
veriT: an open, trustable and efficient SMT-solver

Thomas Bouton2, Diego Caminha B. de Oliveira2,
David Déharbe1, and Pascal Fontaine2

1 Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
david@dimap.ufrn.br

2 LORIA–INRIA, Nancy, France
{Thomas.Bouton,Diego.Caminha,Pascal.Fontaine}@loria.fr

Abstract. This article describes the first public version of the satisfiabil-
ity modulo theory (SMT) solver veriT. It is open-source, proof-producing,
and complete for quantifier-free formulas with uninterpreted functions
and difference logic on real numbers and integers.

1 Introduction

We present the satisfiability modulo theory (SMT) solver veriT, a joint work
of University of Nancy, INRIA (Nancy, France) and Federal University of Rio
Grande do Norte (Natal, Brazil). veriT provides an open, trustable and reason-
ably efficient decision procedure for the logic of unquantified formulas over unin-
terpreted symbols, difference logic over integer and real numbers, and the com-
bination thereof. This corresponds to the logics identified as QF IDL, QF RDL,
QF UF and QF UFIDL in the SMT-LIB benchmarks [15, 3]. veriT also includes
quantifier reasoning capabilities through the integration of a first-order prover
and quantifier instantiation heuristics. Finally, veriT has proof-production capa-
bilities; it outputs proofs that may be used or checked by external tools.

veriT is incremental, i.e. after each satisfiability check, new formulas can be
added conjunctively to the already checked set of formulas. The input format
is the SMT-LIB language [15], but veriT can also be used as a library with
an API following the guidelines of [12]. The tool is open-source and distributed
under the BSD licence at http://www.verit-solver.org. Internally, the solver
is organized to be easily extended by plugging new decision procedures in a
Nelson-Oppen like combination schema. Although not (yet) as fast as the solvers
performing best in the SMT competition [3], veriT has a decent efficiency. We
thus claim that it can already be useful in verification platforms where an open-
source license, extensibility, and proof certification are important.

Selected features of the veriT solver and an experimental evaluation of its
efficiency are presented in Section 2 and 3, respectively. Future developments
are described in Section 4.

2 System description

The reasoning core of veriT uses a SAT solver [9] to produce models of the
Boolean abstraction of the input formula. Such propositional assignments are



given to a so-called theory reasoner, responsible for verifying if they are models
in the background theory. This theory reasoner is a fully incremental combination
of decision procedures à la Nelson and Oppen, where non-convexity of theories
is handled using the model-equality propagation technique [7] which integrates
model-based guessing [5] in a classical Nelson-Oppen equality exchange. Equality
propagation is controlled by the congruence closure algorithm.

The remainder of this section describes some special features of veriT: inte-
gration of a third-party first-order prover, extension of the input language with
macro definitions, and production of proofs certifying the produced results.

2.1 Integrating a first-order prover

As a particular feature inherited from its predecessor haRVey [8] and, to comple-
ment very simple instantiation heuristics, the veriT solver includes a first-order
logic (FOL) superposition prover. However, veriT greatly improves the integra-
tion of the FOL prover with the other decision procedures, notably with con-
gruence closure. Indeed, the first-order prover is seen within the combination à
la Nelson-Oppen as a “decision procedure” that takes an arbitrary FOL theory
as a parameter. However, due to the cost of running the FOL prover and to its
non-incremental nature (when used as a black box), this procedure is called in
last resort. A FOL theory is computed from the quantified sub-formulas in the
assignment, abstracting ground sub-terms in order to minimize the number of
relevant symbols in the theory. In addition, information from congruence clo-
sure is used to abstract all subterms in the assignment that do not contain such
relevant symbols.

The prover may deduce that the given set of formulas is unsatisfiable. In that
case, the deduction tree is parsed to obtain the relevant unsatisfiable subset of
the input. A conflict clause is then built using this set and, again, information
from the congruence closure data structures. Since the prover is given an upper
limit of resources, it always terminates. If the prover terminates without proving
the unsatisfaibility of the given set of formulas, ground equalities and deduced
ground clauses are identified and propagated back to veriT.

In many cases where the superposition calculus is a decision procedure [2]
for the theory represented by the quantified formulas, our technique simulates a
Nelson-Oppen combination with on-the-fly purification. It has been shown that
first-order generic provers may perform quite well even compared to dedicated
decision procedures (see for instance [1]). Currently, the E-prover [16] is used as
the first-order prover, and we plan to include Spass [18], which provides better
sort handling. Fine-tuning the interplay between the instantiation heuristics and
the e-prover is essential for efficiency and remains to be done.

2.2 Macros

The input format for veriT is the SMT-LIB language extended with macro defi-
nitions. This syntactic sugar is particularly useful for instance to write formulas
containing simple sets constructions (see Figure 1). After β-reduction, and after



rewriting equalities between predicates and functions (for instance, if p and q
are unary predicates, p = q is rewritten as ∀x . p(x) ≡ q(x)), the obtained for-
mula is first-order. Such formulas may contain quantifiers but, if no function is
used, they belong to the Bernays-Schönfinkel-Ramsey fragment (the Bernays-
Schönfinkel class with equality) which is decidable. veriT can use the embedded
FOL prover as a decision procedure for this fragment. In many more intricate
cases [10], the resulting formula still belongs to a decidable fragment, but the de-
cision procedure may become very expensive. To be practical, such cases require
heuristics that have not yet been implemented in veriT.

