
A Flexible Proof Format for SMT:

a Proposal∗

Frédéric Besson
INRIA Rennes – Bretagne Atlantique, France

Frederic.Besson@inria.fr

Pascal Fontaine
University of Nancy and INRIA, Nancy, France

Pascal.Fontaine@loria.fr

Laurent Théry
INRIA Sophia-Antipolis – Méditerranée, France

Laurent.Thery@inria.fr

Abstract

The standard input format for Satisfiability Modulo Theories (SMT) solvers has now
reached its second version and integrates many of the features useful for users to interact
with their favourite SMT solver. However, although many SMT solvers do output proofs, no
standardised proof format exists. We, here, propose for discussion at the PxTP Workshop a
generic proof format in the SMT-LIB philosophy that is flexible enough to be easily recast
for any SMT solver. The format is configurable so that the proof can be provided by the
solver at the desired level of detail.

1 Introduction

Satisfiability Modulo Theory (SMT) consists in deciding the satisfiability of formulae belonging
to a combination of theories. Over the past few years, the quality of SMT-provers has greatly
improved. This is evaluated at the SMT-COMP, the annual competition for SMT. Current
SMT-provers are highly optimised and engineered tools that are capable of deciding formulae
of industrial size. For the moment, the output of most SMT-provers is just the simple answer:
sat or unsat. This information is enough to evaluate their speed and relative soundness –
especially when the status of formulae is known beforehand. But this may not be sufficient, and
particularly when trusting the SMT solver is not an option, like in a skeptical cooperation of
solvers.

The purpose of the current proposal is to tackle this problem and propose a generic proof
format for SMT-provers. Compared to existing approaches our objective is to aim at a format
that is sufficiently generic so that:

- any SMT-solver could generate a proof without too much effort;

- the proof could be checked by a trustworthy external verifier.

Our assessment is that previous attempts have produced formats that are either easy to generate
but hard to check or hard to generate and easy to check. For instance, the SMT-solver clsat

generates proofs that are already genuine proofs objects of the logical framework LF [9]. This
approach is very challenging and intellectually attractive. Yet efficient generation and checking
of LF proofs is still an open research area. Unlike [9], we advocate for a clear distinction
between the proof generated by the SMT-solver and the proof-object that would be built by
the checker. As a pay-off our proof format should be easier to produce and not require a
substantial re-engineering of the SMT-solver. There are other proof-generating SMT-provers
such as CVC3 [2], veriT [4] and Z3 [6, 5]. For those, the proof format is not totally formalised

∗This work was funded by the ANR Decert project.

1

Frederic.Besson@inria.fr
Pascal.Fontaine@loria.fr
Laurent.Thery@inria.fr

A flexible proof format for SMT: a proposal F. Besson, P. Fontaine and L. Théry

and proof reconstruction in a skeptical proof assistant is not a trivial task [8, 3]. One difficulty
lies in the fact that certain proof steps of the SMT-provers are kept implicit and do not appear
in the proof trace. We aim at providing a proof format that is proof-assistant friendly.

1.1 Proof of satisfiability/unsatisfiability

When a formula is satisfiable, a checkable account of the satisfiability is a detailed model of
the formula, such that every term, atom, literal, and sub-formula has a precise value. Giving
this detailed model may be problematic when handling formulae with quantifiers. When the
formula is unsatisfiable, SMT-solvers derive an inconsistency from the original formula. A proof
of unsatisfiability is thus a checkable derivation from the original formula to an object which
is trivially inconsistent. The context of such a proof is the set of all deduced facts. Initially,
the context contains the original formula. Logical rules are applied to derive new formulae from
formulae in the context. These new formulae are then added to the context. At the end of the
proof, the empty clause (noted ()) should belong to the final context.

