
Combining decision procedures by (model-)equality
propagation∗

Diego Caminha B. de Oliveira2, David Déharbe1 and Pascal Fontaine2

1 UFRN - CCET - DIMAp
Natal – RN – Brazil

2Université de Nancy – INRIA – LORIA
Nancy – France

{Diego.Caminha,Pascal.Fontaine}@loria.fr, david@dimap.ufrn.br

Abstract. SMT (Satisfiability Modulo Theories) solvers are automatic verifica-
tion engines suitable to discharge important classes of proof obligations gener-
ated in applying formal construction of software and hardware designs. In this
paper, we present a new approach to combine decision procedures and proposi-
tional solvers into an SMT-solver. This approach is based on the generation of
model equalities by decision procedures. We show the soundness and complete-
ness of the proposed approach using an original abstract framework to represent
and reason about SMT-solvers. We then present an algorithmic version of the
new SMT-solving approach and discuss practical aspects of our implementation.

1. Introduction
The application of formal methods to the design of computing systems often results in
the generation of verification conditions that need to be proved in order to guarantee the
correctness of the result. Such verification conditions express properties of models or
relations between models and may be expressed in a wide range of logics: from proposi-
tional to high order logic, but also process algebra and temporal logic. Hence the level of
automation for verification in a specific formalism is tightly dependent on the availability
of tools to support reasoning in such logics.

The work described in this paper addresses the verification of satisfiability
modulo theories (SMT) of quantifier-free formulas, i.e. verification conditions ex-
pressed in a first-order logic using symbols from a combination of theories, such as
uninterpreted functions, fragments of integer or real arithmetics, set and array theo-
ries, etc. This applies to a number of verification applications, e.g. the application
of formal program transformations such as refinement [Morgan 1994] or refactoring
laws [Cornélio et al. 2004], verification of refinement properties in posit-and-prove soft-
ware engineering efforts [Abadi and Lamport 1988, Abrial 1996], or static analysis of an-
notations in design-by-contract languages [Leino 2006]. Even verification efforts in more
expressive logics often require proving lemmas that may be tackled by SMT-solvers (see
for instance [Barsotti et al. 2007]).

SMT-solvers can for example handle a formula like

x ≤ y ∧ y ≤ x+ f(x) ∧ P (h(x)− h(y)) ∧ ¬P (0) ∧ f(x) = 0 (1)
∗The research presented in this paper has been partially financed by CNPq/INRIA project Da Capo and

CNPq project No 307597/2006-7.

which contains linear arithmetics on reals (0, +, −, ≤), and uninterpreted symbols (P , h,
f). SMT-solvers use decision procedures for the disjoint languages (for instance, congru-
ence closure for uninterpreted symbols [Nelson and Oppen 1980], and simplex for linear
arithmetics) and combine them to build a decision procedure for the union of the lan-
guages. The combination of decision procedures works either through some guessing,
or through the exchange of information between the decision procedures. In the general
case, the information exchanged between the decision procedures is a set of disjunctions
of equalities, and handling them requires often complex and costly case splitting. In
the special case of convex theories, exchanging only equalities (and not disjunctions) is
enough to ensure the completeness of the combination. We here show that even in the
general case (i.e. with non-convex theories) exchanging equalities is also sufficient for
completeness thanks to the cooperation with the propositional reasoning engine of the
SMT-solver.

The next section introduces notations and the basics of SMT-solvers. In Section 3
we present an abstract framework for describing SMT-solvers. It only serves to discuss
the soundness and completeness of the combination framework we describe in this paper.
It is not as detailed as the DPLL(T) framework [Nieuwenhuis and Oliveras 2005] since it
is not meant to be a precise description of solvers. By contrast to the DPLL(T) framework
and for simplicity, our schema highlights the distinction between the Boolean reasoning
and the theory reasoning. It is not difficult to understand DPLL(T) as being a refinement
of our schema.

Section 4 uses the framework introduced in Section 3 to discuss the soundness
and completeness of various approaches to SMT solving. In particular, we present a new
approach that consists in only exchanging equalities: either those equalities are deduced
by the decision procedures, or they are assumed by generalising models. The approach is
suitable for any decision procedure capable of finding models; many decision procedures
inherently have this capability. A concrete algorithm using this approach is presented in
Section 5. This algorithm is a simplification of our implementation. A concrete example
is discussed in Section 6.

2. Basics of SMT-solvers
2.1. Notations
A first-order language is a tuple L = 〈V ,F ,P〉 such that V is an enumerable set of vari-
ables, F and P are sets of function and predicate symbols. Every function and predicate
symbol is assigned an arity. Nullary predicates are propositions, and nullary functions are
constants. The set of terms over the language L is defined in the usual way. An atomic
formula is either t = t′ where t and t′ are terms, or a predicate symbol applied to the right
number of terms. Formulas are built from atomic formulas, Boolean connectors (¬, ∧, ∨,
⇒, ≡), and quantifiers (∀, ∃). A formula without quantifiers is called quantifier-free. A
theory is a set of closed formulas. Two theories are disjoint if no predicate symbol in P
or function symbol in F is interpreted in both theories.

