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1 Introduction

Catching bugs in programs is difficult and time-consuming. The effort of de-
bugging and proving correct even small units of code can surpass the effort of
programming. Bugs inserted while “programming in the small” can have dra-
matic consequences for the consistency of a whole software system as shown, e.g.,
by viruses which can spread by exploiting buffer overflows, a bug which typically
arises while coding a small portion of code. To detect this kind of errors, many
verification techniques have been put forward such as static analysis and model
checking.

Recently, in the program verification community, there seems to be a growing
demand for more declarative approaches in order to make the results of the
analysis readily available to the end user.1 To meet this requirement, a growing
number of program verification tools integrate some form of theorem proving.

The goals of our research are two. First, we perform theoretical investigations
of various combinations of propositional and first-order satisfiability checking
so to automate the theorem proving activity required to solve a large class of
program analysis problems which can be encoded as first-order formulae. Second,
we experimentally investigate how our techniques behave on real problems so
to make program analysis more precise and scalable. Building tools capable of
providing a good balance between precision and scalability is one of the crucial
challenge to transfer theorem proving technology to the industrial domains.

2 Designing Decision Procedures

Decision procedures, their combination, and their integration with other rea-
soning activities (such as Boolean solving or quantifier handling) have recently
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attracted a lot of attention because of their importance for many verification
techniques (such as bounded model checking, software model checking, and
deductive verification to name but a few). In this tutorial, we will describe
some of the techniques which allow us to build, combine, and integrate decision
procedures.

2.1 Building

A lot of papers in the literature address the problem of building decision pro-
cedure for theories of interest in program verification, such as [8]. The methods
used in these papers are rather ad hoc and seem difficult to generalize.

We will present the so-called rewriting approach to decision procedures [2]
for theories which can be axiomatized by a finite set of clauses (in first-order
logic with equality) which are quite relevant for software verification: the theory
of uninterpreted function symbols, theories of (possibly cyclic) lists, the theory
of arrays (with or without extensionality), and their combinations. This ap-
proach allows us to synthesize such procedures in a uniform way by working in a
well-understood framework for all the theories listed above. The proof that the
decision procedures are correct is straightforward w.r.t. other correctness proofs
given in the literature since it amounts to proving the termination of the ex-
haustive application of the rules of a calculus (see [2] for details). Furthermore,
these theoretical results pave the way to synthesizing decision procedures from
rewriting-based theorem provers (almost) taken off-the-shelf. We will present
experimental results [1] which confirm the practical feasibility of this approach
by showing that an automated theorem prover compares favorably with ad hoc
decision procedures.

2.2 Combining

Verification problems frequently require more than just a single theory to model
a given system and/or specify a property that we would like the system to sat-
isfy. Hence, there is an obvious need to combine the decision procedures which
are available for some component theories in a modular way so to obtain a de-
cision procedure for unions of theories. This modular approach is particularly
interesting to combine (fragments of) Presburger Arithmetics (for which the
rewriting-based approach does not work) with rewriting-based decision proce-
dures. There has been a long series of works devoted to the combination of
decision procedures in the context of program verification. This line of research
was started in the early 80’s by two combination schemas independently pre-
sented by Nelson-Oppen [9] and Shostak [14] for unions of theories with disjoint
signatures. Recently, a series of papers have clarified the connections between
both combination schemas [13].

We will present a rational reconstruction of combination schemas [11] which
will allow us to derive and prove correct Nelson-Oppen and Shostak combina-
tion schemas in a simple and uniform way. The reconstruction is based on a
classification of the semantic properties that the theories being combined should
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satisfy (e.g., being stably-infinite). Then, we describe how some of the schemas
might be generalized in order to find a better trade-off between the simplicity of
Nelson-Oppen schema and the efficiency of Shostak’s. We will discuss how to lift
some of the requirements needed for the Nelson-Oppen combination schema to
work; e.g., both theories need to be stably-infinite [12]. This is particularly rele-
vant to software verification problems involving container data structures (such
as lists, arrays, or sets) and the elements stored in such data structures whose
theories may not satisfy the requirement of being stably-infinite (consider, for
example, enumerated data-types). Finally, we will explain how rewriting-based
procedures can be efficiently combined with arbitrary decision procedures in the
Nelson-Oppen schema by showing that, under suitable assumptions, they derive
all facts that need to be exchanged for the synchronization of the states of the
procedures [7].

