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1 Introduction

Solving the satisfiability problem modulo a theory given as a union of decid-
able sub-theories naturally calls for combination methods. The Nelson-Oppen
combination method [11] has been developed more than 30 years ago, and is
now ubiquitous in SMT (Satisfiability Modulo Theories) solvers. However, this
technique imposes strong assumptions on the theories in the combination; in the
classical scheme [11,19], the theories notably have to be signature-disjoint and
stably infinite. Many recent advances aim to go beyond these two limitations.

The design of a combination method for non-disjoint unions of theories is
clearly a hard task [20,9]. To stay within the frontiers of decidability, it is neces-
sary to impose restrictions on the theories in the combination; and at the same
time, those restrictions should not be such that there is no hope of concrete
applications for the combination scheme. For this reason, it is worth exploring
specific classes of non-disjoint combinations of theories that appear frequently in
software specification, and for which it would be useful to have a simple combi-
nation procedure. An example is the case of shared sets, sets being represented
by unary predicates [21,6]. In this context, the cardinality operator can also be
considered; notice that this operator is a bridging function from sets to natural
numbers [24]. In this paper, we investigate the case of bridging functions be-
tween data structures and a target theory (e.g. a fragment of arithmetic). Here,
non-disjointness arises from connecting two disjoint theories via a third theory
defining the bridging function. This problem has attracted a lot of interest in
the last few years [25,8,3,16,17] due to its importance for solving verification
problems expressed in a combination of data structures and arithmetic. With
this work, we want to provide a synthesis of several previous contributions by
different authors based on different techniques and frameworks. We mainly focus
on the following papers that are closely related in terms of the considered data
structures:
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– Zarba presents a procedure for checking satisfiability of lists with length
by using a reduction to the arithmetic [23]. The same kind of reduction is
applied to multisets with multiplicity [22]. A goal was to relax the stably-
infiniteness assumption in Nelson-Oppen’s procedure; it is indeed possible
to consider for instance multisets with a finite domain for elements. In his
work, Zarba is able to reduce the problem into one expressed only in the
theory of elements; the theory of lists (multisets) completely vanishes.

– Sofronie-Stokkermans [16] uses a locality property to show that the definition
of the function connecting the theories can be instantiated (without loss of
completeness) by the ground terms occurring in the input formula. She also
considers the delicate problem of restricting models to standard ones (for
data structures). A drawback of her solution is that it excludes cases where
cardinality problems might arise from lack of elements to build structures
that must be different.

– In [17], Suter and al. present a procedure to solve cardinality problems that
is also based on a procedure for reducing bridging functions. As future work,
they suggest to study relations between their work and the one in [16].

We investigate here an approach by reduction from non-disjoint to disjoint
combination. The outcome of our approach is very close to that of the locality-
based approach [16]. It is an alternative to a non-disjoint combination approach
à la Ghilardi [9], for which some assumptions on the shared (target) theory are
required. Ghilardi’s approach has been applied to combine data structures with
fragments of arithmetic, like Integer Offsets [13] and then Abelian groups [12];
it is however difficult to go beyond Abelian groups and consider for instance any
decidable fragment of arithmetic as a shared theory. The approach by reduction
does not impose such limitations, and any (decidable) fragment of arithmetic is
suitable for the target (shared) theory.

The superposition calculi provide elegant and uniform ways to build sat-
isfiability procedures for (combinations of) data-structures [2,1], possibly with
bridging functions [13,12,10,4]. It appears that the approach by reduction is ap-
plicable to many data structures for which the standard superposition calculus
can be used as an off-the-shelf underlying satisfiability procedure [2,1]. This ap-
proach by reduction leads to a combination procedure (see Section 3) which is
indeed correct for a large class of data structure theories, ranging from the theory
of equality to the theory of absolutely free data structures. Our correctness proof
is not (directly) based on locality principles, but we rely on the form of Herbrand
models we can expect from the data structure theories we are interested in.

When considering data structures, it is quite natural to restrict to standard
interpretations. For instance, the standard interpretation for lists corresponds
to the case where lists are interpreted as finite lists of elements. We show how
to adapt the combination procedure to get a satisfiability procedure on stan-
dard interpretations, when the bridging function is stable. The notion of stable
function encompasses both bijectivity and infinite surjectivity [17]. Moreover,
we propose an enumeration procedure which has similarities with the procedure
studied in [17,18,14]. This enumeration procedure allows to revisit the satisfiabil-



ity problem in the standard interpretation of lists with length [8]. More generally,
we conjecture that this procedure can be applied to data structures satisfying
some gentle properties as defined in [7].

The work presented in this short paper corresponds to a part of [5], where
the enumeration procedure mentioned above is detailed in the case of lists with
a length function and its correctness is proven. We are now working on a full
paper extending the short presentation given below.

2 The Combination Problem

We assume the reader is familiar with the classical notions and notations used
in first-order logic with equality. By a slight abuse of notation, we write that a
sort occurs in a signature if the sort belongs to the set of sorts of the signature.