An interpretation I for a first-order language provides a domain D, a total func-
tion I[f] on D with appropriate arity to every function symbol f , a predicate I[p] on D
with appropriate arity to every predicate symbol p, and an element I[x] to every variable
x. By extension, an interpretation gives a value in D to every term, and a truth-value to

every formula. A model for a formula (or a theory) is an interpretation that makes the
formula (resp. every formula in the theory) true. A formula is satisfiable if it has a model,
and it is unsatisfiable otherwise. A formula ϕ is T -satisfiable if it is satisfiable in the
theory T , that is, if T ∪ {ϕ} is satisfiable. A T -model of ϕ is a model of T ∪ {ϕ}. A
formula ϕ is T -unsatisfiable if it has no T -model. A formula is (T)-valid if its negation
is (T)-unsatisfiable. The formula ϕ is a (T)-logical consequence of the formula ψ, noted
ψ |=T ϕ if every (T -)model of ψ is a (T -)model of ϕ. The logical consequence is also
defined for sets of formulas, understanding a set of formulas as the conjunction of its
components.

An atom is an atomic formula. A literal is an atom or the negation of an atom. If `
is a literal we implicitly consider that ¬¬` is the literal `. A conjunctive normal form is a
conjunction of clauses, i.e. a conjunction of disjunctions of literals. It is always possible to
transform a quantifier-free formula into equivalent or equisatisfiable conjunctive normal
form. We assume that clauses never contain twice the same atom; if a clause contains a
literal and its negation, it reduces to the valid clause; redundant literals in clauses can be
eliminated.

A theory T is said convex, if whenever a disjunction of equalities x1 = y1 ∨
. . . xn = yn is a logical consequence of a set of literals Γ (i.e. Γ |=T x1 = y1 ∨ . . . xn =
yn), then Γ |=T xi = yi for some i ∈ [1..n]. A theory T is stably infinite if every
T -satisfiable set of literals Γ has an infinite model.

A propositional abstraction for a set of formulas is this set of formulas in which
every atom has been replaced by a proposition, every occurrence of the same atom being
replaced by the same proposition. A set of clauses is propositionally satisfiable if its
propositional abstraction is satisfiable. A propositional assignment Γ is a set of literals
such that ` /∈ Γ or ¬` /∈ Γ for every literal `. By construction, a propositional assignment
is a propositionally satisfiable set. A propositional assignment Γ is total with respect to a
set of clauses if ` ∈ Γ or ¬` ∈ Γ for every atom ` used in the set. A set of formulas G is a
propositional consequence of a set of formulas H , if the propositional abstraction of G is
a logical consequence of the propositional abstraction of H , the mapping from atoms to
propositions being the same in both abstractions. An entailing assignment Γ for a set of
clauses S is a propositional assignment such that S is a propositional consequence of Γ.

2.2. General overview
SMT-solvers are built by extending a propositional satisfiability solver, or SAT-solver
for short, with decision procedures for the theories that appear in the formula. The SAT-
solver is given the propositional abstraction of ϕ. For instance, consider ϕ is the following
formula:

¬


 p1︷ ︸︸ ︷
x ≤ y ∧

p2︷ ︸︸ ︷
y ≤ x+ f(x)∧

p3︷ ︸︸ ︷
f(x) = 0∧

p4︷ ︸︸ ︷
P (h(x)− h(y))

 ⇒


p5︷ ︸︸ ︷

P (0)∧
p6︷ ︸︸ ︷

f(y) = 0




Each atom of ϕ is abstracted to a propositional variable pi. In practice, propositional SAT-
solvers represent formulas in conjunctive normal form; for instance, the propositional
abstraction of the previous formula would be represented as:

p1 ∧ p2 ∧ p3 ∧ p4 ∧ (¬p5 ∨ ¬p6) .

If the formula ϕ is propositionally unsatisfiable, then it is also unsatisfiable mod-
ulo theory. Otherwise, the SAT-solver finds an entailing assignment Γ of the formula
abstraction by searching an assignment of the propositional variables that satisfies each
clause in the current set. For the above example, {p1, p2, p3, p4,¬p5} is such an entailing
assignment.

The T -satisfiability of the conjunction of these literals needs then to be veri-
fied. In general, the literals may contain symbols from several theories T1, T2, . . . Tk.
An SMT-solver therefore needs a mechanism to combine the decision procedures for
each Ti into a decision procedure for the composition of these theories, such as
Shostak’s [Shostak 1984] or Nelson and Oppen’s [Nelson and Oppen 1979].

In the Nelson and Oppen framework, the set of literals is used to produce an
equi-satisfiable set Γ′ = Γ1 ∪ Γ2 ∪ . . .Γk of pure literals, i.e. literals of each Γi only
contain symbols from the theory Ti. Such a separation is easily built by introducing new
variables. For instance a separation for the set of literals for (1) and for the set of literals
corresponding to the former entailing assignment {p1, p2, p3, p4,¬p5} can be:

Γ1 = {x ≤ y, y ≤ x+ v1, v1 = 0, v2 = v3 − v4, v5 = 0}
Γ2 = {P (v2), ¬P (v5), v1 = f(x), v3 = h(x), v4 = h(y)}

where v1 to v5 are new variables, T1 and T2 are respectively the theories for linear arith-
metics on reals and for uninterpreted functions. One then identifies the set of shared
variables S = {v1, v2, v3, v4, v5, x, y}. The decision procedures for each theory Ti receive
the corresponding set of now pure literals Γi and should propagate to other decision pro-
cedures all the equalities between the shared variables that can be derived from Γi and
from such equalities received from the other decision procedure. If the signatures are dis-
joint and the theories stably infinite, then the original set of literals is unsatisfiable if and
only if unsatisfiability is derived by one of the decision procedures.