Our proof format aims at providing a clear interface between SMT-solvers that generate
proofs and checkers that verify the correctness of the generated proofs. We voluntarily restrict
ourselves to a specific and limited fragment of the logics current SMT-solvers can deal with.
This will let us experiment rapidly and get feedback on how the format should evolve and be
improved. As a result, we are considering quantifier-free formulae with uninterpreted functions,
equality and linear arithmetic only. In particular, we do not take quantifiers into account. This
means that tasks such as skolemization and instantiation are not covered yet.

The work of the solver is usually composed of several phases that the proof format has to
address:

- First, the formula may be rewritten: the formula is transformed to a somewhat simpler
and equivalent one. This is done by identifying sub-formulae and sub-terms that clearly
can be rewritten to simpler equivalent forms. Provers implement this by some rewriting
rules, and those rewriting rules should have their derivation counterparts.

- SMT-solvers, being based on the SAT-solvers technology, also require conjunctive normal
forms (CNF). The transformation phase, that translates the original formula to a set of
clauses also requires a proof. Each clause of the CNF becomes a new fact added to the
context. From those clauses, new clauses can be derived using resolution. Resolution is a
complete method for the satisfiability of propositional formulae.

- Reasoning about theories can be understood as adding conflict clauses to the SAT-solver.
These conflict clauses are tautologies according to the theories in action. To each theory
will correspond a set of rules that will add clauses in the context. Equality exchange
between different parts of the reasoner can simply be seen as resolution.

1.2 Rationale for the proof format

The SMT-LIB 2.0 format [1] is the de facto input standard of the SMT community. It provides
a set of commands for interacting with solvers. While designing our proof format, we have
been careful at being fully compatible with the SMT-LIB format. Other existing formats like
TSTP [10] could have been valid candidates to represent SMT proofs but we wanted to have a
format whose syntax was a direct extension of SMT-LIB syntax. For this reason, we inherit the
syntax of terms and formulae but also certain well-formedness conditions from the SMT-LIB.

2

A flexible proof format for SMT: a proposal F. Besson, P. Fontaine and L. Théry

This does not prevent the possibility of developing a translator to other formats like TSTP in
the future.

The core of the proof format specifies the syntax and semantics for the existing SMT-LIB
command get-proof – currently left unspecified. To our opinion, a fixed proof format is not
viable because of the variety of existing SMT-provers. Our proposal is a proof format that is
built upon a generic kernel enriched by prover-specific proof rules that can be obtained by a
dedicated get-proof-header command (see Section 2.2).

Overall, the proof format is a trade-off between the requirements from proof consumers,
who want a non-ambiguous syntax and semantics, and developers of SMT-solvers, who favour
freedom in outputting proofs in a structure that their solvers can generate without sacrificing
efficiency. In Section 2.5, we list a set of recommendations for getting a maximal benefit from
the proof format.

The rest of the paper is organised as follows. Section 2 explains the syntax of the proof
format. The format is illustrated by an example discussed in details in Section 3. Section 4
provides an operational semantics of the format by providing a reference implementation for a
proof-checker.

2 Syntax

2.1 Data structures

This document inherits the syntax for terms (and thus formulae) from the SMT-LIB 2.0 stan-
dard [1]. Furthermore, clauses are used in several places. A clause is a list of formulae. For
instance: ((= x y) (= (f x) (f y)))) represents a clause which is a disjunction of the for-
mula x = y and the formula f(x) = f(y). The empty clause is the empty list (). For convenience,
one can use the trivially valid clause (true).

2.2 Proof header

The format is generic and therefore has to be instantiated with solver-specific proof rules. To
ease proof-reconstruction by third-party tools, proof rules are declared belonging to a certain
SMT-LIB logic, with an attached informal description. The header may be output on request
by the SMT solver with a supplementary command get-proof-header, an addition to SMT-
LIB 2.0. An example of such a header is given in Figure 2. Here is its syntax:

〈rule tag def〉 ::= (define-rule-kw 〈keyword〉 〈string〉)
〈rule def〉 ::= (〈rule id〉 〈logic〉 〈attribute〉∗)
〈header〉 ::= 〈rule tag def〉∗ 〈rule def〉∗

where 〈attribute〉 is defined as in SMT-LIB 2.0. Note that attribute values can be 〈sexpr〉 so they
could possibly contain code (for instance for proof checkers). All keywords used as attributes
in 〈rule def〉 should be defined; there is currently no predefined keyword. Keywords are used to
identify collection of rules. For example, they could be used to qualify rules that are handling
quantifiers, skolemizations, or specific operations on connectors (e.g., conjunctions). A rule using
〈logic〉 should be such that SMT solvers implementing only the SMT-LIB 2.0 logic must be able
to verify every clause deduced by this rule.

