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Abstract

Formal methods in software and hardware design often generate formulas
that need to be validated, either interactively or automatically. Among the
automatic tools, SMT (Satisfiability Modulo Theories) solvers are particu-
larly suitable to discharge such proof obligations, since their input language is
equational logic with symbols from various useful decidable fragments such
as uninterpreted symbols, linear arithmetic, and usual data-structures like
arrays or lists. In this paper, we present an approach to combine decision
procedures and propositional solvers into an SMT-solver. This approach
is based not only on the exchange of deducible equalities between decision
procedures, but also on the generation of model equalities by decision proce-
dures. This extends nicely the classical Nelson-Oppen combination procedure
in a simple plateform to smoothly combine convex and non-convex theories.
We show the soundness and completeness of this approach using an original
abstract framework to represent and reason about SMT-solvers. We then de-
scribe an algorithmic translation of this method, implemented in the kernel
of the veriT solver [9].
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david.deharbe@pq.cnpq.br (David Déharbe), Pascal.Fontaine@loria.fr (Pascal
Fontaine)

Preprint submitted to Science of Computer Programming March 31, 2011



solving, Combination of Decision Procedures

1. Introduction

The application of formal methods to the design of computing systems of-
ten results in the generation of verification conditions that need to be proved
in order to guarantee the correctness of the result. Such verification condi-
tions express properties of models or relations between models and may be
expressed in a wide range of logics: from propositional to higher order logics,
but also process algebras and temporal logics. Hence the level of automation
for verification in a specific formalism is tightly dependent on the availability
of tools to support reasoning in such logics.

The work described in this paper addresses the verification of satisfiability
modulo theories (SMT) of quantifier-free formulas, i.e. verification conditions
expressed in a first-order logic using symbols from a combination of theories,
such as uninterpreted functions, fragments of integer or real arithmetic, set
and array theories, etc. This applies to a number of verification applications,
e.g. the application of formal program transformations such as refinement [25]
or refactoring laws [11], verification of refinement properties in posit-and-
prove software engineering efforts [1, 2], or static analysis of annotations in
design-by-contract languages [24]. Even verification efforts in more expressive
logics often require proving lemmas that may be tackled by SMT-solvers
(see for instance [8]). This work is therefore a contribution towards the
construction of more efficient and trustworthy automated theorem provers
based on the SMT-solving approach (see [6] for a thorough review of state-
of-the-art SMT-solving techniques). The goal of the our research is to develop
such SMT-solving techniques, and provide effective implementations thereof.

SMT-solvers can, for example, handle formulas such as

x ≤ y ∧ y ≤ x+ f(x) ∧ P (h(x)− h(y)) ∧ ¬P (0) ∧ f(x) = 0 (1)

which contains linear arithmetic on real numbers (0, +, −, ≤), and unin-
terpreted symbols (P , h, f). SMT-solvers use decision procedures for the
disjoint languages (for instance, congruence closure for uninterpreted sym-
bols [28], and simplex for linear arithmetic) and combine them to build a de-
cision procedure for the union of the languages. The combination of decision
procedures works either through some guessing, or through the exchange of
information between the decision procedures. The decision procedures thus
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combined are composed with a Boolean reasoning engine. In the classical
schema for combining decision procedures, the information exchanged be-
tween the decision procedures is a set of disjunctions of equalities. Handling
such disjunctions requires complex and costly case splitting. In the special
case of convex theories (see definition in Section 2.1) though, exchanging only
equalities instead of disjunctions of equalities is enough to ensure the com-
pleteness of the combination and the combination schema is much simpler.

This paper is based on results first presented in [15]. We present a new
generic combination approach that consists in exchanging only equalities,
instead of disjunctions thereof. The exchanged equalities are either deduced
like in the classical schema, or assumed by generalising models. We show
that, even in the general case (i.e. with non-convex theories), this approach is
complete, thanks to the cooperation with the propositional reasoning engine
of the SMT-solver. This combination schema is suitable for any decision
procedure capable of finding models; fortunately many decision procedures
inherently have this capability. The combination approach described in the
paper is the core algorithm of the SMT-solver veriT [9]. The complexity of
combination schema is of course bound to the usual theoretical limits [34, 33],
but it gives good results in practice.

This paper also presents an abstract framework to describe and reason
about SMT-solvers built using different kinds of cooperation between deci-
sion procedures. The purpose of this framework is to discuss the soundness
and completeness of combination approaches. It is not as detailed as the
DPLL(T ) framework [29] since it is not meant to be an operational descrip-
tion of solvers. By contrast to DPLL(T ) and for simplicity, our schema
highlights the distinction between the Boolean reasoning and the theory rea-
soning. The DPLL(T ) framework can be seen as a refinement of our schema.
Using our schema, we show the soundness and completeness of the most
common architectures, as well as the new combination approach.

Overview of the paper. The next section introduces notations and the basics
of SMT-solvers. In Section 3 we present the abstract framework for describing
SMT-solvers. Section 4 uses the framework introduced in Section 3 to dis-
cuss the soundness and completeness of various approaches to SMT solving.
A practical algorithm using this approach is presented in Section 5. Two
illustrating examples are discussed in Sections 6 and 7. Section 8 shortly
presents our implementation of the method, the veriT solver.
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2. Basics of SMT-solvers

2.1. Notations and definitions

A first-order language is a tuple L = 〈V ,F ,P〉 such that V is an enumer-
able set of variables, F and P are sets of function and predicate symbols.
Every function and predicate symbol is assigned an arity. Nullary predicates
are propositions, and nullary functions are constants. The set of terms over
the language L is defined in the usual way. An atomic formula is either t = t′

where t and t′ are terms, or a predicate symbol applied to the right number
of terms. Formulas are built from atomic formulas, Boolean connectors (¬,
∧, ∨, ⇒, ≡), and quantifiers (∀, ∃). A formula without quantifiers is called
quantifier-free. A theory is a set of closed formulas. Two theories are disjoint
if no predicate symbol in P or function symbol in F is interpreted in both
theories.

An interpretation I for a first-order language provides a domain D, a
total function I[f ] on D with appropriate arity to every function symbol f ,
a predicate I[p] on D with appropriate arity to every predicate symbol p, and
an element I[x] to every variable x. By extension, an interpretation gives a
value in D to every term, and a truth-value to every formula. A model for a
formula (or a theory) is an interpretation that makes the formula (resp. every
formula in the theory) true. A formula is satisfiable if it has a model, and it
is unsatisfiable otherwise. A formula ϕ is T -satisfiable if it is satisfiable in
the theory T , that is, if T ∪ {ϕ} is satisfiable. A T -model of ϕ is a model of
T ∪ {ϕ}. A formula ϕ is T -unsatisfiable if it has no T -model.

