
Decision Procedures for the Formal Analysis of
Software

David Déharbe1,�, Pascal Fontaine2,
Silvio Ranise2,3, and Christophe Ringeissen2

1 UFRN/DIMAp, Natal, Brazil
2 LORIA, Nancy, France

3 Univerisità di Milano, Italy
david@dimap.ufrn.br, fontaine@loria.fr, ranise@loria.fr,

ringeiss@loria.fr

1 Introduction

Catching bugs in programs is difficult and time-consuming. The effort of de-
bugging and proving correct even small units of code can surpass the effort of
programming. Bugs inserted while “programming in the small” can have dra-
matic consequences for the consistency of a whole software system as shown, e.g.,
by viruses which can spread by exploiting buffer overflows, a bug which typically
arises while coding a small portion of code. To detect this kind of errors, many
verification techniques have been put forward such as static analysis and model
checking.

Recently, in the program verification community, there seems to be a growing
demand for more declarative approaches in order to make the results of the
analysis readily available to the end user.1 To meet this requirement, a growing
number of program verification tools integrate some form of theorem proving.

The goals of our research are two. First, we perform theoretical investigations
of various combinations of propositional and first-order satisfiability checking
so to automate the theorem proving activity required to solve a large class of
program analysis problems which can be encoded as first-order formulae. Second,
we experimentally investigate how our techniques behave on real problems so
to make program analysis more precise and scalable. Building tools capable of
providing a good balance between precision and scalability is one of the crucial
challenge to transfer theorem proving technology to the industrial domains.

2 Designing Decision Procedures

Decision procedures, their combination, and their integration with other rea-
soning activities (such as Boolean solving or quantifier handling) have recently

� This author has been supported in part by CNPq grant 506469/04-2.
1 See, for example, the challenge at http://research.microsoft.com/specncheck/
consel challenge.htm

K. Barkaoui, A. Cavalcanti, and A. Cerone (Eds.): ICTAC 2006, LNCS 4281, pp. 366–370, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

http://research.microsoft.com/specncheck/consel_challenge.htm
http://research.microsoft.com/specncheck/consel_challenge.htm

Decision Procedures for the Formal Analysis of Software 367

attracted a lot of attention because of their importance for many verification
techniques (such as bounded model checking, software model checking, and
deductive verification to name but a few). In this tutorial, we will describe
some of the techniques which allow us to build, combine, and integrate decision
procedures.

2.1 Building

A lot of papers in the literature address the problem of building decision pro-
cedure for theories of interest in program verification, such as [8]. The methods
used in these papers are rather ad hoc and seem difficult to generalize.

We will present the so-called rewriting approach to decision procedures [2]
for theories which can be axiomatized by a finite set of clauses (in first-order
logic with equality) which are quite relevant for software verification: the theory
of uninterpreted function symbols, theories of (possibly cyclic) lists, the theory
of arrays (with or without extensionality), and their combinations. This ap-
proach allows us to synthesize such procedures in a uniform way by working in a
well-understood framework for all the theories listed above. The proof that the
decision procedures are correct is straightforward w.r.t. other correctness proofs
given in the literature since it amounts to proving the termination of the ex-
haustive application of the rules of a calculus (see [2] for details). Furthermore,
these theoretical results pave the way to synthesizing decision procedures from
rewriting-based theorem provers (almost) taken off-the-shelf. We will present
experimental results [1] which confirm the practical feasibility of this approach
by showing that an automated theorem prover compares favorably with ad hoc
decision procedures.

2.2 Combining

Verification problems frequently require more than just a single theory to model
a given system and/or specify a property that we would like the system to sat-
isfy. Hence, there is an obvious need to combine the decision procedures which
are available for some component theories in a modular way so to obtain a de-
cision procedure for unions of theories. This modular approach is particularly
interesting to combine (fragments of) Presburger Arithmetics (for which the
rewriting-based approach does not work) with rewriting-based decision proce-
dures. There has been a long series of works devoted to the combination of
decision procedures in the context of program verification. This line of research
was started in the early 80’s by two combination schemas independently pre-
sented by Nelson-Oppen [9] and Shostak [14] for unions of theories with disjoint
signatures. Recently, a series of papers have clarified the connections between
both combination schemas [13].

We will present a rational reconstruction of combination schemas [11] which
will allow us to derive and prove correct Nelson-Oppen and Shostak combina-
tion schemas in a simple and uniform way. The reconstruction is based on a
classification of the semantic properties that the theories being combined should

368 D. Déharbe et al.

satisfy (e.g., being stably-infinite). Then, we describe how some of the schemas
might be generalized in order to find a better trade-off between the simplicity of
Nelson-Oppen schema and the efficiency of Shostak’s. We will discuss how to lift
some of the requirements needed for the Nelson-Oppen combination schema to
work; e.g., both theories need to be stably-infinite [12]. This is particularly rele-
vant to software verification problems involving container data structures (such
as lists, arrays, or sets) and the elements stored in such data structures whose
theories may not satisfy the requirement of being stably-infinite (consider, for
example, enumerated data-types). Finally, we will explain how rewriting-based
procedures can be efficiently combined with arbitrary decision procedures in the
Nelson-Oppen schema by showing that, under suitable assumptions, they derive
all facts that need to be exchanged for the synchronization of the states of the
procedures [7].