Consider a many-sorted Σs-theory Ts and a many-sorted Σt-theory Tt (s
and t stand for source and target respectively) such that Σs and Σt have no
shared function symbols and no shared predicate symbols except the equality
predicates: we have a shared equality predicate for each shared sort occurring in
both Σs and Σt. Roughly speaking, we consider a function f mapping elements
from Ts to elements in Tt. This function is defined by some axioms expressed in
the signature Σs ∪Σt ∪ {f}. The set of axioms defining f is called Tf .

The difficulty of building a decision procedure for the theories connected with
the bridging function depends on many factors, for example, how f is defined.
In some cases there exists a very simple solution: since we are dealing with first
order logic, f always occurs applied to the appropriate number of terms. In all
those occurrences f could be substituted by its definition. The result may then
be a disjoint problem. This is possible when f is defined by an equality like
f(x) = e, for some Σt-term e. This naive approach is not suitable for more
complicated definitions. Particularly, it cannot be used for recursively defined
bridging functions, like those commonly found for data structures. We introduce
a procedure dedicated to that problem. The idea is to eliminate the function
symbol f , expressing its definition using just Σs ∪ Σt. If this maintains satis-
fiability, our problem has been reduced to a disjoint one, and any combination
method we know for this problem can be used.

Let us now introduce the theories Ts, Tt and Tf we focus on. The theory Ts is
the theory of Absolutely Free Data Structures [16] (AFDS, for short) as defined
below, and Tf is a bridging theory connecting it to another theory Tt.

Definition 1. Consider a set of sorts Elem, and a sort struct /∈ Elem. Let Σ
be a signature whose set of sorts is {struct}∪Elem and whose function symbols
c ∈ Σ (called constructors) have arities of the form:

c : s1 × · · · × sm × struct× · · · × struct→ struct



where s1, . . . , sm ∈ Elem. Consider the following axioms (where variables are
implicitly universally quantified) (Inj c) c(X1, . . . , Xn) = c(Y1, . . . , Yn)⇒

∧n
i=1Xi = Yi

(Clashc,d) c(X1, . . . , Xn) 6= d(Y1, . . . , Ym)
(AcycΣ) X 6= t[X] if t is a non-variable Σ-term

The theory of Absolutely Free Data Structures over Σ is

AFDSΣ =
( ⋃
c∈Σ

Inj c
)
∪
( ⋃
c,d∈Σ,c6=d

Clashc,d
)
∪AcycΣ

Example 1. The theory of lists is an example of AFDS where the constructors
are cons : elem× list→ list and nil : list. The theory of pairs (of numbers)
is another example of AFDS where the constructor is pair : num×num→ struct.

For sake of simplicity, we only consider Absolutely Free Data Structures
without selector functions, but it would be easy to consider these additional
functions in the presented framework.

Given a tuple e of terms of sorts in Elem and a tuple t of terms of sort
struct, the tuple e, t may be written e; t to distinguish terms of sort struct

from the other ones.

Definition 2. Let Σ be a signature as given in Definition 1 and let Σt be a
signature such that Σ and Σt have distinct function symbols, and may share
sorts, except struct. A bridging function f /∈ Σ ∪ Σt has arity struct → t

where t is a sort in Σt. A bridging theory Tf associated to a bridging function
f is has the form:

Tf =
⋃
c∈Σ

{
∀e∀t1, . . . , tn . f(c(e; t1, . . . , tn)) = fc(e; f(t1), . . . , f(tn))

}
where fc(x;y) denotes a Σt-term.

Remark that the notation fc(x;y) does not mean that all elements of x;y must
occur in the term fc(x;y), as shown in the first case of the example below.

Example 2. (Example 1 continued). Many useful bridging theories fall into the
above definition such as:

– Length of lists: `(cons(e, y)) = 1 + `(y), `(nil) = 0
– Sum of lists of numbers: lsum(cons(e, y)) = e+ lsum(y), lsum(nil) = 0
– Sum of pairs of numbers: psum(pair(e, e′)) = e+ e′

3 A Combination Procedure for Bridging Functions

We introduce a combination method for a particular non-disjoint union of the-
ories made of a source theory, a target theory, and a third one defining the



bridging theory. Let T be the union of Ts = AFDSΣs
, Tt and Tf as given in

Definition 2. For simplicity, we assume that Tt is stably infinite for sorts in
Σs ∩Σt: any Tt-satisfiable set of literals is satisfiable in a model of Tt such that
the domain associated to each sort in Σs ∩ Σt is infinite. The Nelson-Oppen
combination method in its simplest presentation can then be reused. More gen-
erally, we could consider an arbitrary target theory Tt and rely on a property of
the data structure theory Ts that may be stronger than stably infiniteness [15,7].
We describe below a decision procedure for checking the T -satisfiability of sets
of ground literals.