A formula is (T -)valid if its negation is (T -)unsatisfiable. The formula
ϕ is a (T -)logical consequence of the formula ψ, noted ψ |=(T ) ϕ if every
(T -)model of ψ is a (T -)model of ϕ. The logical consequence is also defined
for sets of formulas, understanding a set of formulas as the conjunction of
its components. A formula ϕ is (T )-equisatisfiable to the formula ψ if ϕ is a
(T )-logical consequence of ψ and ψ is also a (T )-logical consequence of ϕ.

An atom is an atomic formula. A literal is an atom or the negation of
an atom. If ` is a literal, we implicitly consider that ¬¬` is the literal `.
A conjunctive normal form is a conjunction of clauses, i.e. a conjunction
of disjunctions of literals. It is always possible to transform a quantifier-
free formula into an equivalent or equisatisfiable conjunctive normal form [3,
32]. We assume that clauses never contain twice the same atom; if a clause
contains a literal and its negation, it reduces to the valid clause; redundant
literals in clauses can be eliminated.
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A theory T is said convex, if whenever a disjunction of equalities
∨n
i=1 xi =

yi is a logical consequence of a set of literals Γ (i.e. Γ |=T
∨n
i=1 xi = yi), then

Γ |=T xi = yi for some i ∈ [1..n]. A theory T is stably infinite if every
T -satisfiable set of literals Γ has an infinite T -model.

A propositional abstraction for a set of formulas is this set of formulas
in which every atom has been replaced by a proposition, all occurrences of
the same atom being replaced by the same proposition. A set of clauses
is propositionally satisfiable if its propositional abstraction is satisfiable. A
propositional assignment Γ is a set of literals such that ` /∈ Γ or ¬` /∈ Γ for
every literal `. By construction, a propositional assignment is a proposition-
ally satisfiable set. A propositional assignment Γ is total with respect to a
set of clauses if ` ∈ Γ or ¬` ∈ Γ for every atom ` used in the set. A set
of formulas G is a propositional consequence of a set of formulas H, if the
propositional abstraction of G is a logical consequence of the propositional
abstraction of H, the mapping from atoms to propositions being the same
in both abstractions. An entailing assignment Γ for a set of clauses S is a
propositional assignment such that S is a propositional consequence of Γ.

2.2. General overview

SMT-solvers are built by extending a propositional satisfiability solver, or
SAT-solver for short, with decision procedures for the theories that appear
in the formula. The SAT-solver is given the propositional abstraction of the
input formula ϕ. For instance, consider ϕ is the following formula:

¬
(( p1︷ ︸︸ ︷

x ≤ y ∧
p2︷ ︸︸ ︷

y ≤ x+ f(x)∧
p3︷ ︸︸ ︷

f(x) = 0∧
p4︷ ︸︸ ︷

P (h(x)− h(y))
)

⇒
( p5︷︸︸︷
P (0)∧

p6︷ ︸︸ ︷
f(y) = 0

))
Each atom of ϕ is abstracted to a propositional variable pi. In practice,
modern SAT-solvers [26, 16] represent formulas in conjunctive normal form
and are based on the Davis Logemann Loveland procedure [12]; for instance,
the propositional abstraction of the previous formula would be represented
as:

p1 ∧ p2 ∧ p3 ∧ p4 ∧ (¬p5 ∨ ¬p6) .

If the formula ϕ is propositionally unsatisfiable, then it is also T -unsat-
isfiable. Otherwise, the SAT-solver finds an entailing assignment Γ of the
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formula abstraction by searching an assignment of the propositional vari-
ables that satisfies each clause in the current set. For the above example,
{p1, p2, p3, p4,¬p5} is such an entailing assignment.

The T -satisfiability of the conjunction of the literals corresponding to the
abstracted literals needs then to be verified. For instance, the set of literals
corresponding to the entailing assignment {p1, p2, p3, p4,¬p5} is

{x ≤ y, y ≤ x+ f(x), f(x) = 0, P (h(x)− h(y)),¬P (0)} (2)

In general, the literals may contain symbols from several theories T1, T2, . . . Tk.
In our example, literals mix uninterpreted symbols (f , h, P ) with arithmetic
symbols. An SMT-solver therefore needs a mechanism to combine the de-
cision procedures for each Ti into a decision procedure for the composition
of these theories, such as Shostak’s [36] or Nelson and Oppen’s [27]. In the
following, we use the term theory reasoner to name such mechanisms.

In the Nelson and Oppen framework, the set of literals is used to pro-
duce a T -equisatisfiable set Γ′ = Γ1 ∪ Γ2 ∪ . . .Γk of pure literals, i.e. literals
of each Γi only contain symbols from the theory Ti. Such a separation is
easily built by introducing new variables. For instance, a separation for the
above set of literals (2) corresponding to the former entailing assignment
{p1, p2, p3, p4,¬p5} can be:

Γ1 = {x ≤ y, y ≤ x+ v1, v1 = 0, v2 = v3 − v4, v5 = 0}
Γ2 = {P (v2), ¬P (v5), v1 = f(x), v3 = h(x), v4 = h(y)}

where v1 to v5 are new variables, T1 and T2 are respectively the theories for
linear arithmetic on real numbers and for uninterpreted functions. The set of
shared variables is {v1, v2, v3, v4, v5, x, y}. The decision procedures for each
theory Ti receive the corresponding set of now pure literals Γi. Each decision
procedure is thus able to decide if its set of (pure) literals is Ti-satisfiable or
not. The union of all pure sets in the separation being T -equisatisfiable to
the original set of literals, if one pure set in the separation is Ti-unsatisfiable,
then the original set is also T -unsatisfiable. The converse is not true though:
a T -unsatisfiable set Γ of literals may produce a separation such that, for
each i, the (pure) set Γi is Ti-satisfiable. This is indeed the case in our
example, since Γ1 and Γ2 are respectively T1-satisfiable and T2-satisfiable.

In fact, the combination of the decision procedures requires that each
decision procedure propagates to the others all the deducible disjunctions of
equalities between shared variables. If the signatures are disjoint and the
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theories stably infinite (as it is the case in our example), then the original
set of literals is T -unsatisfiable if and only if Ti-unsatisfiability is derived by
one of the decision procedures. In our example, the decision procedure for
arithmetic can derive x = y. The equality v3 = v4 can be then deduced
by the decision procedure for uninterpreted symbols from Γ1 and x = y.
The decision procedure for arithmetic can now derive the equality v2 = v5

which, in conjunction with Γ2, can be determined to be T2-unsatisfiable by
the decision procedure for uninterpreted symbols. Both decision procedures
cooperated successfully to deduce the unsatisfiability of the original set Γ.

If, as in our example, the original set of literals Γ is T -unsatisfiable, the
propositional solver needs to be updated to prevent it from generating the
same assignment again. From a logical viewpoint this corresponds to adding
conjunctively the negation of the assignment. It is easy to see that this can be
achieved by adding a new clause in the propositional SAT-solver, consisting
of the negation of the literals in the assignment. For our example, the clause
¬p1∨¬p2∨¬p3∨¬p4∨ p5 would be added. Such a clause, resulting from the
negation of a T -unsatisfiable assignment, is called a conflict clause.

