
GridTPT: a distributed platform for Theorem Prover Testing∗

Thomas Bouton Diego Caminha B. de Oliveira David Déharbe
Pascal Fontaine

david@dimap.ufrn.br
[Thomas.Bouton,Diego.Caminha,Pascal.Fontaine]@loria.fr

Universidade Federal do Rio Grande do Norte, Brazil
LORIA, INRIA & Nancy University, Nancy, France

Abstract

Programming provers is a complex task; completeness or even soundness may often be broken
by apparently harmless bugs. A good testing platform can contribute in detecting problems early and
helping development. This paper presents GridTPT, the distributed platform for testing the veriT
SMT solver. Its features are fairly standard, but it allows to easily distribute the task in a cluster.

We plan to make this platform available as an open source tool for the community of developers of
automated theorem provers. This presentation to PAAR’2010 will provide the opportunity to discuss
the need for such a tool and the necessary features in a broader context. We would like to extract a
requirement specification from this discussion, that would be useful to get dedicated implementation
resources for distribution, maintenance and future development of GridTPT.

1 Introduction

The implementation of efficient automated theorem provers requires intricate data structures and algo-
rithms and is therefore error-prone. As a consequence, establishing the functional correctness of those
tools includes applying large test suites, in addition to other measures such as third-party certification of
intermediate and final results through e.g. proof generation and proof checking. The faster those verifi-
cation results are available, the sooner mistakes are discovered and can be corrected by the developers.
Also, automated theorem proving is intrinsically of a heuristic nature and requires experimenting with
many different combinations of parameters. Again, this experimental study needs frequently applying
large test suites.

Testing over a large number of benchmarks can easily be done in parallel (at least from a theoretical
viewpoint). However, owning and maintaining a large cluster of machines is both time-consuming and
financially expensive, and most prover developers do not have the resources to do this work in addition
to research and implementation of the prover. Nevertheless, many research and university environments
do have large clusters that are not fully used. More and more often these computing facilities are again
clustered via a grid infrastructure that provides access to hundreds and even thousands of cores. It is
often possible to obtain a low priority (i.e. when not in use for the financing projects) access to those
clusters, and this low priority access will most of the time be suitable for the use of prover testing. Once
the cluster is found, one needs to develop the software infrastructure for running the tests. Although a
set of ad hoc scripts would do the basic job, a dedicated platform developed over a long period could
provide many useful services.

Our goal is to share with the theorem proving community the software for a distributed testing plat-
form for automated provers that we have built incrementally to support the development of the SMT
solver veriT1. This software reduced the testing time from a week-end to a few minutes. For instance,

∗This work is partly supported by the ANR project DECERT, and the INRIA-CNPq project SMT-SAVeS.
1For the development of veriT, we have been kindly granted access to a large grid infrastructure of INRIA known as

Grid5000 [6].

1

david@dimap.ufrn.br
[Thomas.Bouton,Diego.Caminha,Pascal.Fontaine]@loria.fr


GridTPT Bouton, Caminha B. de Oliveira, Déharbe and Fontaine

the approximately nine thousand formulas in the categories for which veriT is complete are checked in
12 minutes with 80 cores and a 30 seconds time-out. As another example, the whole TPTP (around
14000 files) is run on E [12] in 20 minutes using 160 cores and a 30 seconds time-out. We plan to release
this powerful and customizable platform under the open-source BSD license as well as offering mainte-
nance to meet new requirements of external users. For theorem prover developers this would reduce the
problem of having a good testing infrastructure to finding the cluster to run our software on.

There already exists platforms for evaluating solvers, and in particular, the platforms for the various
annual competitions, for instance CASC [10, 13] and SMT-COMP [1, 2].2 The main focus for those
frameworks is to precisely and fairly measure the running time for the various solvers on the instances
chosen for the competition. The purpose of GridTPT is different: it includes comparing versions of the
same solver/prover but being precise in measuring running time is not the main objective. Much more
importantly, the tool gathers statistics, and provides to the user ways to understand the tendencies and
the relations between various quantities.