2.3 Integrating

When building decision procedures for certain theories or unions of theories, only
the problem of checking the satisfiability of conjunctions of literals is considered.
Now, verification problems often generate proof obligations consisting of complex
Boolean combination of ground literals and may even contain quantifiers. So, to
make the decision procedures really usable for software verification, it is crucial
to integrate them with (i) Boolean solvers (such as SAT solvers or BDDs) and
with (ii) mechanisms to handle quantifiers. Such system are called Satisfiability
Modulo Theory solvers. The idea underlying (i) is to consider a propositional
abstraction of the formula to be checked for satisfiability and then enumerating
its propositional assignments. Such assignments are then refined back to con-
junctions of ground literals which are checked for satisfiability by means of an
available decision procedure. If all the (refined) propositional assignments are
discarded as unsatisfiable with respect to the theory, we can conclude that the
original formula is unsatisfiable. Otherwise, the formula is satisfiable. This is a
very hot topic in automated deduction and verification as witnessed by many
systems based on this type of integration.2 The idea underlying (ii) is to pre-
process the formula in order to abstract away the quantified sub-formulas by
propositional letters and, at the same time, to enrich the background theory
with enough information for a first-order theorem prover to refine the abstrac-
tion. In this way, we obtain a ground formula which must be checked for sat-
isfiability modulo an extended theory. If the decision procedure can cope with
the extended theory, it is possible to use (i) in order to solve the new satisfi-
ability problem. We will discuss the encouraging experimental results obtained
with an implementation of such techniques (see Section 3 for more details) on
a set of benchmarks taken from the certification of auto-generated aerospace
code [4].

2 See the Satisfiability Modulo Theory Library at http://combination.cs.uiowa.
edu/smtlib for pointers to the available systems.
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2.4 Embedding

Formal system verification calls for expressive specification languages, but also
requires highly automated tools. These two goals are not easy to reconcile, es-
pecially if one also aims at high assurances for correctness. Interactive proof
assistants encode rich logics, which are at the basis of highly expressive (and
user-extensible) modeling languages. Their verification environment is often built
around a small kernel that ensures that theorems can only be produced from
given axioms and proof rules; this approach helps to keep the trusted code base
small and therefore gives high assurance of correctness. These tools however do
not focus on automation, and much interaction is often required for even simple
(but tedious) reasoning. At the other end of the spectrum one finds decision pro-
cedures, based on a restricted language, but that provide fully automatic (and
efficient) deductive capabilities within that language.

There is a growing interest in making interactive proof assistants and auto-
matic tools based on decision procedures cooperate in a safe way. This allows
assistants to delegate proofs of formulas that fall within the scope of automatic
tools. First, this involves translating formulas from the language of the assistant
to the language of the automatic tool. Second, to comfort the confidence in the
translation process and in the automatic tool, it is necessary to extract a proof
from the automatic tool and certify it within the trusted kernel of the proof
assistant. We will focus on proof extraction from decision procedures, but also
mention state-of-the-art techniques for general first-order automatic theorem
provers, and investigate proof certification for proof assistants. In particular, we
will examine our recent [6] and ongoing work on combining the system haRVey
(see Section 3) with the Isabelle [10] proof assistant.

3 Implementing Decision Procedures: haRVey

All the techniques discussed in Section 2 are implemented (or being imple-
mented) in a system, called haRVey3. By now, the system has two incarn-
ations. The former (called haRVey-FOL) integrates Boolean solvers with an
automated theorem prover, to implement the rewriting-based decision proce-
dures overviewed in Section 2.1 (see [3,4]). The latter (called haRVey-SAT) in-
tegrates Boolean solvers with a combination of decision procedures for the theory
of uninterpreted function symbols and Linear Arithmetic based on the Nelson-
Oppen schema and techniques to handle quantifiers and lambda-expressions
(see [5]). Furthermore, haRVey-SAT can produce proofs which can then be in-
dependently checked by the proof assistant Isabelle (see [6]).

While haRVey-FOL offers a high degree of flexibility and automation for a
variety of theories, haRVey-SAT is usually faster on problems with simpler back-
ground theories and ensures a high degree of certification by its proof checking
capability. Along the lines hinted in [7], our current work aims at merging the
two incarnations in one system which retains the flexibility and high-degree of
3 http://harvey.loria.fr/
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automation for expressive theories of haRVey-FOL and provides better perfor-
mances on simpler problems as haRVey-SAT.
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