If the original set of literals Γ is T -satisfiable, then it is a T -model of the
original formula ϕ, which is itself T -satisfiable. To understand this, notice
that any T -model of Γ translates to a T -model of the conjunctive normal
form of ϕ and is thus a T -model of ϕ.

2.3. Practical considerations

In summary, SMT-solvers consist in the interplay between a SAT-solver
and a theory reasoner, as schematized in Algorithm 1. The SAT-solver is re-
sponsible for maintaining a set of clauses, initially corresponding to a propo-
sitional abstraction of the formula, and producing candidate T -models, such
assignments being models at the propositional level (line 2). The theory rea-
soner is responsible for deciding if these assignments are indeed models or not
(line 4), and the result of this decision is taken into account by the SAT-solver
through the addition of conflict clauses (line 5). Several techniques have been
proposed to increase the practical efficiency of this approach. These tech-
niques consist in reducing the size of the search space of the SAT-solver either
by increasing the number of clauses or by guiding the search into relevant
regions. Generally, such techniques impose additional requirements on the
theory reasoner or the decision procedures.

First, when an assignment is found to be T -unsatisfiable, instead of build-
ing the conflict clause from the whole assignment, it is sound to consider any
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while SAT solver.status() = Sat do1

assignment := SAT solver.assignment();2

theory reasoner.set literals(assignment);3

if theory reasoner.status() = Sat then return Sat;4

SAT solver.add(theory reasoner.conflict clause);5

end6

return Unsat;7

Algorithm 1: A basic SMT-solver.

T -unsatisfiable subset of the assignment. Indeed, a smaller conflict clause
results in pruning a larger number of propositional models from the search
space of the SAT-solver.

In some cases, the decision procedures, or the combination framework,
may be able to generate lemmas from ϕ that may be useful to guide the search
and restrict the search space of the propositional SAT-solver. For instance,
assuming t is a term with an integer type, and that the formula ϕ contains
the atoms 0 < t and t < 3, adding the clause ¬0 < t∨¬t < 3∨ t = 1∨ t = 2
introduces indirectly an integer arithmetic property at the propositional level.

Also for efficiency reasons, modern SMT-solvers use theory propaga-
tion [29], a technique that allows the theory reasoners to interact tightly
with the SAT-solver engine. Internally, the SAT-solver works by extending
a (initially empty) partial assignment towards a total assignment either by
deducing propositional consequences of the partial assignment (this is called
Boolean constraint propagation), or by deciding heuristically the value of an
unassigned atom. Decisions may be backtracked when the assignment contra-
dicts a clause, i.e. when a conflict is found. It may thus be valuable to avoid
such heuristic decisions if it is possible. In the context of SMT-solvers, this
is the role of theory propagation. For instance, assume that the atoms x = y
and y = z are assigned to true by the SAT-solver, and that f(x) = f(z) is an
unassigned atom. Rather than letting the SAT-solver heuristically decide the
value of an arbitrary atom, it may be in practice better to assign true to the
atom f(x) = f(z), since it is a T -logical consequence of the assignment. The
theory reasoner decreases the number of heuristic guesses and, consequently,
restricts the search space of the propositional SAT-solver.
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3. Soundness and completeness of SMT-solvers

Initially, the formula given as input to the SMT-solver is converted to
a conjunctive set of clauses S (see for instance [3, 32]). The SAT-solver
maintains a propositional assignment Γ for this set of clauses. The pair
S,Γ thus represents the current state of the solver. The set of rules given in
Figure 1 schematizes the possible steps taken by the solver and is described in
details in the following. Observe that clauses may be added to the set either
by the SAT-solver itself, or by the theory reasoner (based on the propositional
assignment from the SAT-solver). The reasoning ends when the SAT-solver
concludes that the set of clauses is unsatisfiable, or when the theory reasoner
asserts that the propositional assignment is also T -satisfiable.

Rule Bool (3) formalizes the update of the propositional assignment by
the SAT-solver; Γ′ is a new assignment such that Γ′ ∪ {C} is propositionally
satisfiable for every clause C ∈ S. The assignment is not required to be total;
an assumption about assignment totality will be made later. The SAT-solver
can also conclude that S is unsatisfiable using rule Unsat (4).

The addition of new clauses is represented by rule Learn (5). The new
clause C may be added by the SAT-solver itself. In that case, C is a propo-
sitional consequence of S. The clause may also be added by the theory
reasoner; C should then be a T -logical consequence of the set S, according
to the considered theory (S |=T C). By induction, it is clear that every added
clause is a consequence of the original formula, and that the set of clauses is
always T -equisatisfiable to the original set of clauses.

When the assignment produced by the SAT-solver is entailing and T -
satisfiable, then the theory solver may conclude that the formula is T -
satisfiable. This is summarized in rule Sat (6).

In the present scheme, no assumption is made on the order of applica-
tion of rules, on how the clause C is generated in Learn (5) and on the
relation between consecutive assignments from the SAT-solver. This is all
left abstract, with side conditions for the soundness and completeness of the
SMT-solver.

Theorem 1. An SMT-solver implementing the rules of Figure 1 is sound.

Proof : Initially, the set of clauses is just a conjunctive normal form of the
input formula. We first prove by induction that the set of clauses given to
the SAT-solver is always T -equisatisfiable to the input formula. Assume that
S and S ′ are the sets of clauses respectively before and after the application
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Bool:
S,Γ
S,Γ′

Γ′ is a propositional assignment of S (3)

Unsat:
S,Γ

UNSAT
S is propositionally unsatisfiable (4)

Learn:
S,Γ

S ∪ {C},Γ S |=T C (5)

Sat:
S,Γ

SAT(Γ)
Γ is entailing and T -satisfiable (6)

Figure 1: Rules representing the execution of an SMT-solver

of a rule of Figure 1. The sets S and S ′ only differ when rule Learn (5)
is applied. In that case S ′ = S ∪ {C}, with S |=T C. Thus S ′ is a T -
logical consequence of S; conversely, since S ′ contains S, S is also a T -logical
consequence of S ′. In other words S and S ′ are T -logically equivalent. By
induction, the set of clauses is always T -logically equivalent to the original
set of clauses, and thus T -equisatisfiable to the input formula.

If the SAT-solver concludes to the propositional unsatisfiability of the set
of clauses (using rule Unsat (4)), the initial set of clauses and the input
formula are unsatisfiable.