The platform is now stable and has reached a point where its use in a larger context, for slightly
different goals, and in various environments, requires the feedback of the community, which we would
like to get at PAAR. Following the presentation of GridTPT, we expect to get, from potential users,
additional requirements to enhance and make the platform more attractive. Additionally, after we show
the benefit of using the platform, we expect some of the participants will be interested in being users.

2 State of the platform

The testing platform has been used and improved to support the development of the SMT solver veriT [7]
for more than a year. The test data used by the platform are the different categories of SMT-LIB [11, 3]
benchmarks that are supported by the solver. The best way to run the tests and to access data is through
the web interface, but the reports are in plain text, and all the scripts may be run from the command line.

Three types of tests can be performed over a selected set of benchmarks:

• functional test: the satisfiability status (satisfiable, unsatisfiable, or unknown), execution time (or
failure, or time out) and other (user defined) statistics are gathered.

• consistency test: for each benchmark, the solver generates verification conditions corresponding
to intermediate results. External solvers3 are applied to recheck these conditions to ensure that not
only the final result, but also the reasoning leading to this result is correct.

• memory test: memory leaks are detected using Valgrind (see http://valgrind.org/).

The latter two tests only generate a brief report to notify the developers if further debugging is required
on particular benchmarks.

A prototype version of the script was sequential. An extensive test over the SMT-lib used to take
several days to complete. The present version distributes the work over several multi-core computers,
drastically reducing the total execution time to a few minutes. It uses a master/slave architecture, where
one node assumes the role of the master, distributes the benchmarks and gathers the results, while the
other nodes are slaves and execute the solver. It is fault tolerant: in case the connection to a slave is
lost (due to a network failure, node hanging, . . . ), the full test is not affected. A test can be suspended
at any time, and resumed later without significant duplicated work. Finally and most importantly, the

2Some organizations even give access to the clusters outside the competitions.
3In the case of veriT, we use CVC3 [4] to check intermediate conflict clauses and PicoSAT [5] to check the overall Boolean

abstraction (MiniSAT [9] is used internally).

2

http://valgrind.org/


GridTPT Bouton, Caminha B. de Oliveira, Déharbe and Fontaine

framework has been written to be easily portable: its implementation language is Python with a few
OS-specific scripts written in bash.

Competitions usually distribute one process per computer, to eliminate interferences between pro-
cesses. This is required in order to accurately and fairly measure the running time of the various solvers
on the competition benchmarks. Since we prefer to get short testing time, we allow to send one job for
every core available on the cluster, even if these are on the same processor. This introduces some slight
variations in running times, but this is an acceptable price to pay to divide the overall testing time by a
factor of 8 (in our case). Our experiments show that, even so, times are measured quite accurately.

The statistics collected by the tool and their value are not hard coded, but rather gathered from the
output of the prover. They should be prefixed with a configurable character string – so that these statistics
can be recognized from irrelevant information, such as an execution trace – followed by the name of the
statistic and its value. Similarly, error messages need to be prefixed by a definable string. Notice that
the statistics should at least provide the result of the prover on the formula. The execution time can
be computed by the command time (on *nix systems). Figure 1 presents a typical output from veriT.
Obviously, it is easy to put the information in the required form without modifying the internals of the
prover by simply using a shell script wrapper.

verit 200907 - the veriT solver (UFRN/LORIA).

[...]

STAT_DESC: clauses: Number of clauses generated

STAT_DESC: res: 0 (UNSAT), 1 (SAT), -1 (UNKNOWN)

STAT_DESC: nodes: Number of nodes in the input formula as a DAG representation

STAT_DESC: nodes_tree: Number of nodes in the input formula as a tree representation

STAT_DESC: atoms: Number of atoms in the input formula as a tree representation

STAT_DESC: total_time: Total time

STAT: clauses=1486

STAT: res=0

STAT: nodes=799

STAT: nodes_tree=4114

STAT: atoms=1825

STAT: total_time=1.204

[...]

Figure 1: A typical output from veriT.