3

A flexible proof format for SMT: a proposal F. Besson, P. Fontaine and L. Théry

2.3 Proof script

An example proof script is presented in Figure 3. A proof script is a pair made of a proof context
and a sequence of proof steps

〈proof〉 ::= 〈context〉 〈proof step〉∗

where the context is an SMT-LIB 2.0 script using only commands set-logic, declare-sort,
define-sort, declare-fun, define-fun, assert. The context is generally just a subset of the
SMT-LIB 2.0 input script. Furthermore, in asserts, in order to identify formulae, we require
them to be explicitly named using the following SMT-LIB 2.0 notation:

(assert (! 〈term〉 :named 〈clause id〉))

where 〈term〉 is the formula asserted, written in the SMT-LIB 2.0 syntax, and 〈clause id〉 is an
SMT-LIB 2.0 〈symbol〉.

A proof step is defined by the following rule:

〈proof step〉 ::= (define 〈term id〉 〈term〉)
| (set 〈clause id〉 〈gen clause〉)
| (seth 〈clause id〉 〈clause〉)

where

- (define 〈term id〉 〈term〉) declares 〈term id〉 as a short-name for the term 〈term〉.

- (set 〈clause id〉 〈gen clause〉) constructs a new clause named 〈clause id〉 using the clause
generation rule 〈gen clause〉 (see below). The identifier 〈clause id〉 is an SMT-LIB 2.0
〈symbol〉 and is used to refer to the clause in the current environment

- (seth 〈clause id〉 〈clause〉) is used to assert the hypotheses of a sub-proof. Again,
〈clause id〉 is an SMT-LIB 2.0 〈symbol〉.

Note that this version of the proof format does not cover quantifiers yet. So 〈term〉 is just a
ground term.

2.4 Derived clauses

A clause can either be explicit or derived. Here we describe how it is derived:

〈gen clause〉 ::= 〈clause id〉
| (〈rule id〉

(:clauses (〈gen clause〉∗) | :all-clauses)?
(:terms (〈term〉∗))?
〈attribute〉∗
(:conclusion 〈clause〉)?)

| (subproof 〈proofstep〉∗ (:conclusion 〈clause〉)?)

There exist three ways to derive a clause:

4

A flexible proof format for SMT: a proposal F. Besson, P. Fontaine and L. Théry

- 〈clause id〉 is used to retrieve a clause formerly assigned a 〈clause id〉 in the current envi-
ronment (where 〈clause id〉 is an SMT-LIB 2.0 〈symbol〉).

- A clause can be derived using a (named) rule: as arguments an optional list of terms, and
an optional result can be provided. When :clauses is used, the conclusion is a logical
consequence of the given set of clauses. When :all-clauses is used, the conclusion is
a logical consequence of an unspecified set of local hypotheses. When neither the tag
:clauses nor :all-clauses is used, the rule introduces a tautology.

- A local proof can be declared. For simplicity, only local proofs from an empty context are
supported; references to the current context in a local proof is not allowed. The clause
attached to a local proof is composed of all the literals in all clauses introduced by the
seth in the proof steps (these literals are negated) and the literals in the clause given after
the :conclusion attribute. When this attribute is omitted, it is the clause attached to
the last step that is considered as conclusion.

2.5 Recommendations

Figure 1 presents the whole grammar of the format. The format is very flexible and tries to avoid
unnecessary constraints. Nevertheless, some obvious recommendations can already be made in
order to allow effective validation by third-party tools:

- rules should be carefully described in the header;

- term sharing should be maximised in order to improve memory management;

- all the hypotheses in local proofs should be specified first.