If the original set of literals Γ is satisfiable, then it is a model modulo theory of
the original formula ϕ, which is itself satisfiable. Otherwise, the propositional solver
needs to be updated to prevent it from generating such assignment again. From a logical
viewpoint this corresponds to adding the negation of the assignment, or any unsatisfiable
subset thereof. It is easy to see that this can be achieved by adding a new clause in the
propositional SAT-solver, consisting of the negation of the literals in such subset. For our
example, the clause ¬p1 ∨ ¬p2 ∨ ¬p3 ∨ ¬p4 ∨ p5 would be added.

In some cases, the decision procedures, or the combination framework, may be
able to generate lemmas from ϕ that may be useful to guide and restrict the search space
of the propositional SAT-solver. For instance, assuming t is a term with an integer type,
and that the formula ϕ contains the atoms 0 < t and t < 3, adding the clause ¬0 <
t ∨ ¬t < 3 ∨ t = 1 ∨ t = 2 introduces indirectly an integer arithmetics property at the
propositional level.

3. Soundness and completeness of SMT-solvers
Initially, the formula given as input to the SMT-solver is converted to a conjunctive set of
clauses S. The SAT-solver maintains a propositional assignment Γ for this set of clauses.
The pair S,Γ thus represents the current state of the solver. The set of rules given in

BOOL:
S,Γ
S,Γ′ Γ′ is a propositional assignment of S (2)

UNSAT:
S,Γ

UNSAT
S is propositionally unsatisfiable (3)

LEARN:
S,Γ

S ∪ C,Γ S |=T C (4)

SAT:
S,Γ

SAT(Γ)
Γ is entailing and T -satisfiable (5)

Figure 1. Rules representing the execution of an SMT-solver

Figure 1 schematizes the possible steps taken by the solver and are described in details in
the following. Observe that clauses may be added to the set either by the SAT-solver itself,
or by the theory reasoner (based on the propositional assignment from the SAT-solver).
The reasoning ends when the SAT-solver concludes that the set of clauses is unsatisfiable,
or when the theory reasoner asserts that the propositional assignment is also T -satisfiable.

Rule BOOL (2) formalizes the update of the propositional assignment by the SAT-
solver; Γ′ is a new assignment such that Γ′ ∪ {C} is propositionally satisfiable for every
clause C ∈ S. The assignment is not required to be total; an assumption about assignment
totality will be made later. The SAT-solver can also conclude that S is unsatisfiable using
rule UNSAT (3).

The addition of new clauses is represented by rule LEARN (4). The new clause
C may be added by the SAT-solver itself. In that case, C is a propositional consequence
of S. The clause may also be added by the theory reasoner; C should then be a logical
consequence of the set S, according to the considered theory (S |=T C). By induction, it
is clear that every added clause is a consequence of the original formula, and that the set
of clauses is always equisatisfiable to the original set of clauses.

If the assignment produced by the SAT-solver is entailing and T -satisfiable, then
the theory solver may conclude that the formula is satisfiable. This is summarized in
rule SAT (5).

In the present scheme, no assumption is made on the order of application of rules,
on how the clause C is generated in LEARN (4) and on the relation between consecutive
assignments from the SAT-solver. This is all left abstract, with side conditions for the
soundness and completeness of the SMT-solver.

Theorem 1 An SMT-solver implementing the rules of Figure 1 is sound.

Proof : Every clause added to the initial set of clauses using rule LEARN (4) is a logical
consequence of the initial set of clauses. If the SAT-solver concludes to the propositional
unsatisfiability of the set of clauses, the initial set of clauses is unsatisfiable. Also, if there
is a propositional entailing assignment that is T -satisfiable, the original set of clauses is
satisfiable. ut

Notice that the assumption in rule LEARN (4) is very permissive. It holds notably

for propositional learning, where the new clause C is obtained by propositional resolu-
tion of clauses in S, guided by the FUIP computation [Zhang et al. 2001]. It also holds
for conflict clauses from the theory reasoner where the clause C is the disjunction of the
negation of literals in a T -unsatisfiable subset of the assignment Γ (T being the consid-
ered theory). Some further assumptions are however required to prove the completeness
of an SMT-solver implementing the rules of Figure 1.

Theorem 2 An SMT-solver implementing the rules of Figure 1 is complete (eventually
terminates on a SAT or UNSAT state) provided that

• if the set of clauses remains unchanged1, the SAT-solver will eventually either
– provide an entailing assignment
– or conclude to the unsatisfiability of the set of clauses with rule UNSAT (3);

• the atoms of the clauses added in rule LEARN (4) belong to a finite set that is fixed
a priori for the whole run of the SMT-solver;

• for any state S,Γ where Γ is entailing, either rule SAT (5) is applied or
rule LEARN (4) is applied, with C not being a propositional consequence of Γ.

Proof : If the run is finite then it should end either with rule SAT (5) or rule UNSAT (3).
This is proved by contradiction. Assume the run is finite but does not terminates on an
UNSAT or SAT state. Then the ending state is of the form S,Γ. Since the set of clauses S
does not change, the first assumption implies that Γ is entailing. Since Γ is entailing, the
last assumption ensures either that

• the new state is SAT (with the application of rule SAT (5)) or
• the rule LEARN (4) is applied and introduces a clause C that is not a propositional

consequence of Γ.

The first option is not possible, since the ending state is S,Γ. The second option is also
not possible, since this would change the set S, and contradict the fact that S,Γ is the
ending state.