If rule Sat (6) is applied, then there exists a T -satisfiable entailing as-
signment Γ of the set of clauses S. Assume M is a T -model of Γ. Since Γ
is a propositional model of S, M is a model of every clause in S. The set of
clauses S, like the original formula, is thus satisfiable. ut

Notice that the assumption in rule Learn (5) is very permissive. It
holds notably for propositional learning, a technique used inside SAT-solvers,
where the new clause C is obtained by propositional resolution of clauses in
S, guided by a conflict analysis procedure known as the FUIP (First Unique
Implication Point) computation [39]. It also holds for conflict clauses from
the theory reasoner where the clause C is the disjunction of the negation of
literals in a T -unsatisfiable subset of the assignment Γ (T being the consid-
ered theory). Some further assumptions are however required to prove the
completeness of an SMT-solver implementing the rules of Figure 1.
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Theorem 2. An SMT-solver implementing the rules of Figure 1 is complete
(eventually terminates on a SAT or UNSAT state) provided that

• on any set of clauses, the SAT-solver will eventually either

– provide an entailing assignment

– or conclude to the unsatisfiability of the set of clauses with rule Un-
sat (4);

• the atoms of the clauses added in rule Learn (5) belong to a finite set
that is fixed a priori for the whole run of the SMT-solver;

• for any state S,Γ where Γ is entailing, either rule Sat (6) is applied or
rule Learn (5) is applied, with C not being a propositional consequence
of Γ.

Proof : If the run is finite then it should end either with rule Sat (6) or
rule Unsat (4). This is proved by contradiction. Assume the run is finite
but does not terminates on an UNSAT or SAT state. Then the ending state
is of the form S,Γ. The first assumption implies that Γ is entailing. Since Γ
is entailing, the last assumption ensures either that

• the new state is SAT (with the application of rule Sat (6)) or

• the rule Learn (5) is applied and introduces a clause C that is not a
propositional consequence of Γ.

The first option is not possible, since it contradicts the hypothesis that the
ending state is not a SAT state. The second option is also not possible, since
this would change the set S, and contradicts the fact that S,Γ is the ending
state.

Assume now that the run is infinite. The set of atoms that are or will be
present in the set of clauses is finite, thanks to the second assumption. The
set of possible different clauses is also finite. At some point no new clause
will be added to the set of clauses S by rule Learn (5), and the SAT-solver
will eventually provide an entailing assignment Γ. The rule Sat (6) being
an ending rule, the next rule will be rule Learn (5), and a clause C will be
generated. Since C already belongs to the set of clauses and Γ is entailing,
then C is a logical consequence of Γ which contradicts the last assumption
of the theorem. ut
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The three requirements in the above theorem are reasonable. The first
requirement is on the SAT-solver: on any set of clauses, it should decide
that it is unsatisfiable, or provide a total (and thus entailing) assignment.
This requirement is fulfilled by existing tools [26, 16]. The two remaining
requirements are related to the theory reasoner and are discussed in the next
section.

4. Combination of theories and propositional reasoning

The previous framework can easily be instantiated to common approaches
of combinations of theories. We here discuss these approaches, beginning
with the original combination schema [27, 37], and a practical implementation
based on arrangement guessing by the SAT-solver called Delayed Theory
Combination [10]. In Section 4.2, we review another presentation of the
original schema [27] based on equality propagation, and an implementation
refinement referred as Splitting on Demand [5]. Finally we introduce the new
schema that propagates equalities that are either deduced or generated by
generalizing models.

4.1. Nelson-Oppen and arrangements

As discussed in Section 2.2, to study the T -satisfiability of a set of literals
Γ, where the theory T is the union of the two disjoint stably infinite1 theories
T1 and T2, one traditionally first build a separation (Γ1,Γ2) such that Γ1∪Γ2

is T -equisatisfiable to Γ, and Γ1 only contains interpreted symbols from T1

(similarly for Γ2). The separation ensures that the only shared symbols
between Γ1 and Γ2 are variables and the equality predicate. Those shared
variables play a special role in the combination. An arrangement A of a set
of shared variables is a set that contains either an equality X = Y or an
inequality X 6= Y for every pair of variables X, Y in the set.

Assume for instance we want to study the T -satisfiability of the separation

Γ1 = {x ≤ 2, 0 < x, v1 = 1, v2 = 2}
Γ2 = {f(x) 6= f(v1), f(x) 6= f(v2)} (7)

1Disjointness and stably infiniteness are sufficient conditions for the easy combination
of two theories. Those conditions are not necessary (see for instance [17, 38]), but for
simplicity, we assume those conditions are met.
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where T is the union of the theory of linear arithmetic on integer and the
theory of uninterpreted symbols. The shared variables are {x, v1, v2}. There
exists five arrangements for those variables: A1 = {x 6= v1, x 6= v2, v1 6= v2},
A2 = {x = v1, x 6= v2}, A3 = {x 6= v1, x = v2}, A4 = {x 6= v1, v1 = v2},
A5 = {x = v1, x = v2} (redundant (in)equalities have been ignored).

The Nelson-Oppen combination scheme (see for instance [27, 37]) is based
on the following theorem. This result reduces the T -satisfiability problem of
a set of literals to T1-satisfiability and T2-satisfiability problems:

Theorem 3. Let T be the union of the disjoint and stably infinite theories
T1 and T2. A separation Γ1 ∪ Γ2 — where Γ1 only contains symbols from T1,
the equality symbol and variables; similarly for Γ2 — is T -satisfiable if and
only if there exists an arrangement A of the shared variables between Γ1 and
Γ2 such that A ∪ Γ1 is T1-satisfiable and A ∪ Γ2 is T2-satisfiable.

Proof : Let V be the set of shared variables between Γ1 and Γ2.
The condition is necessary. Let I be a T -model of Γ1 ∪ Γ2. This inter-

pretation I perfectly defines an arrangement A of V , and I is a model of
A ∪ L1 ∪ L2, and so of A ∪ Li for i = 1, 2.

To prove that the condition is sufficient, assume that A ∪ Γ1 is T1-
satisfiable and A ∪ Γ2 is T2-satisfiable. Since Ti is a first-order stably in-
finite theory for i = 1, 2, there exists an interpretation Ii on a domain Di

of cardinality ℵ0 that makes true A ∪ Li. Since both interpretations are
models of A and since both domains have the same cardinality, it is pos-
sible to build a bijection b from D2 to D1 such that b(I2[x]) = I1[x] for
every shared variable x ∈ V . The interpretation I is defined on domain
D1. For every function symbol f in T1, we define I[f ] = I1[f ], and similarly
for predicate symbols in T1 and shared variables in V . For every function
symbol f of arity n in T2, we define I[f ] such that, for any d1, . . . dn ∈ D1,
I[f ](d1, . . . dn) = b(I2[f ](b−1(d1), . . . b−1(dn))), and similarly for predicate
symbols. I is a T -model of A ∪ Γ1 ∪ Γ2, and thus of Γ1 ∪ Γ2. ut

For the example (7), A1 ∪ Γ1, A4 ∪ Γ1 and A5 ∪ Γ1 are unsatisfiable in
the theory of linear arithmetic on integer. For the remaining arrangements,
A2∪Γ2 and A3∪Γ2 are unsatisfiable according to the theory of uninterpreted
symbols. Every arrangement leads to unsatisfiability in one or the other
theory (or both), and indeed, Γ1∪Γ2 is unsatisfiable in the union of theories.