These are recommendations and not requirements since external tools could always refactor
proofs in order to meet these recommendations.

3 An example

In Figure 3, we present a proof in our format of the following formula

¬((a = c) ∧ (b = c) ∧ ((f(a) 6= f(b)) ∨ (p(a) ∧ ¬(p(b)))))

For readability, the proof does not use the facility of the format for sharing terms. It starts
with the context which is just a subset of the SMT-LIB 2.0 input script. Every following
command introduces a new clause (with the set command) until the final clause, the empty
clause (). The proof relies on elementary rules. The description of these rules can be obtained
using the command (get-proof-header) which could return (among other rule definitions) the
definitions in Figure 2. In those definitions, the :clauses, :terms and :conclusion attributes
respectively give the expected number of clauses (−1 if arbitrary), terms, and conclusion (0 if
no conclusion is provided, that is, if the checker is expected to recompute the conclusion).

The and rule is used to deduce new clauses from conjunctive unit clauses: every conjunct of a
conjunctive unit clause can indeed be itself introduced as a unit clause, as are clauses c2, c3 and
c4 in the example in Figure 3. The and pos rule generates a tautology of the form ¬∧iai∨aj for
some j (see clauses c5 and c6). The or rule introduces a clause from a disjunctive unit clause, by
simply building the clause of the disjuncts (e.g. clause c7). Clauses c2 to c7 constitute the CNF

5

A flexible proof format for SMT: a proposal F. Besson, P. Fontaine and L. Théry

〈rule tag def〉 ::= (define-rule-kw 〈keyword〉 〈string〉)
〈rule def〉 ::= (〈rule id〉 〈logic〉 〈attribute〉∗)
〈header〉 ::= 〈rule tag def〉∗ 〈rule def〉∗

〈proof〉 ::= 〈context〉 〈proof step〉∗

〈proof step〉 ::= (define 〈term id〉 〈term〉)
| (set 〈clause id〉 〈gen clause〉)
| (seth 〈clause id〉 〈clause〉)

〈gen clause〉 ::= 〈clause id〉
| (〈rule id〉

(:clauses (〈gen clause〉∗) | :all-clauses)?
(:terms (〈term〉∗))?
〈attribute〉∗
(:conclusion 〈clause〉)?)

| (subproof 〈proofstep〉∗ (:conclusion 〈clause〉)?)

Figure 1: The complete proof format

of the input formula. Notice that the CNF transformation is not a naive transformation, but it
does not explicitly introduce new (Tseitin) Boolean variables. Indeed, as a side effect of the fact
that clauses are sets of formulae (and not just literals), it is easy to introduce definitional CNF
transformations without introducing new Boolean variables: the formulae themselves stand for
those Boolean variables. Using sharing, the CNF would be linear with respect to the size of the
initial formula.

Rules eq_congruent, eq_congruent_pred, and eq_transitive introduce equational tau-
tologies (for instance c8, c9, c15 and c16). The resolution rule implements chain resolution.
Note that this rule serves several purposes here. It is used for instance for resolution executed
within the SAT-solver (e.g. to deduce c18), and it is used to build conflict clauses from generic
tautologies (e.g. to build c10).

The subproof construct (see Figure 1) can always be inlined – maybe at the cost of adding
more proof-rules. It does not change the expressive power of the proof-format but allows for
more structured proofs. The subproof construct can also be used to minimise the number of
proof rules. For instance, in the proof-script of Figure 3, the clause c5 can alternatively be
obtained by the following sub-proof.

(set c5 (subproof (seth h (and (p a) (not (p b))))

(set res (and :clauses (h) :conclusion (p a)))))

Note that the conclusion of a sub-proof (if omitted) can exactly be reconstructed as soon as
the proof rule for the last derived clause in the sub-proof has an explicit conclusion. Here, the
obtained clause is therefore ((not (and (p a) (not (p b)))) (p a)).