This macro feature is indeed used in tools (e.g. CRefine [14]) that generate
verification conditions for formal developments in set-based modelling languages,
such as Circus [4], and that integrate veriT as a verification engine to discharge
these proof obligations.

(benchmark SET008_3p

:logic UNKNOWN

:extrasorts (ELMT)

:extrapreds ((B ELMT) (C ELMT))

:extramacros

((emptyset (lambda (?v ELMT) . false))

(intersection (lambda (?p (ELMT boolean)) (?q (ELMT boolean)) .

(lambda (?x ELMT) . (and (?p ?x) (?q ?x)))))

(difference (lambda (?p (ELMT boolean)) (?q (ELMT boolean)) .

(lambda (?x ELMT) . (and (?p ?x) (not (?q ?x)))))))

:formula (not (= (intersection (difference B C) C) emptyset)))

Fig. 1. A simple example with the macro capability.

2.3 Proofs

Proof production has two goals. First, this feature increases the confidence in the
tool, the proofs being checked by an independent module inside veriT. Second,
skeptical proof assistants can use such traces to reconstruct proofs of formulas
discharged by veriT (see [11]).

In Figure 2, we give an example of a very simple formula, and the proof output
by veriT. Each line states a fact that can be assumed to hold. It is identified by a
number, followed by a list starting with a label identifying the rule used to deduce
the fact, followed by a clause, and optionally ended by numerical parameters.
In our context, a clause is a disjunctive list of formulas (not literals), maybe
containing a sole formula. The numerical parameters depend on the rule, and
may be either identifiers of previous clauses (e.g. in the resolution rule), or other
place information. As an example, the and rule (for instance the second line
in Figure 2: (and ((= a c)) 1 0)) takes two numerical parameters. The first



(benchmark example

:logic QF_UF

:extrafuns ((a U) (b U) (c U) (f U U))

:extrapreds ((p U))

:formula (and (= a c) (= b c)

(or (not (= (f a) (f b)))

(and (p a) (not (p b))))))

1:(input ((and (= a c) (= b c)

(or (not (= (f a) (f b))) (and (p a) (not (p b)))))))

2:(and ((= a c)) 1 0)

3:(and ((= b c)) 1 1)

4:(and ((or (not (= (f a) (f b))) (and (p a) (not (p b))))) 1 2)

5:(and_pos ((not (and (p a) (not (p b)))) (p a)) 0)

6:(and_pos ((not (and (p a) (not (p b)))) (not (p b))) 1)

7:(or ((not (= (f a) (f b))) (and (p a) (not (p b)))) 4)

8:(eq_congruent ((not (= b a)) (= (f a) (f b))))

9:(eq_transitive ((not (= b c)) (not (= a c)) (= b a)))

10:(resolution ((= (f a) (f b)) (not (= b c)) (not (= a c))) 8 9)

11:(resolution ((= (f a) (f b))) 10 2 3)

12:(resolution ((and (p a) (not (p b)))) 7 11)

13:(resolution ((p a)) 5 12)

14:(resolution ((not (p b))) 6 12)

15:(eq_congruent_pred ((not (= b a)) (p b) (not (p a))))

16:(eq_transitive ((not (= b c)) (not (= a c)) (= b a)))

17:(resolution ((p b) (not (p a)) (not (= b c)) (not (= a c))) 15 16)

18:(resolution () 17 2 3 13 14)

Fig. 2. A simple example with its proof.

numerical parameter refers to the clause C in a previous numbered rule (i.e.
1 refers to the clause in the input rule, at line 1). This clause C is unit and
is hence represented as a list of one formula (the whole input formula in our
example), and this formula is a conjunction a0 ∧ · · · ∧ an. Obviously, each sub-
formula a0, . . . an is a consequence of C, and the second parameter just gives the
identifier of the formula in the new clause, i.e. the second numerical parameter
in rule at line 2 indicates the formula at position 0 in the input.

veriT already provides proof production for formulas with arbitrary Boolean
structure and uninterpreted functions, and is being extended to linear arith-
metics. The first line is the input. Every other fact is either a consequence of
previous ones, or is a tautology. The input formula being unsatisfiable, the last
deduced fact is the empty clause. In the example, lines 2 to 7 account for the
conjunctive normal form transformation. Lines 8, 9, 15, and 16 are tautologies
related to the theory of equality. The remaining facts are deduced by resolution
from the other ones.

Since every proof-related information is handled through a unique module
inside veriT, any proof format for SMT (for instance [17, 6]) can be adopted as



soon as it becomes a standard. Although our previous experiments [11] showed
that the proof size was not the bottleneck for the cooperation with skeptical
proof assistants, the implementation of techniques to greatly reduce the size of
our proof traces is planned.