The same approach can be used for the example in Section 2; for instance,
an arrangement for the set of variables {v1, v2, v3, v4, v5, x, y} could be {v1 =
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v2, v1 6= v3, v3 = v4, v4 = v5, x 6= v1, x 6= v3, x = y} (redundant (in)equalities
have been ignored). However enumerating all arrangements here already
becomes difficult. For seven variables, in our toy example, there are already
877 different arrangements. The number of arrangements (i.e. the number of
partitions, known as the Bell numbers) grows faster than exponentially with
respect to the size of the set of variables. The naive approach — that is,
extensively testing all arrangements — is thus only tractable for very small
problems.

However the approach called Delayed Theory Combination (see [10]) is
a successful and simple technique that delegates the job of enumerating ar-
rangements to the SAT-solver. The formula is purified2 before it is given to
the SAT-solver, and the (entailing) total assignments from the SAT-solver
should give a truth-value to every equality between shared variables. The
SAT-solver implements rule Bool (3) when it generates an assignment and
rule Unsat (4) when it cannot build such an assignment. The assignment is
then given to every decision procedure in the theory reasoner; each decision
procedure only picks among the assignment the set of literals that are rele-
vant to the corresponding theory. This technique is implemented in several
state of the art SMT-solvers. When given a total assignment Γ, one decision
procedure can conclude that its set is unsatisfiable and then it returns a con-
flict clause of the form

∨
`∈γ ¬` where γ is an unsatisfiable subset of Γ; this

clause is obviously not a logical consequence of Γ and is used to implement
rule Learn (5). In the other case, every decision procedure concludes that its
set is satisfiable, and Γ is also satisfiable in the combination of theories since
every (entailing) total assignment contains an arrangement. Rule Sat (6) is
thus instantiated. According to Section 3, the approach is thus sound and
complete.

4.2. Nelson-Oppen and deduced disjunctions of equalities

Another practical way is to build the arrangement using disjunctions of
equalities deduced from the independent theories. Instead of guessing the ar-
rangement, the decision procedures impose constraints on arrangements that
may satisfy all theories in the combination. A first example of this technique
has been given in Section 2.2, where the unsatisfiability of the separation

2Purification ensures every atom contains interpreted symbols from only one theory.
It has the same effect than building a separation, but it is done once and for all in the
original formula and not on successive assignments.
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for the set of literals (2) is deduced by the exchange of deduced equalities
between the decision procedure for linear arithmetic on real numbers and
the one for uninterpreted symbols. The simplicity of this case is due to the
convexity of the theories in the combination: if a disjunction of equalities can
be deduced by a convex theory, there exists an equality in the disjunction
that can also be deduced.

Not all theories are convex, and for instance linear arithmetic on integers
is not. In example (7) no equality can be deduced from either Γ1 or Γ2.
However, x = v1 ∨ x = v2 is a logical consequence of Γ1 according to linear
arithmetic on integers. Splitting on the equalities in this disjunction quickly
shows that the Γ1 ∪ Γ2 is unsatisfiable in the combination of the theories.

The completeness of the approach using deduced disjunctions of equal-
ities is guaranteed by the following theorem. Informally, it states that if a
set of literals is satisfiable in two disjoint (stably-infinite) theories T1 and T2,
and no disjunction of equalities can be deduced from either T1 or T2, then it
is satisfiable in T = T1 ∪ T2. Consequently, completeness of a cooperation
of decision procedures can be obtained by exhaustively exchanging disjunc-
tions of equalities between the decision procedures (instead of checking all
arrangements).

Theorem 4. Assume Γ1 is T1-satisfiable, Γ2 is T2-satisfiable, but Γ1 ∪ Γ2 is
not T -satisfiable. Then there exists a disjunction of equalities ∆ =

∨n
i=1 xi =

yi) (where xi and yi are shared variables) such that

• Γ1 |=T1 ∆ and Γ2 6|=T2 xi = yi for each i such that 1 ≤ i ≤ n;

• or Γ2 |=T2 ∆ and Γ1 6|=T1 xi = yi for each i such that 1 ≤ i ≤ n.

Proof : Let S1 be the set of all equalities x = y such that Γ1 |=T1 x = y, and
S2 be the set of all equalities x = y such that Γ2 |=T2 x = y. Assume x1 = y1

belongs to S1 but not to S2: then the required new deduced disjunction of
equalities can simply be this single equality (and similarly for an equality
that belong to S2 but not S1). It remains to consider S1 = S2. The set S1

(or equivalently S2) is extended to form an arrangement A by adding x 6= y
to S1 whenever x = y does not belong to S1. According to Theorem 3, A∪Γ1

is T1-unsatisfiable or A∪Γ2 is T2-unsatisfiable since Γ1∪Γ2 is T -unsatisfiable.
Assume that A∪ Γ1 is T1-unsatisfiable (the other case is handled similarly).
Then Γ1 |=T1

∨
x 6=y∈A x = y and by construction Γ2 6|= x = y if x 6= y belongs

to A. ut
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The application of the previous result requires splitting at the theory level.
Assume Γ1 |=T1

∨n
i=1 xi = yi. Then, for every i, Γ2 ∪ {xi = yi} is checked

for satisfiability. If there exists i such that Γ2 ∪ {xi = yi} is satisfiable,

there may also exists another disjunction of equalities
∨n′

i=1 x
′
i = y′i such that

Γ2 ∪ {xi = yi} |=
∨n′

i=1 x
′
i = y′i. This new disjunction would also imply some

splitting. Eventually no more disjunction of equalities will be generated and
both theories in the combination will conclude that their respective set of
literals (plus the equalities coming from the case splittings) are satisfiable,
or a conflict will occur and it will be required to backtrack on the case splits
to examine every choice.

If case splitting and backtracking is realised inside the theory reasoner
for the combination of theories, the theory reasoner is complete by itself.
When given an entailing assignment Γ from the SAT-solver, it will either
conclude to the T -satisfiability of the assignment (T being the considered
combination of theories), or it returns a conflict clause of the form

∨
`∈γ ¬`

where γ is an unsatisfiable subset of Γ; once again, this clause is obviously
not a logical consequence of Γ. No new atom is generated by the process, and
all conditions are met for Theorems 1 and 2 to be applicable. The approach
is sound and complete.

Some theories are particularly appropriate for the above method. For
instance, no splitting is required when combining convex theories only. Many
useful theories are convex, and notably linear arithmetic on the real numbers,
and the theory of uninterpreted functions. Among the non-convex theories
one finds the theory of linear arithmetic on the integers, and the theory of
arrays.