New tests are triggered automatically by cron jobs (if no test exists for the current version in the
subversion repository), or manually through the developer-only section on the website of the solver. In
the latter case, the tester has the opportunity to choose the solver revision, the solver options, the list
of benchmarks on which the solver is to be run, and an optional comment. Reports are automatically
generated and can be consulted on line, via the project website. The access to the reports is restricted to
developers only. Other available features include the capacity to compare either graphically or textually
two functional reports and to extract CSV (comma-separated values format) files for reports or for com-
parison of reports in order to do more sophisticated treatments using other tools (such as spreadsheets).
Some of these features are demonstrated in the next section.

3 Illustration

This section contains illustrative information on the following capacities of the platform: functional
report, a textual comparison report, and a graphical comparison report.

3



GridTPT Bouton, Caminha B. de Oliveira, Déharbe and Fontaine

3.1 Report example

An extract of a sample test report is given below:

-veriT report----------------

Date : 20090904133605

-informations-----------------

Host name : Grid5000

Number of cores : 80

CPU type : xeon-harpertown at 2.5GHz

Executable : ./verit

Build time : 20090903181241

Options : --enable-simp --enable-unit-simp --cnf-p-definitional -v

Number of files : 8965

CPU limit : 30s

-grid statistics-------------

Cumulative time : 876m (14h)

Total time : 12m

Theoretical time : 11m

-legend-----------------------

total_time: Total time

res: 0 (UNSAT), 1 (SAT), -1 (UNKNOWN)

atoms: Number of atoms in the input formula as a tree representation

nodes_tree: Number of nodes in the input formula as a tree representation

clauses: Number of clauses generated

nodes: Number of nodes in the input formula as a DAG representation

-summary----------------------

Total number of benchmarks : 8965

Number of success : 7638

between 0 and 5 sec : 6835

between 5 and 10 sec : 465

between 10 and 15 sec : 199

between 15 and 20 sec : 89

between 20 and 25 sec : 36

between 25 and 30 sec : 14

Number of "CPU time limit exceeded" : 1327

-data-------------------------

Name total_time res atoms nodes_tree clauses nodes

QF_IDL/Averest/binary_search/BinarySearch_live_bgmc000.smt 0.000 1 207793 208901 0 339

QF_IDL/Averest/binary_search/BinarySearch_live_bgmc002.smt 0.000 1 415523 417695 0 607

QF_IDL/Averest/binary_search/BinarySearch_live_bgmc003.smt 0.000 0 623253 626489 0 875

QF_IDL/Averest/binary_search/BinarySearch_live_blmc000.smt 0.000 1 623314 626594 1 942

QF_IDL/Averest/binary_search/BinarySearch_live_blmc002.smt 0.004 0 1246566 1253082 0 1814

QF_IDL/Averest/binary_search/BinarySearch_safe_bgmc000.smt 0.000 0 406 546 0 203

QF_IDL/Averest/binary_search/BinarySearch_safe_bgmc001.smt 0.000 1 99 175 0 109

QF_IDL/Averest/binary_search/BinarySearch_safe_bgmc002.smt 0.000 0 208393 209661 0 550

QF_IDL/Averest/binary_search/BinarySearch_safe_bgmc003.smt 0.000 1 416380 418776 2 897

QF_IDL/Averest/binary_search/BinarySearch_safe_blmc000.smt 0.000 0 416266 418750 0 1008

QF_IDL/Averest/binary_search/BinarySearch_safe_blmc001.smt 0.004 1 831718 836406 8 1329

QF_IDL/Averest/binary_search/BinarySearch_safe_blmc002.smt 0.004 1 1247479 1254435 3 1950

[...]

The presentation of the report may need to be adapted for other solvers. However, as mentioned above,
the list of statistics is not hardcoded, and is built during the parsing of the output of the solver, assuming
that it follows some formatting instructions.

3.2 Textual comparison

The comparison tool has the following parameters:

• the two functional reports to be compared;

• the categories of benchmarks to compare the reports on;

• the minimum spread, in percent of execution time, for the benchmark to be shown;

• the minimum spread, in absolute execution time, for the benchmark to be shown.