Assume now that the run is infinite. The set of atoms that are or will be present in
the set of clauses is finite, thanks to the second assumption. The set of possible different
clauses is also finite. At some point no new clause will be added to the set of clauses S
by rule LEARN (4), and the SAT-solver will eventually provide an entailing assignment Γ.
The rule SAT (5) being an ending rule, the next rule will be rule LEARN (4), and a clause
C will be generated. Since C already belongs to the set of clauses and Γ is entailing, then
C is a logical consequence of Γ which contradicts the last assumption of the theorem. ut

The three requirements in the above theorem are reasonable. The first requirement
is on the SAT-solver; if the set of clauses does not change, SAT-solvers will eventually
decide that the set of clauses is unsatisfiable, or provide a total (and thus entailing) as-
signment. The two remaining requirements are related to the theory reasoner and are
discussed in the next section.

4. Combination of theories and propositional reasoning
In this section, we instantiate the previous framework to common approaches of combi-
nations of theories, and discuss those various approaches.

1By unchanged, we mean that no clause is added, or every added clause is already in the set of clauses
known by the SAT-solver.

4.1. Nelson-Oppen and arrangements

As discussed in Section 2.2, to study the T -satisfiability of a set of literals Γ, where
the theory T is the union of the two disjoint stably infinite2 theories T1 and T2, one
traditionally first build a separation (Γ1,Γ2) such that Γ1 ∪ Γ2 is T -equisatisfiable to
Γ, and Γ1 only contains interpreted symbols from T1 (similarly for Γ2). An arrange-
ment A of a set of variables is a set that contains either X = Y or X 6= Y for
every pair of variables X, Y in the set. For instance, an arrangement for the set of
variables S = {v1, v2, v3, v4, v5, x, y} from the example in Section 2 could be {v1 =
v2, v1 6= v3, v3 = v4, v4 = v5, x 6= v1, x 6= v3, x = y} (redundant (dis)equalities have
been ignored). The result behind the Nelson-Oppen combination scheme (see for in-
stance [Nelson and Oppen 1979, Tinelli and Harandi 1996]) states that Γ (or equivalently
Γ1 ∪ Γ2) is T -satisfiable if and only if there exists an arrangement A of the shared vari-
ables such that A ∪ Γ1 is T1-satisfiable and A ∪ Γ2 is T2-satisfiable. The T -satisfiability
problem is thus reduced to a set of T1-satisfiability and T2-satisfiability problems.

There are as many different arrangements for a set of variables as partitions of that
set. The number of arrangements grows faster than exponentially with respect to the size
of the set of variables. The naive approach — that is, extensively testing all arrangements
— is thus only tractable for very small problems. However the approach called Delayed
Theory Combination (see [Bruttomesso et al. 2006]) is a successful and simple technique
that delegates the job of enumerating arrangements to the SAT-solver. The formula is pu-
rified3 before it is given to the SAT-solver, and the (entailing) total assignments from the
SAT-solver should give a truth-value to every equality between shared variables. The as-
signment is then given to every theory reasoner in the combination; each theory reasoner
only picks among the assignment the literals that are relevant to the theory. This technique
is implemented in several state of the art SMT-solvers. When given a total assignment Γ,
one theory reasoner can conclude that its set is unsatisfiable and then it returns a conflict
clause of the form

∨
`∈γ ¬` where γ is an unsatisfiable subset of Γ; this clause is obviously

not a logical consequence of Γ. In the other case, every theory reasoner concludes that its
set is satisfiable, and Γ is also satisfiable in the combination of theories since every (en-
tailing) total assignment contains an arrangement. According to Section 3, the approach
is thus sound and complete.

4.2. Nelson-Oppen and deduced disjunctions of equalities

Another practical way is to build the arrangement using deduced disjunctions of equalities
from the independent theories. Informally, the following theorem states that two disjoint
theories can agree on the satisfiability of a set of literals if no disjunction of equality
can be deduced by one or the other theory (and given as a new fact to the other theory).
Completeness of a cooperation of decision procedures can be obtained by exhaustively
exchanging disjunctions of equalities between the decision procedures (instead of check-
ing all arrangements).

2Disjointness and stably infiniteness are sufficient conditions for the easy combination of two theories.
Those conditions are not necessary, but for simplicity, we assume those conditions are met.

3Purification ensures every atom contains interpreted symbols from only one theory. It has the same
effect than building a separation, but it is done once and for all in the original formula and not on successive
assignments.

Theorem 3 Assume Γ1 is T1 satisfiable, Γ2 is T2 satisfiable, but Γ1 ∪ Γ2 is not T -
satisfiable. Then there exists a disjunction of equalities ∆ = (x1 = y1 ∨ . . . xn = yn)
(where x1, . . . xn and y1, . . . yn are shared variables) such that

• Γ1 |=T1 ∆ and Γ2 6|=T2 xi = yi for each i such that 1 ≤ i ≤ n;
• or Γ2 |=T2 ∆ and Γ1 6|=T1 xi = yi for each i such that 1 ≤ i ≤ n.