6

A flexible proof format for SMT: a proposal F. Besson, P. Fontaine and L. Théry

; get-proof-header returns

(and_pos QF_UF

:comment "valid clause ((not (and a_1 ... a_n)) a_i)"

:clauses 0 :terms 0 :conclusion 1)

(and QF_UF

:comment "(and :clauses (c) :conclusion (a_i))

where c = ((and a_1 ... a_n))"

:clauses 1 :terms 0 :conclusion 1)

(or QF_UF

:comment "(or :clauses (c) :conclusion (a_1 ... a_n))

where c = ((or a_1 ... a_n))"

:clauses 1 :terms 0 :conclusion 1)

(eq_transitive QF_UF

:comment "valid clause

((not (= x_1 x_2)) ... (not (= x_{n-1} x_n)) (= x_1 x_n))"

:clauses 0 :terms 0 :conclusion 1)

(eq_congruent QF_UF

:comment "valid clause ((not (= x_1 y_1)) ... (not (= x_n y_n))

(= (f x_1 ... x_n) (f y_1 ... y_n)))"

:clauses 0 :terms 0 :conclusion 1)

(eq_congruent_pred QF_UF

:comment "valid clause ((not (= x_1 y_1)) ... (not (= x_n y_n))

(not (p x_1 ... x_n)) (p y_1 ... y_n))"

:clauses 0 :terms 0 :conclusion 1)

(resolution QF_UF

:comment "Chain resolution of any number of clauses"

:clauses -1 :terms 0 :conclusion 1)

Figure 2: The proof header

4 Proof checking

In this section, we provide a reference implementation for a proof verifier for the generic proof
format. The proof verifier is parametrised by prover-specific proof rules declared in the proof
header. As a result, the validity of the proof verifier relies on the fact that proof rules are
logically sound i.e., only derive clauses that are logic consequences of the current known clauses.

The proof verifier takes as input a proof π ∈ 〈context〉× 〈proof step〉∗ (see Section 2.3). and
verifies that the proof steps indeed derive the empty clause i.e., the conjunctions of the formulae
asserted by the 〈context〉 part of the proof is unsatisfiable. The state of the verifier is made of
a quadruple (Sig , N, S, cl) where

- Sig is a SMT-LIB signature built from the commands declare-sort and declare-fun of

7

A flexible proof format for SMT: a proposal F. Besson, P. Fontaine and L. Théry

; get-proof returns

; Context

(set-logic QF_UF)

(declare-sort U 0)

(declare-fun p (Bool) U)

(declare-fun f (U) U)

(declare-fun a () U)

(declare-fun b () U)

(declare-fun c () U)

(assert (! (and (= a c) (= b c)

(or (not (= (f a) (f b))) (and (p a) (not (p b))))) :named c1))

; Proof

(set c2 (and :clauses (c1) :conclusion ((= a c))))

(set c3 (and :clauses (c1) :conclusion ((= b c))))

(set c4 (and :clauses (c1)

:conclusion ((or (not (= (f a) (f b))) (and (p a) (not (p b)))))))

(set c5 (and_pos :conclusion ((not (and (p a) (not (p b)))) (p a))))

(set c6 (and_pos :conclusion ((not (and (p a) (not (p b)))) (not (p b)))))

(set c7 (or :clauses (c4)

:conclusion ((not (= (f a) (f b))) (and (p a) (not (p b)))))

(set c8 (eq_congruent :conclusion ((not (= b a)) (= (f a) (f b))))

(set c9 (eq_transitive :conclusion ((not (= b c)) (not (= a c)) (= b a)))

(set c10 (resolution :clauses (c8 c9)

:conclusion ((= (f a) (f b)) (not (= b c)) (not (= a c)))))

(set c11 (resolution :clauses (c10 c2 c3) :conclusion ((= (f a) (f b)))))

(set c12 (resolution :clauses (c7 c11) :conclusion ((and (p a) (not (p b))))))