In presence of non-convex theories, handling case splittings at the the-
ory level may be difficult, and also inefficient. Usually this work is prefer-
ably delegated to the SAT-solver. This technique is referred as Splitting
on Demand [5]. In such a case, rather than splitting on a disjunction∨n
i=1 xi = yi that is a Ti-logical consequence of the set of literals Γi, a new

clause
∨n
j=1 xj = yj ∨

∨
`∈Γi
¬` is added to the SAT-solver. Most preferably,

only the literals ` ∈ Γi that are required to imply the disjunction of equalities
are included in the clause, so that the added clause subsumes many other
clauses that would be generated in similar cases.

In contrast to Delayed Theory Combination and splitting inside the the-
ory reasoner, handling case splitting through the SAT-solver may introduce
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new atoms, namely new equalities between terms of the formula. However,
since there are only a finite number of terms in the original formula, and
thus a finite number of possible equalities between terms from the original
formula, the second assumption of Theorem 2 is fulfilled. For the last as-
sumption to be fulfilled, it is sufficient to require from the theory reasoner
that, if it is not able to state if the assignment is T -satisfiable or not, it
should at least provide a deduced clause. According to Theorem 4 such a
clause exists whenever the assignment is T -unsatisfiable; this clause is not
a propositional consequence of the assignment. If the decision procedures
are complete with respect to the deduction of disjunction of equalities, the
SMT-solver is sound and complete.

For some theories (and in particular, for linear arithmetic over the integer)
it is not easy to be complete for the deduction of disjunction of equalities (see
for instance [22]). Moreover some decision procedures for convex theories are
not easily tweaked to produce equalities between variables. The next section
presents another way to ensure completeness of SMT-solvers in those cases.

4.3. Introducing model equalities

The method we present here and in the following sections is suitable for
decision procedures that are not able to deduce disjunctions of equalities, or
that are not complete with respect to deduction of (disjunctions of) equal-
ities. We assume they are however able to find a concrete model for a set
of constraints, i.e. literals. As an example, it means that a decision proce-
dure for integer linear arithmetic is able to find a mapping from variables to
integers such that all constraints are satisfiable. Many decision procedures
inherently have such a capability.

Assume that an assignment Γ provided by the SAT-solver produces (pure)
literals Γ1 and Γ2 to be handled by theory reasoners for T1 and T2 respectively.
Assume also that Γ1 is T1-satisfiable, and Γ2 is T2-satisfiable. Finally assume
that all generated disjunctions of equalities have been handled as in the
previous subsection. The theory reasoners that are not complete with respect
to deduction of (disjunctions of) equalities should then compute a model, and
generate the equalities between shared variables that correspond to the model
and that do not already belong to Γ. Those equalities are then given to the
other decision procedure, as if they were in the original assignment. Those
equalities may themselves force the other decision procedure to deduce or
produce other equalities. Eventually no more equality is shared. If a conflict
occurs, the theory reasoner for Ti generates a conflict clause C of the form

17



∨
`∈γ ¬` where γ is a Ti-unsatisfiable subset of Γ∪Γ′ with Γ′ being the set of

all generated equalities. This clause is added to the set of clauses handled by
the SAT-solver. It may contain atoms (equalities) coming from models. If it
does not, it is conflicting in the sense that Γ∪{C} is unsatisfiable. If it does,
it is obviously not a propositional consequence of Γ. The atoms generated
here once again all belong to a finite set that is known a priori , namely the
set of all equalities between two terms in the original formula.

If no conflict occurs, then Γ ∪ Γ′ contains equalities between any two
shared variables that are equal according to the model. Conversely, if an
equality between two shared variables does not belong to Γ ∪ Γ′, it has not
been guessed nor deduced by the decision procedures in the combination. If
we assume every decision procedure is either complete with respect to the
generation of disjunction of equalities, or that it generates model equalities,
one can conclude that the two theories agree that, if no equality between two
shared variables exists in Γ∪Γ′, they should be different. An arrangement A
can thus be built from the equalities in Γ ∪ Γ′, augmented by the maximum
number of inequalities between shared variables. A∪Γ1 is T1-satisfiable and
A∪Γ2 is T2-satisfiable. Rule Sat (6) can be applied and the third assumption
of Theorem 2 is fulfilled. The approach is sound and complete. Sections 6
and 7 contain two examples illustrating this approach, using the algorithm
presented in Section 5.

5. An algorithm for Nelson-Oppen with model-equalities

Algorithm 2 provides a high level pseudo-code of the Nelson and Oppen
framework with model equalities, as described in Section 4.3. We assume that
the propositional satisfiability solver can incorporate new literals on-the-fly
(corresponding to constraints that are not in the original formula). This
capability is also required for the splitting on demand approach described in
Section 4.2. The presented algorithm also gives the decision procedures the
opportunity to take advantage of the similarities between consecutive sets of
literals produced by the propositional SAT-solver as they may update their
state to reflect only the difference between these sets. This is the case when
there exists efficient decision procedures that incrementally stack new literals
and backtrack while maintaining the T -satisfiability status of the current set
of literals.

The set of theories in the combination is denoted ST , and the subset
of theories that are not convex or with a decision procedure that is not
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able to deduce all the implied equalities is denoted ST ,mod. As described
in Section 4.3, it is assumed that the decision procedure for each theory in
ST ,mod is able to generate the model equalities from a model they maintain
based on the literals (including equalities and inequalities) they receive. The
main difference with respect to a version without model equalities is located
in the lines 16 to 18. If ST ,mod is empty the version without model equalities
is complete. This is the case when the theories in the combination are all
convex and stably infinite (notice that every convex first-order theory with
no trivial models is stably infinite [7]), and their decision procedure is able
to deduce all implied equalities between shared variables.

The main loop of the algorithm is executed until the SAT-solver can no
longer produce a propositional satisfiable assignment (line 1). In this case, the
original formula is unsatisfiable (rule Unsat (4)). Otherwise, a propositional
model is computed (line 2) (rule Bool (3)). Each decision procedure t may
then backtrack to a state based on the new set of literals corresponding to this
assignment (line 4). Note that the set of literals available in such state should
be Ti-satisfiable in each theory Ti. The variable new literals represents the
set of literals that the decision procedures need to receive. It is initially set
with the new literals present in the assignment (line 5), and is later updated
with equalities produced by the decision procedures (lines 15 and 17). This
set is repeatedly propagated to each decision procedure (and a separation is
built on-the-fly) through the propagate() function (line 8) until one of them
detects unsatisfiability (line 9) or no new equalities can be deduced (line 19).
If unsatisfiability is detected, then a conflict clause is generated and added
to the propositional satisfiability solver (line 10). This action implements an
instance of rule Learn (5). Otherwise, each decision procedure computes
the set of variable equalities entailed by the current set of literals. These sets
are stored (line 15) for propagation at the next iteration. Ultimately, if no
variable equalities can be deduced, then the decision procedures that do not
have complete (disjunctions of) equality deduction capabilities will look for
model equalities to propagate. In this algorithm, we assume that none of the
non-convex theories have capabilities of generating disjunctions of equalities,
i.e. internal case split is not handled.