Proof : Let S1 bet the set of all equalities x = y such that Γ1 |=T1 x = y, and S2 bet
the set of all equalities x = y such that Γ2 |=T2 x = y. Assume x1 = y1 belongs to S1

but not to S2: then the required new deduced disjunction of equalities can simply be this
single equality (and similarly for an equality that belong to S2 but not S1). It remains to
consider S1 = S2. The set S1 (or equivalently S2) is extended to form an arrangement A
by adding x 6= y to S1 whenever x = y does not belong to S1. According to the result
behind the Nelson-Oppen combination scheme A ∪ Γ1 is T1-unsatisfiable or A ∪ Γ2 is
T2-unsatisfiable since Γ1 ∪ Γ2 is T -unsatisfiable. Assume that A ∪ Γ1 is T1-unsatisfiable
(the other case is handled similarly). Then Γ1 |=T1

∨
x6=y∈A x = y and by construction

Γ2 6|= x = y if x 6= y belongs to A. ut
The application of the previous result requires splitting at the theory level. Assume

Γ1 |=T1 x1 = y1 ∨ . . . xn = yn. Then, for every i, Γ2 ∪ {xi = yi} is checked for
satisfiability. If there exists i such that Γ2 ∪ {xi = yi} is satisfiable, there may also exists
another disjunction of equalities x′1 = y′1∨ . . . x′n′ = y′n′ such that Γ2∪{xi = yi} |= x′1 =
y′1 ∨ . . . x′n′ = y′n′ . This new disjunction would also imply some splitting. Eventually
no more disjunction of equalities will be generated and both theories in the combination
will conclude that their respective set of literals (plus the equalities coming from the case
splittings) are satisfiable, or a conflict will occur and it will be required to backtrack on
the case splits to examine every choice.

If case splitting and backtracking is realised inside the theory reasoner for the
combination of theories, the theory reasoner is complete by itself. When given an entail-
ing assignment Γ from the SAT-solver, it will either conclude to the T -satisfiability of
the assignment (T being the considered combination of theories), or it returns a conflict
clause of the form

∨
`∈γ ¬` where γ is an unsatisfiable subset of Γ; once again, this clause

is obviously not a logical consequence of Γ. No new atom is generated by the process,
and all conditions are met for Theorems 1 and 2 to be applicable. The approach is sound
and complete.

Some theories are particularly appropriate for the above method. As a direct con-
sequence, no splitting is required when combining convex theories only. Many useful
theories are convex, and notably linear arithmetics on the reals, and the theory of unin-
terpreted functions. Among the non-convex theories one finds the theory of linear arith-
metics on the integers, and the theory of arrays.

In presence of non-convex theories, handling case splittings at the theory level
may be difficult, and also inefficient. Usually this work is preferably delegated to the
SAT-solver. This technique is referred as Splitting on Demand [Barrett et al. 2006]. In
such a case, rather than splitting on a disjunction x1 = y1∨ . . . xn = yn that is a Ti-logical
consequence of the set of literals Γi, a new clause x1 = y1 ∨ . . . xn = yn ∨ ∨

`∈Γi
¬`

is added to the SAT-solver. Most preferably, only the literals ` ∈ Γi that are required
to imply the disjunction of equalities are added to the clause, so that the added clause
subsumes many other clauses that would be generated in similar cases.

In contrast to Delayed Theory Combination and splitting inside theory reasoners,
handling case splitting through the SAT-solver may introduce new atoms, namely equal-
ities between terms that are not in the original formula. However, since there are only a
finite number of terms in the original formula, and thus a finite number of possible equal-
ities between terms from the original formula, the second assumption of Theorem 2 is
fulfilled. For the last assumption to be fulfilled, it is sufficient to require from the theory
reasoner that, if it is not able to state if the assignment is T -satisfiable or not, it should
at least provide a deduced clause. According to Theorem 3 such a clause exists when-
ever the assignment is T -unsatisfiable; this clause is not a propositional consequence of
the assignment. If the theory reasoners are complete with respect to the deduction of
disjunction of equalities, the SMT-solver is sound and complete.

For some theories (and in particular, for linear arithmetics over the integer) it
is not easy to be complete for the deduction of disjunction of equalities (see for in-
stance [Lahiri and Musuvathi 2005]). Moreover some decision procedures for convex
theories are not easily tweaked to produce equalities between variables. The next sec-
tion presents another way to ensure completeness of SMT-solvers in those cases.

4.3. Introducing model equalities

The method we present here is suitable for decision procedures that are not able to deduce
disjunctions of equalities, or that are not complete with respect to deduction of (disjunc-
tions of) equalities. We assume they are however able to find a concrete model for a set
of constraints, i.e. literals. As an example, it means that a reasoner for integer linear
arithmetics is able to find a mapping from variables to integers such that all constraints
are satisfiable. Many decision procedures inherently have such a capability.

Assume that an assignment Γ provided by the SAT-solver produces (pure) literals
Γ1 and Γ2 to be handled by theory reasoners for T1 and T2 respectively. Assume also that
Γ1 is T1-satisfiable, and Γ2 is T2-satisfiable. Finally assume that all generated disjunctions
of equalities have been handled as in the previous subsection. The theory reasoners that
are not complete with respect to deduction of (disjunctions of) equalities should then
compute a model, and generate the equalities between shared variables that correspond
to the model and that do not already belong to Γ. Those equalities are then given to the
other decision procedure, as if they were in the original assignment. Those equalities
may themselves force the other decision procedure to deduce or produce other equalities.
Eventually no more equality is shared. If a conflict occurs, the theory reasoner for Ti

generates a conflict clause C of the form
∨

`∈γ ¬` where γ is a Ti-unsatisfiable subset of
Γ ∪ Γ′ with Γ′ being the set of all generated equalities. This clause is added to the set
of clauses handled by the SAT solver. It may contain atoms (equalities) coming from
models. If it does not, it is conflicting in the sense that Γ∪{C} is unsatisfiable. If it does,
it is obviously not a propositional consequence of Γ. The atoms generated here once again
all belong to a finite set that is known a priori, namely the set of all equalities between
two terms in the original formula.