(set c13 (resolution :clauses (c5 c12) :conclusion ((p a))))

(set c14 (resolution :clauses (c6 c12) :conclusion ((not (p b)))))

(set c15 (eq_congruent_pred :conclusion ((not (= b a)) (p b) (not (p a)))))

(set c16 (eq_transitive :conclusion ((not (= b c)) (not (= a c)) (= b a))))

(set c17 (resolution :clauses (c15 c16)

:conclusion ((p b) (not (p a)) (not (= b c)) (not (= a c)))))

(set c18 (resolution :clauses (c17 c2 c3 c13 c14) :conclusion ())

Figure 3: A simple example with its proof.

the proof context. Its purpose is to ensure that terms are well-sorted.

- N is a mapping from symbols to constants and function declarations. It is initialised by
the define-fun context commands. Later on, for sharing purpose, it is updated by the
proof command define. Note that unlike define-fun, the define command can only
define constants1.

- S is a stack of named assertions tagged with a boolean flag. The assert commands of
the context construct an initial singleton stack where all the asserted formulae are tagged

1For more flexibility, this restriction might be lifted in the future.

8

A flexible proof format for SMT: a proposal F. Besson, P. Fontaine and L. Théry

true. During the proof, derived clauses introduced by the set command are also tagged
by true. The tag false is reserved to clauses introduced by the seth command. Those
clauses are local hypotheses to be discharged by sub-proofs.

- cl is the last derived clause. It is initialised to true (true) and for a valid proof is eventually
set to the empty clause ().

The proof checking succeeds if the empty clause is eventually generated in a singleton stack for
which all the formulae are tagged true.

The proof-verifier is executed in a state constructed by running the context commands. After
running the context commands the proof state is such that:

- The signature Sig contains sort and function declarations (Sig is thereafter immutable)

- N contains constant and function declarations (during the proof checking, only new con-
stants can be defined)

- S is a singleton stack of the form {n1 7→ cltt1 , . . . , ni 7→ cltti } where a binding (ni, cli) is the
result of the assert command

(assert (! fi :named ni)).

cl i being then the clause containing the sole formula fi.

4.1 Conventions and auxiliary functions

The verifier makes use of auxiliary functions and predicates. Several of them are already part of
the SMT-LIB 2.0 where they are used to give a semantics to SMT-LIB scripts. The pseudo-code
does not introduce an explicit abstract syntax for the proof constructs. Instead we use directly
the concrete syntax with the conventions that optional attributes are given a default value.
More precisely, missing attributes of type list (for instance :clauses, :terms, :attributes)
are given as default value the empty list and a missing attribute of type clause (for instance
:conclusion) is given as default value the symbol null.

4.1.1 Well-formedness

As in the SMT-LIB we only consider well-formed terms.

Definition 1 (Well-formed terms). A term t is well-formed with respect to a signature Sig and
an environment of names N (isWellFormed(Sig , N, t)) if

- all the symbols in the term are bound in N ;

- the term is well-sorted according to the signature Sig.

To ensure that a well-formed term will never be invalidated, the signature Sig and the
environment N can only be augmented by additional declarations. It is therefore forbidden to
overwrite a declaration. In case of violation, the verification is aborted.

9

A flexible proof format for SMT: a proposal F. Besson, P. Fontaine and L. Théry

4.1.2 Assertion stack

Proof scripts feature a notion of subproof to describe scoped proofs. As already stated, this
construct does not increase the expressive power of the format. Its purpose is to structure
proofs and thus facilitate their checking. For instance, each theory reasoner of the SMT solver
can generate a sub-proof for each theory lemma or conflict clause. The advantage of sub-proof
is that such theory lemma can be checked in isolation. To implement scoped proofs, the assertion
stack is updated by push and pop operations2. Given a tagged clause cl b, clause(cl b) returns
the clause cl and tag(cl b) returns the boolean b. The verifier always accesses and updates the
topmost assertion set. We write top[s] for the clause bound to the symbol s in the topmost
assertion set. Accessing a non-existent symbol aborts the verification. Overwriting a clause
tagged with ff also aborts the verification i.e., an assignment of the form top[s] := clb where
tag(top[s]) = ff aborts the verification.