Once all the literals and equalities have been propagated, additional lem-
mas produced by the decision procedures may be incorporated as clauses to
the propositional satisfiability solver (lines 20, 21). Again, this corresponds
to an instance of rule Learn (5). Eventually, when no new information can
be provided to the propositional satisfiability solver, and if the assignment is
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total, then the algorithm concludes that the original formula is T -satisfiable
and halts (line 23), which corresponds to rule Sat (6).

while SAT solver.status() = Sat do1

assignment := SAT solver.assignment();2

status := Sat;3

foreach t ∈ ST do t.back jump(assignment);4

new literals := assignment.get new literals();5

repeat6

foreach t ∈ ST do7

status := t.propagate(new literals);8

if status = Unsat then9

SAT solver.add(t.conflict clause);10

break;11

end12

end13

if status = Unsat then break;14

new literals :=
⋃
t∈ST

t.get new equalities();15

if new literals = ∅ then16

new literals :=
⋃
t∈ST ,mod

t.get new model equalities();17

end18

until new literals = ∅ ;19

lemmas =
⋃
t∈ST

t.get new lemmas();20

SAT solver.add(lemmas);21

if lemmas = ∅ ∧ status = Sat ∧ assignment.is total() then22

return Sat;23

end24

end25

return Unsat;26

Algorithm 2: A SMT-solver with model-equality generation.

6. Combining with model equalities: an example

In this section, we present an example illustrating the cooperation using
model equalities between the theory of uninterpreted functions (UF) and a
fragment of linear arithmetic, i.e. integer difference logic (IDL); in our frame-
work, the decision procedures are not required to generate all the implied
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disjunction of equalities, that would be otherwise necessary for complete-
ness in a classical Nelson and Oppen combination framework. Difference
Logic is the linear arithmetic fragment that contains only constraints of the
kind x − y ./ c, where x and y are variables, c is a constant number and
./ ∈ {≤,≥,=, <,>}. Assume we want to prove that the following formula
is unsatisfiable:

x ≤ y + 1 ∧ y ≤ x ∧ x 6= y ∧ f(x) 6= f(y + 1) (8)

As a first step and for simplicity of the presentation, we assume the
formula is purified (i.e. the separation is done at the formula level) so that
the different decision procedures only get literals with symbols from their
theory.3

p1︷ ︸︸ ︷
v1 = y + 1∧

p2︷ ︸︸ ︷
x ≤ v1 ∧

p3︷ ︸︸ ︷
y ≤ x∧

¬p4︷ ︸︸ ︷
x 6= y ∧

¬p5︷ ︸︸ ︷
f(x) 6= f(v1) (9)

Every atom is attributed to a propositional variable pi.
Figure 2 can be used to trace the status of the algorithm during its ap-

plication to this problem. In Figure 2 and in the following the symbols pi
may be used to denote the constraints to which they correspond. Also a 6= b
denotes ¬(a = b), and a > b (or a < b) may be used instead of ¬(a ≤ b) (re-
spectively ¬(a ≥ b)). T1 and T2 are the theories for uninterpreted functions
(UF) and integer difference logic (IDL) respectively.

At State 1.0, the SAT-solver has found an entailing assignment for the
formula. In this assignment, unsurprisingly, p1, p2 and p3 are assigned to
true, whereas p4 and p5 are assigned to false. This assignment is propagated
to the decision procedures to check for theory consistency. At this point, no
equality can be generated. The process would stop here if there were only
convex theories involved.

However, IDL is non-convex. To obtain completeness of the cooperation
of the decision procedures, two approaches are possible. Either, as in the
classical combination framework (Section 4.2) one can propagate an implied
disjunction of equalities, or, using the new approach proposed in Section 4.3
and implemented in Algorithm 2, one can simply generate a model equality.
It is easy to tweak a difference logic solver based on graph algorithms (see e.g.

3Another approach, used in veriT, it to build the separation on-the-fly at the theory
reasoner level.
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Figure 2: An example combining UF and IDL.

[23]) to maintain a model, i.e. to assign to every variable a concrete integer
value so that all constraints are satisfied. In such a model for State 1.0 —
the set of constraints given to the IDL decision procedure is {p1, p2, p3,¬p4}
or equivalently {v1 = y + 1, x ≤ v1, y ≤ x, x 6= y} — a suitable model would
assign x = 0, y = −1 and v1 = 0. The model equality x = v1 (abstracted
to a new proposition p6) is generated and propagated to all decision pro-
cedures. The resulting state is State 1.1, and a contradiction is found in
the UF decision procedure, since the conjunction x = v1 ∧ f(x) 6= f(v1) is
unsatisfiable.

The conflict clause p5 ∨ ¬p6 is added to the SAT-solver. A second it-
eration of the main loop is necessary. The SAT-solver is asked for a new
propositional assignment, the decision procedures backtrack to the previous
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satisfiable state, i.e. just before the model equality x = v1 (i.e. p6) was propa-
gated. The set of literals for each decision procedure is updated to reflect the
change in the SAT-solver assignment: the literal ¬p6 (i.e. x 6= v1) is added to
both sets. No contradiction or equality is generated by either decision pro-
cedure, but the current assignment of concrete values to variables for IDL is
not consistent with the current assignment from the SAT solver, in partic-
ular since it contradicts ¬p6 (i.e. x 6= v1). Our implementation of the IDL
decision procedure is not able to automatically handle negation of equalities;
in order to repair the model, the IDL decision procedure generates a lemma:
(x = v1) ∨ (x > v1) ∨ (x < v1) (or equivalently p6 ∨ ¬p2 ∨ ¬p7, where p7 is a
new propositional variable corresponding to the atom v1 ≤ x). The lemma
is given to the SAT-solver, which therefore refines the propositional assign-
ment to include ¬p7. At this state (State 3.0 on Figure 2), the IDL decision
procedure is able to deduce the equality between shared variables x = y from
x < v1, v1 = y+1 and y ≤ x. At State 3.1, this equality is propagated to the
decision procedure for UF, which detects the conflict x 6= y ∧ x = y, so the
assignment is once again considered theory inconsistent. The corresponding
conflict clause is generated (p4∨p7∨¬p1∨¬p3) and added to the SAT-solver.

Finally, at State 4, the SAT-solver concludes there is no more assignment
to make the current formula propositionally true. Therefore, the problem is
unsatisfiable.