If no conflict occurs, then Γ∪ Γ′ contains equalities between any two shared vari-
ables that are equal according to the model. Conversely, if an equality between two shared
variables does not belong to Γ ∪ Γ′, it has not been guessed nor deduced by the decision
procedures in the combination. If we assume every decision procedure is either complete

with respect to the generation of disjunction of equalities, or that it generates model equal-
ities, one can conclude that the two theories agree that, if no equality between two shared
variables exists in Γ ∪ Γ′, they should be different. An arrangement A can thus be built
from the equalities in Γ∪Γ′, augmented by the maximum number of inequalities between
shared variables. A ∪ Γ1 is T1-satisfiable and A ∪ Γ2 is T2-satisfiable. Rule SAT (5) can
be applied and the third assumption of Theorem 2 is fulfilled. The approach is sound and
complete.

5. An algorithm for Nelson-Oppen with model-equalities

Algorithm 1 provides a high level pseudo-code of the Nelson and Oppen framework with
model equalities, as described in Section 4.3. We assume that the propositional satisfia-
bility solver can incorporate new literals (corresponding to constraints that are not in the
original formula). This capability is also required for the splitting on demand approach
described in Section 4.2. The presented algorithm also gives the decision procedures the
opportunity to take advantage of the similarities between consecutive sets of literals pro-
duced by the propositional SAT-solver as they may update their state to reflect only the
difference between these sets.

As described in Section 4.3, we also assume that the decision procedures for the
theories Ti are able to generate the model equalities based on a model they keep based on
the literals, equalities and inequalities they receive. The main difference with respect to a
version without model equalities is located in the lines 17 to 21.

The main loop of the algorithm is executed until the SAT-solver can no longer
produce a propositional satisfiable assignment (line 1). In this case, the original formula
is unsatisfiable (Rule UNSAT (3)). Otherwise, a propositional model is computed (line 2)
(Rule BOOL (2)). Each decision procedure t may then backtrack to a state based on the
new set of literals corresponding to this assignment (line 4). Note that the set of literals
available in such state should be Ti-satisfiable in each theory Ti. The variable newLiterals
will maintain the set of literals that the decision procedures need to receive. It is initially
set with the new literals present in the assignment (line 5), and is later updated with
equalities produced by the decision procedures (lines 16 and 19). This set is repeatedly
propagated to each decision procedure until one of them detects unsatisfiability (line 9) or
no new equalities can be deduced (line 22). If unsatisfiability is detected, then a conflict
clause is generated and added to the propositional satisfiability solver (line 10). This
action implements an instance of Rule LEARN (4). Otherwise, each decision procedure
computes the set of variable equalities entailed by the current set of literals. These sets are
stored for propagation at the next iteration (line 16). Ultimately, if no variable equalities
can be deduced, then the decision procedures that do not have complete (disjunctions of)
equality deduction capabilities will look for model equalities to propagate4.

Once all the literals and equalities have been propagated, additional lemmas pro-
duced by the decision procedures may be incorporated as clauses to the propositional sat-
isfiability solver (lines 23–25). Again, this corresponds to an instance of Rule LEARN (4).
Eventually, when no new information can be provided to the propositional satisfiability

4In this algorithm, we assume that none of the non-convex theories have capabilities of generating
disjunctions of equalities, i.e., internal case split is not handled.

solver, and if the assignment is total, then the algorithm concludes that the original for-
mula is T -satisfiable and halts (line 26), which corresponds to Rule SAT (5).

while satSolver.status() = SAT do1

assignment := satSolver.assignment();2

status := SAT;3

foreach t in theories do t.backJump(assignment);4

newLiterals := assignment.getNewLiterals();5

repeat6

foreach t in theories do7

status := t.propagateLiterals(newLiterals);8

if status = UNSAT then9

satSolver.add(t.conflictClause);10

break;11

end12

end13

if status = UNSAT then break;14

newLiterals := {};15

foreach t in theories do newLiterals += t.getNewEqualities();16

if newLiterals = {} then17

foreach t in theories ∧ t.deduction 6= COMPLETE do18

newLiterals += t.getNewModelEqualities();19

end20

end21

until newLiterals = {} ;22

lemmas := {};23

foreach t in theories do lemmas += t.getNewLemmas();24

satSolver.add(lemmas);25

if lemmas = {} ∧ status = SAT ∧ assignment = TOTAL then return SAT;26

end27

return UNSAT;28

Algorithm 1: Satisfiability Check

6. Combining Uninterpreted Functions with Integer Difference Logic: An
Example

In this section we present an example of how to handle the combined theory of uninter-
preted functions (UF) and integer difference logic (IDL) using model equalities, i.e., not
having to generate disjunction of equalities necessary for completeness in a Nelson and
Oppen (NO) combination framework. Difference Logic is the linear arithmetic fragment
that contains only constraints of the kind x − y ./ c, where x and y are variables, c is
a constant number and ./∈ {≤,≥,=, <,>}. We want to prove that the formula ϕ is
unsatisfiable.

ϕ : x ≤ y + 1 ∧ y ≤ x ∧ x 6= y ∧ f(x) 6= f(y + 1) (6)

As a first step and for simplicity of the presentation, we assume the formula is
purified (i.e. the separation is done at the formula level) so that the different decision

procedures only get literals with symbols from their theory. The obtained formula is ϕ′,
and each different atom is attributed to a propositional variable pi.