First phase: Variable Abstraction and Partition. The first phase of our decision
procedure takes an input set of mixed literals ϕ, and converts it into sets of flat
(and so pure) literals. As usual, a flat equality is an equality t0 = f(t1, . . . , tn)
where each term ti is of depth 0 for i = 0, . . . , n with n ≥ 0 (a term of depth
0 is either a constant or a variable4); a flat disequality is a disequality between
two terms of depth 0. The output of this phase is an equisatisfiable formula
ϕstruct ∪ ϕelem ∪ ϕt ∪ ϕf such that:

– ϕstruct contains only flat literals of the following forms:

• x = y, where x and y are of sort struct
• x 6= y, where x and y are of sort struct
• x = k, where k is an atomic constructor
• x = c(e;x1, . . . , xn), where c is a non-atomic constructor

– ϕelem contains only flat literals of sorts in Σs\(Σt ∪ {struct})
– ϕt contains only flat Σt-literals
– ϕf contains only flat literals of the form u = f(x)

The procedure uses flattening: it introduces fresh variables to define sub-terms
in compound terms as a mean to obtain pure literals.

Second phase: Decomposition. In this phase, we make use of the following no-
tion: an arrangement over a set of variable symbols S is a maximal satisfiable
set of well-sorted equalities and inequalities a = b or a 6= b, with a, b ∈ S.
We build two sets of literals Γstruct and Γt that will be necessary to maintain
satisfiability: Γstruct and Γt are initialized with the same arrangement (guessed
non-deterministically) over the shared elements of sorts in Σs ∩Σt occurring in
both ϕstruct and ϕt ∪ ϕf .

Γstruct will keep the information of equivalence between elements of sort
struct. To do this, non-deterministically guess an arrangement over elements
of sort struct, and add it to Γstruct.

In Γt, add the collection of literals obtained by replacing all literals in ϕstruct∪
ϕf ∪ Γstruct with the following replacements:

4 A variable can be considered as an uninterpreted constant if the satisfiability prob-
lem is viewed as a consistency problem in an expansion of the signature with fresh
constants.



1. x = y → fx = fy, where x, y are of sort struct
2. u = f(x)→ u = fx
3. x = k → fx = fk, where k is an atomic constructor
4. x = c(e;x1, . . . , xn) → fx = fc(e; fx1

, . . . , fxn
), where c is a non-atomic

constructor

Third phase: Check. The satisfiability check then reduces to two satisfiability
check for the disjoint decision procedures, thanks to the following lemma5

Lemma 1. Let ϕ = ϕstruct∪ϕelem∪ϕt∪ϕf be a set of literals in separate form.
The combination procedure described above computes Γstruct and Γt such that ϕ
is T -satisfiable if and only if

– ϕstruct ∪ ϕelem ∪ Γstruct is Ts-satisfiable, and
– ϕt ∪ Γt is Tt-satisfiable.

Example 3. Consider the theory of lists with a length function `, and suppose
we want to check the satisfiability of the set of literals ϕ:{

x = cons(a, cons(b, z)), `(x) + 1 = `(z)
}

1. Variable Abstraction and Partition. ϕ will be divided into:
– ϕlist : {y = cons(b, z), x = cons(a, y)}
– ϕelem : ∅
– ϕZ : {c+ 1 = d}
– ϕ` : {`(x) = c, `(z) = d}, where c and d are new variables.

2. Decomposition. We create the variables `x, `y and `z, and the sets:
– Γlist: we need to guess an arrangement between the list variables. Let us

choose the one in which they are all different, so we will add to Γlist the
set of literals: {x 6= y, y 6= z, z 6= x} . This is the only arrangement that
is satisfiable together with ϕlist, so it is the only choice that may lead
to satisfiability.

– ΓZ: after performing the replacements, we will have the set of literals
{`y = `z + 1, `x = `y + 1, `x = c, `z = d}.

3. Check. The set ϕlist∪ϕelem∪Γlist is satisfiable in the theory of lists. However
ϕZ∪ΓZ is unsatisfiable in the theory of linear arithmetic (over the integers).
The original set of literals ϕ is thus unsatisfiable.

4 Conclusion

We briefly described a Nelson-Oppen like combination procedure for bridging
functions. This procedure is not only restricted to absolutely free data struc-
tures (even if the current presentation only refers to this special case), but is
also suitable for any theory in the spectrum between uninterpreted symbols and

5 The non-deterministic choices in the second phase have all to be checked before
concluding to unsatisfiability.



absolutely free data structures. A natural follow-up is to consider extensional-
ity and the restriction to standard models [16,17]. For simplicity, the presenta-
tion here is non-deterministic. However, just like in the classical Nelson-Oppen
scheme, implementations will be based on deterministic, and thus more practical,
approaches of the same procedure.

Several powerful and successful frameworks [12,16,17] have already been pro-
vided to handle bridging functions. We believe our approach is more light-weight,
and is thus more amenable to implementation inside SMT solvers, just like su-
perposition calculi [1,4] are perfectly suited for saturation provers.

Acknowledgments: we would like to thank the reviewers for their insightful com-
ments. These will help us to complete the works briefly described in this short
version.
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