3 Experimental evaluation

We evaluated veriT, CVC3 and Z3 (both using the latest available version in
February 2009) against the SMT-LIB benchmarks for QF IDL, QF RDL, QF UF
and QF UFIDL (June 2008 version) using an Intel(R) Pentium(R) 4 CPU at
3.00 GHz with 1 GiB of RAM and a timeout of 120 seconds. The following table
presents, for each solver, the number of completed benchmarks.

Solver QF UF QF UFIDL QF IDL QF RDL all
(6656) (432) (1673) (204) (8965)

veriT 6323 332 918 100 7673
CVC3 6378 278 802 45 7503
Z3 6608 419 1511 158 8696

This clearly shows that, although veriT is not yet as efficient as competition
winning tools [3], its efficiency is decent. The proof production capability of veriT
does not come at a cost on efficiency.

4 Future work

veriT is a new SMT-solver that provides an open framework to generate certi-
fiable proofs without sacrificing too much efficiency. The future developments
will notably include features related to efficiency and expressiveness. Consider-
ing efficiency aspects, the tool does not yet implement theory propagation [13],
a technique that is known to greatly improve the efficiency of SMT solvers. Con-
cerning expressiveness, the linear arithmetic decision procedure currently only
handles difference logic; we are now developing a reasoning engine for linear
arithmetic based on the Simplex method, which will extend completeness to full
linear arithmetic. Quantifier reasoning will be improved by including new in-
stantiation heuristics, as well as adding support for patterns guiding quantifier
instantiations. We also plan to integrate the proof production capabilities of the
embedded FOL prover with that of veriT.

Finally, we are working on the application of veriT to formal development
efforts, mainly of concurrent systems. In that context, the ability to handle sets
is very helpful; a major objective is to improve the support for such constructions.

Acknowledgments: We would like to thank Stephan Merz for his comments
and guidance. The ancestor of the veriT solver, haRVey, was initiated by the
third author and Silvio Ranise, to whom we are indebted of several ideas used
in veriT. We are also grateful to the anonymous reviewers for their remarks.



References

1. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results on rewrite-
based satisfiability procedures. ACM Trans. Comput. Log., 10(1), 2009.

2. A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfiability
procedures. Information and Computation, 183(2):140–164, 2003.

3. C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo The-
ories Competition. In Computer Aided Verification (CAV), pages 20–23, 2005.

4. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing, 15(2 - 3):146 — 181, 2003.

5. L. de Moura and N. Bjørner. Model-based theory combination. Electronic Notes
in Theoretical Computer Science, 198(2):37–49, 2008.

6. L. M. de Moura and N. Björner. Proofs and refutations, and Z3. In LPAR Work-
shops, volume 418 of CEUR Workshop Proceedings, 2008.

7. D. Déharbe, D. de Oliveira, and P. Fontaine. Combining decision procedures by
(model-)equality propagation. In Brazil. Symp. Formal Methods, pages 51–66,
2008.

8. D. Déharbe and S. Ranise. Bdd-driven first-order satisfiability procedures (ex-
tended version). Research report 4630, LORIA, 2002.

9. N. Eén and N. Sörensson. An extensible SAT-solver. In Theory and Applications
of Satisfiability Testing, volume 2919 of LNCS, pages 333–336. Springer, 2003.

10. P. Fontaine. Combinations of theories and the Bernays-Schönfinkel-Ramsey class.
In 4th Int’l Verification Workshop (VERIFY), 2007.

11. P. Fontaine, J.-Y. Marion, S. Merz, L. P. Nieto, and A. Tiu. Expressiveness +
automation + soundness: Towards combining SMT solvers and interactive proof
assistants. In Tools and Algorithms for Construction and Analysis of Systems,
volume 3920 of LNCS, pages 167–181. Springer, 2006.

12. J. Grundy, T. Melham, S. Krstić, and S. McLaughlin. Tool building requirements
for an API to first-order solvers. Electronic Notes in Theoretical Computer Science,
144:15–26, 2005.

13. R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive Theory Propagation
and its Application to Difference Logic. In Computer Aided Verification (CAV),
volume 3576 of LNCS, pages 321–334. Springer, 2005.

14. M. Oliveira, C. Gurgel, and A. de Castro. Crefine: Support for the Circus refine-
ment calculus. In IEEE Intl. Conf. Software Engineering and Formal Methods,
pages 281–290. IEEE Comp. Soc. Press, 2008.

15. S. Ranise and C. Tinelli. The SMT-LIB standard : Version 1.2, Aug. 2006.
16. S. Schulz. System Description: E 0.81. In Proc. of the 2nd IJCAR, Cork, Ireland,

volume 3097 of LNAI, pages 223–228. Springer, 2004.
17. A. Stump. Proof Checking Technology for Satisfiability Modulo Theories. In

Logical Frameworks and Meta-Languages: Theory and Practice, 2008.
18. C. Weidenbach, R. Schmidt, T. Hillenbrand, R. Rusev, and D. Topic. System

description: Spass version 3.0. In Conference on Automated Deduction (CADE),
volume 4603 of LNCS, pages 514–520. Springer, 2007.