If the two reports are on different sets of benchmarks, only the common subset is shown. The statistics
from both reports are shown. Optionally, the comparison tool may hide benchmarks for which running
time are not sufficiently different. The spread between the execution times must then be higher than a
specified percentage and a minimum value. Indeed, for benchmarks solved very quickly, 0.01 second is
twice as fast as 0.02, but the running time difference may still be considered negligible.

Here is a small excerpt of a comparison report:

4



GridTPT Bouton, Caminha B. de Oliveira, Déharbe and Fontaine

Name total time result
20090729191611 20080729142114 20090729191611 20080729142114

QF UFIDL/pete3/bug file3.smt 0.800 Failed 1 Failed
QF UFIDL/pete3/bug file4.smt 198.404 Failed 1 Failed
QF UFIDL/pete3/bug file5.smt 25.286 4.75 1 1
QF UFIDL/uclid/22s.smt 0.332 0.58 0 0
QF UFIDL/uclid/43s.smt 6.604 2.28 0 0
QF UFIDL/uclid/cache.inv10.smt 3.536 5.46 0 0
QF UFIDL/uclid/cache.inv14.smt 105.999 Failed 0 Failed
QF UFIDL/uclid/cache.inv8.smt 0.652 1.08 0 0
QF UFIDL/uclid/elf.rf10.smt 18.149 25.23 0 0
QF UFIDL/uclid/elf.rf8.smt 0.320 0.62 0 0
QF UFIDL/uclid/elf.rf9.smt 2.536 3.38 0 0
QF UFIDL/uclid/ooo.rf10.smt 25.942 Failed 0 Failed
QF UFIDL/uclid/ooo.rf8.smt 1.208 1.56 0 0
QF UFIDL/uclid/ooo.tag10.smt 3.736 5.02 0 0
QF UFIDL/uclid/ooo.tag12.smt 39.114 Failed 0 Failed
QF UFIDL/uclid/q2.12.smt 15.201 19.58 0 0
QF UFIDL/uclid/q2.14.smt 77.169 Failed 0 Failed
QF UFIDL/uclid2/bug1.smt 9.721 13.57 1 1
QF UFIDL/uclid2/bug2.smt 0.780 1.45 1 1
QF UFIDL/uclid2/ooo.rf11.smt 158.894 Failed 0 Failed

On the web page, for each benchmark, the color code explicitly highlights improvement or regression.

3.3 Graphical comparison

Usually, on large sets of benchmarks, a graphical comparison helps to highlight the difference in execu-
tion time between two revisions of the solver. The web interface also displays an XY logarithmic graph
(see figure 2). Again, more in-depth analysis may be done very quickly using the CSV data extraction
facility and using a spreadsheet.

Figure 2: Example of a graphical comparison. A blue dot corresponds to one benchmark.

5



GridTPT Bouton, Caminha B. de Oliveira, Déharbe and Fontaine

4 Conclusion and future work

We presented GridTPT, the testing platform used daily in the development of the veriT SMT solver.
Since most prover developers have the same kind of needs for such a platform, we feel that this work
may benefit other groups in the ATP community. The platform was used internally on several third-party
SMT solvers. First positive experiments were also carried on with a first-order theorem prover (namely,
the E prover [12]).

The most important difficulty we encountered in integrating the platform into our web server (for
easy access by developers outside our institution) is the access policy to the cluster and the electronic
security policy of our institution. The cluster is strongly firewalled, whereas the web server is outside
the protected area; sending jobs and getting back information from the cluster to the web server requires
hacks and ssh bounces. We believe that users elsewhere may encounter similar problems. Unfortunately,
this prevents to have a clean package and an easy installation procedure that would work out-of-the-
box for all cases. It will be necessary to collect and provide off-the-shelf solutions that will allow to
circumvent those problems semi-automatically, when an automatic installation is not suitable. Another
issue that we will certainly have to face is the variety of tools that clusters use for reserving resources.

