell

e Each vertex from the tessellation is contained in exactly 3 cells.

e Each vertex is the highest or lowest point from a unique cell with
probability 1.

e There are twice as many vertices as there are cells.

Conclusion. The mean number of vertices of a typical cell is 6.



Probability to belong to the zero-cell

K convex body containing 0, Cy Voronoi cell C(0|X U {0})
P(K C Co) = exp(—Va(Fo(K)))

where Vj is the volume and Fy(K) = Uxek B(x, ||x]|) flower of K



From game to theory: Buffon, integral geometry, random tessellations

From game to theory: 150 years of random convex hulls
Sylvester's problem

Extension of Sylvester's problem
Uniform model

Gaussian model
Asymptotic spherical shape
Mean and variance estimates
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Sylvester's problem

J. J. Sylvester, The Educational Times, Problem 1491 (1864)

Probability p(K) that 4 independent points uniformly distributed in a convex
set K C R? with finite area are the vertices of a convex quadrilateral?



Sylvester's problem

J. J. Sylvester, The Educational Times, Problem 1491 (1864)

Probability p(K) that 4 independent points uniformly distributed in a convex
set K C R? with finite area are the vertices of a convex quadrilateral?




Sylvester's problem

J. J. Sylvester, The Educational Times, Problem 1491 (1864)

Probability p(K) that 4 independent points uniformly distributed in a convex
set K C R? with finite area are the vertices of a convex quadrilateral?



Sylvester's problem

J. J. Sylvester, The Educational Times, Problem 1491 (1864)

Probability p(K) that 4 independent points uniformly distributed in a convex
set K C R? with finite area are the vertices of a convex quadrilateral?



Sylvester's problem

J. J. Sylvester, The Educational Times, Problem 1491 (1864)

Probability p(K) that 4 independent points uniformly distributed in a convex
set K C R? with finite area are the vertices of a convex quadrilateral?




B. Efron (1965) : p(K) =1—

4A(Triangle)

A(C)

DA



W. Blaschke (1923) :

’ : P(K) < 1 35

— 12z ~ 0.70448
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Extension of Sylvester's problem

Probability that n independent points uniformly distributed in a
convex set of R? with finite area are the vertices of a convex

polygon?

P. Valtr (1996) :

pn(T): 2"(3n — 3)! ou(P) = [1 <2n—2>r

[(n—1)13(2n)! nt\n—-1

I\ [




I. Barany (1999) :

log pn(K) = —2nlogn+ nlog (

1 ,PA(K)3
2€ AK) + o(n)
where PA(K) is the affine perimeter of K

log pn(D) =

—2nlog n + nlog(27%e?) + o(n)

DA



» K convex body of RY

» K, convex hull of nindependent
points, uniformly distributed in K
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» K convex body of RY
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» K convex body of RY

» K, convex hull of nindependent

points, uniformly distributed in K

Considered functionals

fx(-): number of k-dimensional faces, 0 < k < d
V4(+): volume

DA



Explicit calculations

J. G. Wendel (1962): when K is symmetric,

d—
P{0 & K,} =2~ ("1 Z(n_1> (n> d)
k=0

B. Efron (1965) : f(-): # vertices, Vy(:): volume

600 = (1- 27067

C. Buchta (2005) : identities between higher moments

Conclusion: very few non asymptotic calculations are possible!



X1, -+, X, independent and uniformly distributed in K:

n
Efs(Kn) = ]EZI{Xk¢ Com(X1,i#K)}
k=1

NE[E[Lx,& con(X1, Xo_1)} X1+ s Xn1]]
_ nE |:1 . Vd(Conv(X]_, s ,Xn_]_))

Va(K) ]
_ n(lEvdwd
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| 2 q)d(X) = We_”’(”z/zl x € Rd,
d>2

» K, :

Z

convex hull of n independent
points with common density ®4
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| 2 q)d(X) = We_”’(”z/zl x € Rd,
d>2

» K, :

convex hull of n independent
points with common density ®4
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Ksg, K disk

Kso, K square
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K].OO, K dlSk

K100, K square
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Ksoo, K disk

Ksoo, K square

Hao



Kso

Kioo

Kso0
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Geffroy (1961) :

du(Kn, B(0, v/2log(n))) e 0as.

DA



Kso uniform /disk

/

K50 Gaussian

K100 uniform/disk

KlOO Gaussian

Ksoo uniform/disk

Ksoo Gaussian

Hace



Uniform case in the ball:

log(n
€n Cd g )
n—o00

nd+1

Gaussian case:

En ~

o o8(2log(n)
nsoo @ (/2 log(n)
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Asymptotic means

A. Rényi & R. Sulanke (1963), H. Raynaud (1970), R. Schneider & J. Wieacker (1978), |. Barany & C. Buchta (1993)

E[fi(Kn)]l | Va(K) — E[Va(Kn)]
or E[Vg(K,)]

) d-1 _2

Uniform, smooth ~ Ky nd+l ~ Ky N A+l
. d—1 d

Gaussian ~@ log™2 (n) ~ ) log2(n)

Uniform, polytope | - log?~*(n) | - n* log?~*(n)

c((j'l 0 < k < d, explicit constants depending on d, k and K



Variance estimates

M. Reitzner (2005), V. Vu (2006), I. Barany & V. Vu (2007), I. Barany & M. Reitzner (2009)

Var[fy(Kp)] Var[Vy(Kp)]
Uniform, smooth @(n%) @(n_%)
. d—1 d—3
Gaussian O(log™z (n)) O(log = (n))
Uniform, polytope | ©(log?~1(n)) | ©(n~2log?~1(n))




Contributions

» Limiting variances for f(K)) and V4(K)): existence and
explicit calculation of the constants

» Asymptotic normality of the distributions of f,(K)) and
Va(Ky)

» Limiting shape of K) for the uniform model in the ball and
the Gaussian model

Joint works with T. Schreiber (Toruri, Poland) and J. E. Yukich (Lehigh, USA)



Asymptotic shape

2

M= {(v,h) e R xR:h> LY b= {(v, h) e REL xR : < -1y

Half-space translate of Mt

Sphere containing O | translate of ON'

Convexity Parabolic convexity

Extreme point (x + NT) not completely covered
k-face of K, Parabolic k-face

Ry\Vy Vg




Some more models

» Random geometric graphs: nearest-neighbor, Delaunay,

Gabriel...
@,
¢ ©

» Boolean model
. [ )



Thank you for your attention!
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