ϕ′ :

p1︷ ︸︸ ︷
v1 = y + 1∧

p2︷ ︸︸ ︷
x ≤ v1 ∧

p3︷ ︸︸ ︷
y ≤ x∧

¬p4︷ ︸︸ ︷
x 6= y ∧

¬p5︷ ︸︸ ︷
f(x) 6= f(v1) (7)

Figure 2 can be used to trace the status of the algorithm during its application to
this problem. We use the symbols pi to represent the constraints and compact the figure.
We also consider that ¬(a = b) is a 6= b, ¬(a ≤ b) is a > b, and ¬(a ≥ b) is a < b.

Formula Assignment Decision procedures
1 p1 ∧ p2 ∧ p3 ∧ ¬p4 ∧ ¬p5 { p1, p2, p3,

¬p4,¬p5 }
T1 : {¬p4,¬p5}
T2 : {p1, p2, p3,¬p4}

1.1 T1 : {¬p4,¬p5, p6}
T2 : {p1, p2, p3,¬p4, p6}

2 p1 ∧ p2 ∧ p3 ∧ ¬p4 ∧ ¬p5
∧(p5 ∨ ¬p6)

{ p1, p2, p3,
¬p4,¬p5,¬p6 }

T1 : {¬p4,¬p5,¬p6}
T2 : {p1, p2, p3,¬p4,¬p6}

3 p1 ∧ p2 ∧ p3 ∧ ¬p4 ∧ ¬p5
∧(p5 ∨ ¬p6)
∧(p6 ∨ ¬p2 ∨ ¬p7)

{ p1, p2, p3,¬p4,
¬p5,¬p6,¬p7 }

T1 : {¬p4,¬p5,¬p6}
T2 : {p1, p2, p3,¬p4,¬p6,¬p7}

3.1 T1 : {¬p4,¬p5,¬p6, p4}
T2 : {p1, p2, p3,¬p4,¬p6,¬p7, p4}

4 p1 ∧ p2 ∧ p3 ∧ ¬p4 ∧ ¬p5
∧(p5 ∨ ¬p6)
∧(p6 ∨ ¬p2 ∨ ¬p7)
∧(p4 ∨ p7 ∨ ¬p1 ∨ ¬p3)
⇒ UNSAT

Figure 2. An example combining UF and IDL.

State 1 corresponds to the computation by the SAT-solver of a propositional as-
signment Γ of the formula. The constraints from Γ are propagated to the decision proce-
dures to check for theory consistency. T1 and T2 are the decision procedures for UF and
IDL, respectively. At this point, no equality can be generated and the process would end
if there were only convex theories involved.

However, IDL is non-convex. Two approaches are possible here: generate a dis-
junction of equalities, as proposed in Section 4.2 or a model equality, a new approach
proposed in Section 4.3 and adopted in Algorithm 1. A difference logic solver based on
graph algorithms (see e.g. [Lahiri and Musuvathi 2006]) can generate one model easily.
In a consistent model we would have values such as x = 0, y = −1 and v1 = 0, so the
model equality x = v1 (abstracted to proposition p6) is generated and propagated to all
decision procedures. State 1.1 is then reached, and a contradiction is found in the UF
engine, as the conjunction x = v1 ∧ f(x) 6= f(v1) is unsatisfiable.

The conflict clause p5 ∨ ¬p6 is added to the SAT-solver and a second iteration of
the main loop is necessary. The algorithm reaches State 2, where a new assignment is
generated. The decision procedures backtrack to the previous satisfiable state, i.e., just
before propagating the model equality x = v1 (i.e. p6). The set of literals is thus incre-
mented with literal ¬p6 (i.e. x 6= v1) which is dispatched to both decision procedures. No

contradiction or equality is generated, but IDL finds that the current assignment conflicts
with the previously generated model equality. To remedy this situation, the IDL decision
procedure generates a lemma: (x = v1) ∨ (x > v1) ∨ (x < v1). The lemma is incor-
porated to the SAT-solver. This results in the creation of a new propositional variable p7
corresponding to the atom v1 ≤ x.

The lemma is incorporated by the SAT-solver and the main loop is thus iterated
a third time, the algorithm reaching State 3. A new assignment is generated, resulting
in the addition of a new literal ¬p7 (i.e. ¬v1 ≤ x, or x < v1), which is propagated to
the decision procedure for IDL. This decision procedure is then in condition to deduce
the equality between shared variables x = y from x < v1, v1 = y + 1 and y ≤ x.
The algorithm reaches then State 3.1, where this equality has been propagated to the
decision procedure for UF, which detects the conflict x 6= y ∧ x = y, so the assignment is
once again considered theory inconsistent. The corresponding conflict clause is generated
(p4 ∨ p7 ∨ ¬p1 ∨ ¬p3) and added to the SAT-solver.

At that point, State 4, the SAT-solver concludes there is no more assignment that
makes the current formula propositionally true. Therefore, the problem is unsatisfiable.

7. Conclusion

In this paper, we presented a new approach to combine decision procedures, based on
the generation of model equalities. The originality is that the combination maintains the
completeness property of the classic approach if the decision procedures have the capabil-
ity to generate model equalities instead of disjunction of equalities. In practice, this new
requirement is often much simpler to implement than the original one. We also proposed
a simple abstract framework to reason about SMT-solvers and applied it to show the com-
pleteness of our approach based on the generation and propagation of model equalities.
This approach inherits model-based guessing from [de Moura and Bjørner 2008a], and
the interaction of decision procedures through the SAT-solver from [Barrett et al. 2006].