The variation in running times with respect to the computer architecture is not linear, since it depends
on the instruction set of the processors, the frequencies, the cache sizes and management policy,. . . that
affect differently the running time depending on the program and even on the input data. Nevertheless,
we think that it may be useful to investigate some kind of architecture calibration, i.e. recompute an
approximation of the running time on a reference architecture. The motivations for such a calibration
are twofold. First it would then be possible to use heterogeneous clusters if precise time measurement is
not required. Second, it would also allow developers to compare old results (on out-of-use architectures)
with newer ones.

Among the ongoing works, we are currently integrating the fuzzing tools for SMT-lib [8] on the
distributed architecture. We also have a prototype of an interface to better visualize the differences in
running time, with respect to the kind of benchmarks (categorized by their directory, subdirectory, and
name prefix). The new version of the SMT-LIB [3] brings a novelty in allowing scripts in the prover
input language; finding the right way to nicely integrate testing for scripts will also be necessary.

Acknowledgments: We would like to thank Stephan Merz for his guidance. Experiments presented
in this paper were carried out using the Grid’5000 experimental testbed, being developed under the IN-
RIA ALADDIN development action with support from CNRS, RENATER and several Universities as
well as other funding bodies (see https://www.grid5000.fr). We also thank the anonymous review-
ers for their comments.

References

[1] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo Theories Competition. In
K. Etessami and S. K. Rajamani, editors, Computer Aided Verification (CAV), volume 3576 of Lecture Notes
in Computer Science, pages 20–23. Springer, 2005.

[2] C. Barrett, M. Deters, A. Oliveras, and A. Stump. Design and results of the 3rd annual satisfiability modulo
theories competition (SMT-COMP 2007). International Journal on Artificial Intelligence Tools, 17(4):569–
606, 2008.

[3] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard : Version 2.0. First official release of Version
2.0 of the SMT-LIB standard., 2010. See also http://www.smtlib.org/.

[4] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns, editors, Computer Aided Verification (CAV),
volume 4590 of Lecture Notes in Computer Science, pages 298–302. Springer, 2007.

[5] A. Biere. PicoSAT essentials. JSAT, 4(2-4):75–97, 2008.

6

https://www.grid5000.fr
http://www.smtlib.org/


GridTPT Bouton, Caminha B. de Oliveira, Déharbe and Fontaine

[6] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jégou, S. Lantéri, J. Leduc, N. Melab,
G. Mornet, R. Namyst, P. Primet, B. Quetier, O. Richard, E.-G. Talbi, and I. Touche. Grid’5000: a large scale
and highly reconfigurable experimental grid testbed. International Journal of High Performance Computing
Applications, 20(4):481–494, Nov. 2006. See also https://www.grid5000.fr.

[7] T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT: an open, trustable and efficient SMT-
solver. In R. Schmidt, editor, Proc. Conference on Automated Deduction (CADE), volume 5663 of Lecture
Notes in Computer Science, pages 151–156, Montreal, Canada, 2009. Springer.

[8] R. Brummayer and A. Biere. Fuzzing and delta-debugging SMT solvers. In SMT ’09: Proceedings of the 7th
International Workshop on Satisfiability Modulo Theories, pages 1–5, New York, NY, USA, 2009. ACM.

[9] N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia and A. Tacchella, editors, SAT,
volume 2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2003.

[10] F. J. Pelletier, G. Sutcliffe, and C. B. Suttner. The Development of CASC. AI Communications, 15(2-3):79–
90, 2002.

[11] S. Ranise and C. Tinelli. The SMT-LIB standard : Version 1.2, Aug. 2006. See also http://www.smtlib.
org/.

[12] S. Schulz. System Description: E 0.81. In D. Basin and M. Rusinowitch, editors, Proc. of the 2nd IJCAR,
Cork, Ireland, volume 3097 of LNAI, pages 223–228. Springer, 2004.

[13] G. Sutcliffe and C. Suttner. The State of CASC. AI Communications, 19(1):35–48, 2006.

7

https://www.grid5000.fr
http://www.smtlib.org/
http://www.smtlib.org/

	Introduction
	State of the platform
	Illustration
	Report example
	Textual comparison
	Graphical comparison

	Conclusion and future work