4.1.3 Prover-specific proof rules

The verifier is parametrised by prover-specific proof rules that are trusted and could therefore be
responsible for an invalid proof. Each proof rule is implemented by a function named according
to the 〈rule id〉 taking as arguments an optional list of clauses, terms and attributes and either
returning a clause or reporting an error. An error immediately aborts the verification of the
proof. The soundness requirement is that the generated clause must be a logic consequence of
the clauses passed as arguments. A proof rule also takes as arguments the signature Sig and
the environment of bindings N .

〈rule id〉 : Sig ×N × 〈clause〉∗ × 〈term〉∗ × 〈attributes〉∗ → 〈clause〉 | 〈error〉

4.2 Pseudo-code of the verifier

The verifier is written in an imperative style and therefore updates in-place the proof state
(Sig , N, S, cl). The verifier is presented top-down and consists of 4 functions:

- checker is the top-level function and evaluates a whole proof. Upon success, it concludes
that the input problem is not satisfiable.

- eval proof evaluates all the proof steps in turn and updates the proof state accordingly;

- eval proof step performs a case analysis over the proof command;

- eval gen clause is responsible for deriving from the proof state new logic consequences by
combining prover-specific proof rules.

A proof is valid if after executing the proof steps the clause cl is the empty clause () and
there are no introduced local hypotheses (all clauses are tagged tt).

bool checker (Π) {
e v a l p r o o f (Π) ; r e turn (c l = ()) & (∀ i , tag (top [i]) = tt) ;

}

The function eval proof executes in turn the proof steps.

2They correspond to the functions push 1 and pop 1 of the SMT-LIB

10

A flexible proof format for SMT: a proposal F. Besson, P. Fontaine and L. Théry

void e v a l p r o o f (Π) { f o r−each (π ∈ Π) e v a l p r o o f s t e p (π) ; }

The function eval proof step performs a case analysis and updates the last derived clause.

void e v a l p r o o f s t e p (π){
switch (π) {

case (define t i d trm) : r e q u i r e s (isWellFormed (trm)) ;
N[t i d] := trm

case (set c id genc l) :
c l := e v a l g e n c l a u s e (genc l) ;
top [c id] := c l tt ;

ca se (seth c id hyp) :
r e q u i r e s (isWellFormed (hyp) & hasSortBool (hyp)) ;

top [c id] := hypff ;
}

The core of the verifier is the function eval gen clause which generates a novel clause logic
consequence of the current proof state.

c l a u s e e v a l g e n c l a u s e (genc l){
switch (c l gen){

case c l i d : r e turn c l a u s e (top [c l i d])

case (r i d :clauses (gc1 , . . . , g c i)
:terms (t1 , . . . , tk)
:attributes (a1 , . . . , an)
:conclusion conc l) :

/∗ Recur s ive ly generate c l a u s e s ∗/
gcs := (e v a l g e n c l a u s e (gc1) ,

. . . , e v a l g e n c l a u s e (g c i)) ;
/∗ Cal l the prover s p e c i f i c proo f r u l e ∗/
c l := r i d (Sig ,N, gcs , (t1 , . . . , tk) , (a1 , . . . , an) , conc l) ;
/∗ Check the conc lu s i on i f any ∗/
i f conc l != n u l l & conc l != c l then abort
re turn c l ;

case (subproof pr f :conclusion conc l)
push () ; /∗ Local a s s e r t i o n s e t ∗/
e v a l p r o o f (p r f) ;
i f conc l != n u l l & c l != conc l then abort
/∗ Generation o f the c o n f l i c t−c l a u s e ∗/
c o n f l i c t := (not (h1) , , not (hn) , c l) ;
where {h1 , . . . , hn} =

{ c l a u s e (top [i]) | tag (top [i]) = ff }
pop () ;
r e turn c o n f l i c t ;

}

11

A flexible proof format for SMT: a proposal F. Besson, P. Fontaine and L. Théry

5 Acknowledgements

The work presented here has been funded by the French ANR Decert initiative. This format is
the result of many stimulating conversations with its members. We want to thank Aaron Stump
for his remarks on a previous version of this document, and for numerous informal discussions.
We also thank the anonymous reviewers for their insightful comments.