We aim to provide an implementation that is easily integrated in other
deduction tools such as Isabelle [Nipkow et al. 2002], Coq [Huet et al. 2004],
HOL [Gordon and Melham 1993] or HOL-light [Harrison 1996]. For this, it is neces-
sary to provide detailed proofs. The present approach is particularly suitable, since it
makes a clear distinction between the propositional reasoning and the theory reasoning.
Propositional reasoning steps as well as equality propagating steps consist in propositional
resolution steps. The reasoning steps for equality deduction and conflicts are specific to
theories.

Since the bottleneck of the cooperation between proof assistants and SMT-
solvers is not the efficiency of the SMT-solvers, our focus has not been much di-
rected towards the efficiency of our implementation. In particular, we do not imple-
ment theory propagation (see for instance [Nieuwenhuis and Oliveras 2005]). How-
ever, we observed that for the specific QF UFIDL benchmarks reported to work par-
ticularly well for [de Moura and Bjørner 2008a], our implementation works as fast as in
Z3 [de Moura and Bjørner 2008b].

Future works include applying this technique to other decidable fragments (for
instance full linear arithmetic on integer and reals). Also, our implementation includes a

full-featured first-order theorem prover that handles user theories. We will then investigate
the benefits of our framework in presence of such user defined theories.

References

Abadi, M. and Lamport, L. (1988). The existence of refinement mappings. Technical
Report 29, DEC/SRC.

Abrial, J.-R. (1996). The B-Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press.

Barrett, C., Nieuwenhuis, R., Oliveras, A., and Tinelli, C. (2006). Splitting on demand
in SAT modulo theories. In Hermann, M. and Voronkov, A., editors, Proc. 13th Int’l
Conf. on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), vol-
ume 4246 of Lecture Notes in Computer Science, pages 512–526. Springer.

Barsotti, D., Nieto, L. P., and Tiu, A. (2007). Verification of clock synchronization al-
gorithms: experiments on a combination of deductive tools. Form. Asp. Comput.,
19(3):321–341.

Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., and Sebastiani, R. (2006). De-
layed theory combination vs. nelson-oppen for satisfiability modulo theories: A com-
parative analysis. In Hermann, M. and Voronkov, A., editors, Proc. 13th Int’l Conf. on
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), volume 4246
of Lecture Notes in Computer Science, pages 527–541. Springer.

Cornélio, M., Cavalcanti, A., and Sampaio, A. (2004). Refactoring towards a layered
architecture. In Proc. Brazilian Symposium on Formal Methods (SBMF 2004), pages
199–216.

de Moura, L. and Bjørner, N. (2008a). Model-based theory combination. Electr. Notes
Theor. Comput. Sci, 198(2):37–49.

de Moura, L. and Bjørner, N. (2008b). Z3: An efficient SMT solver. In Proc. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), volume
4963 of Lecture Notes in Computer Science, pages 337–340. Springer.

Gordon, M. J. C. and Melham, T. F., editors (1993). Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University Press.

Harrison, J. (1996). HOL light: A tutorial introduction. In Srivas, M. and Camilleri, A.,
editors, Proc. First International Conference on Formal Methods in Computer-Aided
Design (FMCAD’96), volume 1166 of Lecture Notes in Computer Science, pages 265–
269. Springer-Verlag.

Huet, G., Kahn, G., and Paulin-Mohring, C. (2004). The Coq Proof Assistant - A tutorial,
Version 8.0.

Lahiri, S. K. and Musuvathi, M. (2005). An efficient decision procedure for UTVPI
constraints. In Gramlich, B., editor, Proc. Int’l Workshop Frontiers of Combining
Systems (FroCoS) 2005, volume 3717 of Lecture Notes in Computer Science, pages
168–183. Springer.

Lahiri, S. K. and Musuvathi, M. (2006). An efficient Nelson-Oppen decision procedure
for difference constraints over rationals. Electr. Notes Theor. Comput. Sci, 144(2):27–
41.

Leino, K. R. M. (2006). Object invariants in specification and verification. In Proc.
Brazilian Symposium on Formal Methods (SBMF 2006), pages 3–4.

Morgan, C. (1994). Programming from Specifications. Prentice Hall International.

Nelson, G. and Oppen, D. (1979). Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems, 1(2):245–257.

Nelson, G. and Oppen, D. (1980). Fast decision procedures based on congruence closure.
Journal of the ACM, 27(2):356–364.

Nieuwenhuis, R. and Oliveras, A. (2005). DPLL(T) with exhaustive theory propagation
and its application to difference logic. In Etessami, K. and Rajamani, S., editors, Proc.
17th Int’l Conf. on Computer Aided Verification (CAV), volume 3576 of Lecture Notes
in Computer Science, pages 321–334. Springer.

Nipkow, T., Paulson, L., and Wenzel, M. (2002). Isabelle/HOL. A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer-
Verlag.

Shostak, R. E. (1984). Deciding combinations of theories. Journal of the ACM, 31(1):1–
12.

Tinelli, C. and Harandi, M. T. (1996). A new correctness proof of the Nelson–Oppen
combination procedure. In Baader, F. and Schulz, K. U., editors, Proc. Frontiers of
Combining Systems (FroCoS), Applied Logic, pages 103–120. Kluwer Academic Pub-
lishers.

Zhang, L., Madigan, C., Moskewicz, M., and Malik, S. (2001). Efficient conflict driven
learning in boolean satisfiability solver. In Proc. Int’l Conf. on Computer Aided Design
(ICCAD), pages 279–285.