7. A second example: combining Uninterpreted Functions with
Non-Linear Arithmetic

The previous example highlights the cooperation between the SAT-solver
and the combination of theories. In this section, we show that the theory
of uninterpreted functions (UF) and non-linear arithmetic (NLA) can coop-
erate by exchanging only equalities (some of them being model-equalities).
The details of the interplay between the theory reasoner and the SAT-solver
are abstracted to focus on the equality exchanges between the decision pro-
cedures. The internal details of the decision procedures are also quietly
ignored. It is just assumed that it is possible to retrieve implied equalities
from the constraint set and to detect unsatisfiability. It is also assumed that
the non-linear arithmetic decision procedure can maintain a concrete model,
assigning values to variables. This model will be helpful when generating
model-equalities.
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To study the satisfiability of the following formula

x2 = 1 ∧ y2 = 4 ∧ f(2x) = 1 ∧ f(y) = 0 ∧ f(−y) = 0,

like in the previous example, the formula is first purified:

x2 = 1 ∧ y2 = 4 ∧ f(v1) = v3 ∧ f(y) = v4 ∧
f(v2) = v4 ∧ v1 = 2x ∧ v2 = −y ∧ v3 = 1 ∧ v4 = 0.

The constraints are first dispatched to their respective decision procedures for
theory TNLA (non-linear arithmetic) and theory TUF (uninterpreted symbols).
This is shown in Figure 3, at State 1.0.

Model

State
 1.0

State
 1.1

State
 1.2

State
 1.3

Conflict Set

Figure 3: Example UF and NLA: Trying the first assignment.

Each iteration proceeds as shown in Algorithm 2. At State 1.0, both
decision procedures for TNLA and TUF conclude that their set of constraints
are satisfiable. Furthermore, no equality between variables can be deduced.
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However TNLA is not convex. Again, it is not correct to conclude, in
State 1.0, that the set of constraints is satisfiable. Either all disjunctions
of equalities have to be produced and propagated, or alternatively, one can
produce model-equalities. At State 1.1, we assume that the decision proce-
dure for TNLA has generated the concrete model v2 = −2, v4 = 0, x = v3 = 1
and y = v1 = 2 , and thus can indeed generate two model-equalities that are
propagated to the decision procedure for TUF. At State 1.2, TUF deduces the
equality v3 = v4 that results in a conflict on the arithmetic side, once propa-
gated. This conflict is translated to a clause and sent to the SAT-solver which
will learn about the theory inconsistency and will generate a new assignment.

This new assignment will naturally assign false to the new constraint
y = v1, in order to make the new conflict clause true (Figure 4, state 2.0).
The iteration process is similar, but because of the new constraint, the model
generated by the decision procedure for TNLA is different from the previous
one, which results in yet another model-equality. The final result is the same:
after the deductions and propagations, TNLA finds a conflict.

The third assignment (Figure 5, State 3.0) differs from the previous one
by one new constraint only. Now TNLA finds an inconsistency directly, no
arithmetic model can be found anymore. Including this new conflict clause
will result in a formula which is propositionally unsatisfiable. Therefore the
original formula is unsatisfiable.

It is worth noticing the by combination of all possible values of x and
y (according to constraints x2 = 1 and y2 = 4), four different concrete
arithmetic models are possible. But thanks to the learning process, just two
of them need to be examined to conclude the unsatisfiability of the formula.

8. An implementation: the SMT-solver veriT

The veriT solver provides an open, trustable and reasonably efficient de-
cision procedure for the logic of unquantified formulas over uninterpreted
symbols, difference logic over integer and real numbers, full linear arithmetic
on reals, and the combination thereof. This corresponds to the logics iden-
tified as QF IDL, QF RDL, QF LRA, QF UF, QF UFLRA and QF UFIDL
in the SMT-LIB benchmarks [35, 4]. Internally, the solver is organized to
be easily extended by plugging new decision procedures. Algorithm 2 is
the kernel of the solver; it uses the MiniSAT solver [16] to produce models
of the Boolean abstraction of the input formula. veriT is open-source and
distributed under the BSD licence at http://www.verit-solver.org.
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Figure 4: Example UF and NLA: Trying the second assignment.

Although not (yet) as fast as the solvers performing best in the SMT
competition [4], veriT has a decent efficiency. The tool does not yet implement
theory propagation [30], a technique that is known to greatly improve the
efficiency of SMT solvers. It participated in the annual SMT competition in
2009.4

In addition to giving a yes or no answer, the veriT solver produces proofs.
Proof production has two goals. First, this feature increases the confidence
in the tool, the proofs being checked by an independent module inside veriT.
Second, skeptical proof assistants can use such traces to reconstruct proofs
of formulas discharged by veriT (see [18]). Combining decision procedure
by (model-)equality exchange is particularly suitable for generating proofs.

4The results are available on the web at http://www.smtcomp.org/.
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Figure 5: Example UF and NLA: Trying the third and last assignment.

Indeed, as showed in the two illustrating examples in Sections 6 and 7, in-
troducing model equalities does not involve another reasoning process, but
literals that are not assigned by the SAT-solver may appear in conflict clauses.
The proof remains essentially the resolution proof from the SAT solver.

9. Conclusion

In this paper, we presented an approach to combine decision procedures,
based on the exchange of equalities only. The originality is that the com-
bination maintains the completeness property of the classic approach if the
decision procedures have the capability to generate model equalities instead
of disjunctions of equalities. In practice, this new requirement is often much
simpler to implement than the original one. We also proposed a simple ab-
stract framework to reason about SMT-solvers and applied it to show the
completeness of our approach based on the generation and propagation of
model equalities. This approach inherits model-based guessing from [13],
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and the interaction of decision procedures through the SAT-solver from [5].
It differs from [13] in the fact that model-based guessing is now integrated
in a classical Nelson-Oppen equality exchange, seeing it just as a new way
to exchange equalities. The SAT-solver realizes the case-splitting, and this
guarantees completeness if every decision procedure in the combination is
either convex and produces all deducible equalities or is able to produce
model-equalities.

We aim to provide an implementation that is easily integrated in other de-
duction tools [18] such as Isabelle [31], Coq [21], HOL [19] or HOL-light [20].
For this, it is necessary to provide detailed proofs. The present approach is
particularly suitable, since it makes a clear distinction between the proposi-
tional reasoning and the theory reasoning. Propositional reasoning steps as
well as equality propagating steps consist in propositional resolution steps.
The reasoning steps for equality deduction and conflicts are specific to theo-
ries.

Since the bottleneck of the cooperation between proof assistants and
SMT-solvers is not the efficiency of the SMT-solvers, our focus has not been
much directed towards the efficiency of our implementation. In particular,
we do not implement theory propagation (see for instance [29]). However,
we observed that for the specific QF UFIDL benchmarks reported to work
particularly well for [13], veriT works as fast as in Z3 [14]. In general, the
performances of our tool are decent compared to the other state-of-the-art
tools, as attested by the results of the SMT-COMP’2009.

Current and future works include applying this technique to other decid-
able fragments (for instance full linear arithmetic on integer and real num-
bers). Also, our implementation includes a full-featured first-order theorem
prover that handles user theories. We will then investigate the benefits of
our framework in presence of such user defined theories.
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