6 Conclusion and further work

The proof format presented in this paper is an extension of the SMT-LIB 2.0 format. We have
tried as much as possible to find a good compromise between what can be output by an SMT-
solver and what is needed in order for a simple checker to be able to verify a proof. We are
aware that this format is not perfect and some subtle issues still need to be further investigated
and discussed. Nevertheless we hope that the format can serve as a common basis that can be
used by the SMT community.

The format is currently being implemented in the veriT solver distributed as open-source
using the BSD licence. We are also currently investigating proofs for quantifier reasoning [7];
Skolemization, as a satisfiability preserving transformation which does not preserve logical equiv-
alence, may raise difficult issues. The CNF transformation presented here does not require
Tseitin variables; if such variables are required by other solvers, then similar issues may also
appear for CNF transformation.

In Section 4, we presented the code of a proof checker. A standalone checker for the format
is one of our long term goals. However, in addition to the infrastructure presented in Section 4,
this requires to implement the term data-structure, and the operators to manipulate terms. This
comes to reimplementing (parts of) a kernel like those found in mainstream proof assistants.
We are currently implementing a module to replay proofs in the present format within Coq, and
we plan to study replaying this proof format within LFSC.

References

[1] C. Barret, A. Stump, and C. Tinelli. The SMT-LIB standard: Version 2.0, 2010. Latest official
release of Version 2.0 of the SMT-LIB standard.

[2] C. Barrett and C. Tinelli. CVC3. In CAV ’07, volume 4590 of LNCS, pages 298–302. Springer, 2007.

[3] S. Böhme and T. Weber. Fast LCF-style proof reconstruction for Z3. In ITP’2010, volume 6172 of
LNCS, pages 179–194. Springer, 2010.

[4] T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT: an open, trustable and efficient
SMT-solver. In CADE’09, volume 5663 of LNCS, pages 151–156. Springer, 2009.

[5] L. M. de Moura and N. Bjørner. Proofs and Refutations, and Z3. In Proc. of the LPAR 2008
Workshops, volume 418 of CEUR Workshop Proceedings, 2008.

[6] L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS’08, volume 4963 of LNCS,
pages 337–340. Springer, 2008.

[7] David Déharbe, Pascal Fontaine, and Bruno. Quantifier inference rules for SMT proofs, 2011.
Workshop on Proof eXchange for Theorem Proving (PxTP).

[8] S. McLaughlin, C. Barrett, and Y. Ge. Cooperating theorem provers: A case study combining
HOL-Light and CVC Lite. In PDPAR ’05, volume 144(2) of ETCS, pages 43–51. Elsevier, 2006.

[9] A. Stump and D. L. Dill. Faster Proof Checking in the Edinburgh Logical Framework. In CADE-18,
volume 2392 of LNCS, pages 392–407. Springer, 2002.

12

A flexible proof format for SMT: a proposal F. Besson, P. Fontaine and L. Théry

[10] G. Sutcliffe, J. Zimmer, and S. Schulz. TSTP Data-Exchange Formats for Automated Theorem
Proving Tools. In Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems,
pages 201–215, 2004.

13

	Introduction
	Proof of satisfiability/unsatisfiability
	Rationale for the proof format

	Syntax
	Data structures
	Proof header
	Proof script
	Derived clauses
	Recommendations

	An example
	Proof checking
	Conventions and auxiliary functions
	Well-formedness
	Assertion stack
	Prover-specific proof rules

	Pseudo-code of the verifier

	Acknowledgements
	Conclusion and further work