2.3 Integrating

When building decision procedures for certain theories or unions of theories, only
the problem of checking the satisfiability of conjunctions of literals is considered.
Now, verification problems often generate proof obligations consisting of complex
Boolean combination of ground literals and may even contain quantifiers. So, to
make the decision procedures really usable for software verification, it is crucial
to integrate them with (i) Boolean solvers (such as SAT solvers or BDDs) and
with (ii) mechanisms to handle quantifiers. Such system are called Satisfiability
Modulo Theory solvers. The idea underlying (i) is to consider a propositional
abstraction of the formula to be checked for satisfiability and then enumerating
its propositional assignments. Such assignments are then refined back to con-
junctions of ground literals which are checked for satisfiability by means of an
available decision procedure. If all the (refined) propositional assignments are
discarded as unsatisfiable with respect to the theory, we can conclude that the
original formula is unsatisfiable. Otherwise, the formula is satisfiable. This is a
very hot topic in automated deduction and verification as witnessed by many
systems based on this type of integration.2 The idea underlying (ii) is to pre-
process the formula in order to abstract away the quantified sub-formulas by
propositional letters and, at the same time, to enrich the background theory
with enough information for a first-order theorem prover to refine the abstrac-
tion. In this way, we obtain a ground formula which must be checked for sat-
isfiability modulo an extended theory. If the decision procedure can cope with
the extended theory, it is possible to use (i) in order to solve the new satisfi-
ability problem. We will discuss the encouraging experimental results obtained
with an implementation of such techniques (see Section 3 for more details) on
a set of benchmarks taken from the certification of auto-generated aerospace
code [4].

2 See the Satisfiability Modulo Theory Library at http://combination.cs.uiowa.
edu/smtlib for pointers to the available systems.

http://combination.cs.uiowa.edu/smtlib
http://combination.cs.uiowa.edu/smtlib

Decision Procedures for the Formal Analysis of Software 369

2.4 Embedding

Formal system verification calls for expressive specification languages, but also
requires highly automated tools. These two goals are not easy to reconcile, es-
pecially if one also aims at high assurances for correctness. Interactive proof
assistants encode rich logics, which are at the basis of highly expressive (and
user-extensible) modeling languages. Their verification environment is often built
around a small kernel that ensures that theorems can only be produced from
given axioms and proof rules; this approach helps to keep the trusted code base
small and therefore gives high assurance of correctness. These tools however do
not focus on automation, and much interaction is often required for even simple
(but tedious) reasoning. At the other end of the spectrum one finds decision pro-
cedures, based on a restricted language, but that provide fully automatic (and
efficient) deductive capabilities within that language.

There is a growing interest in making interactive proof assistants and auto-
matic tools based on decision procedures cooperate in a safe way. This allows
assistants to delegate proofs of formulas that fall within the scope of automatic
tools. First, this involves translating formulas from the language of the assistant
to the language of the automatic tool. Second, to comfort the confidence in the
translation process and in the automatic tool, it is necessary to extract a proof
from the automatic tool and certify it within the trusted kernel of the proof
assistant. We will focus on proof extraction from decision procedures, but also
mention state-of-the-art techniques for general first-order automatic theorem
provers, and investigate proof certification for proof assistants. In particular, we
will examine our recent [6] and ongoing work on combining the system haRVey
(see Section 3) with the Isabelle [10] proof assistant.

3 Implementing Decision Procedures: haRVey

All the techniques discussed in Section 2 are implemented (or being imple-
mented) in a system, called haRVey3. By now, the system has two incarn-
ations. The former (called haRVey-FOL) integrates Boolean solvers with an
automated theorem prover, to implement the rewriting-based decision proce-
dures overviewed in Section 2.1 (see [3,4]). The latter (called haRVey-SAT) in-
tegrates Boolean solvers with a combination of decision procedures for the theory
of uninterpreted function symbols and Linear Arithmetic based on the Nelson-
Oppen schema and techniques to handle quantifiers and lambda-expressions
(see [5]). Furthermore, haRVey-SAT can produce proofs which can then be in-
dependently checked by the proof assistant Isabelle (see [6]).

While haRVey-FOL offers a high degree of flexibility and automation for a
variety of theories, haRVey-SAT is usually faster on problems with simpler back-
ground theories and ensures a high degree of certification by its proof checking
capability. Along the lines hinted in [7], our current work aims at merging the
two incarnations in one system which retains the flexibility and high-degree of
3 http://harvey.loria.fr/

http://harvey.loria.fr/

370 D. Déharbe et al.

automation for expressive theories of haRVey-FOL and provides better perfor-
mances on simpler problems as haRVey-SAT.

References

1. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. On a rewriting approach
to satisfiability procedures: extension, combination of theories and an experimen-
tal appraisal. In B. Gramlich, editor, Frontiers of Combining Systems (FroCoS),
volume 3717 of Lecture Notes in Computer Science, pages 65–80. Springer, 2005.

2. A. Armando, S. Ranise, and M. Rusinowitch. A Rewriting Approach to Satisfia-
bility Procedures. Information and Computation, 183(2):140–164, June 2003.

3. D. Déharbe and S. Ranise. Light-Weight Theorem Proving for Debugging and
Verifying Units of Code. In Proc. of the Int. Conf. on Software Engineering and
Formal Methods (SEFM03), pages 220–228. IEEE Computer Society, 2003.

4. D. Déharbe and S. Ranise. Satisfiability Solving for Software Verification. In
Proc. of IEEE/NASA Workshop on Leveraging Applications of Formal Methods,
Verification, and Validation (ISoLA’05), 2005.

5. P. Fontaine. Techniques for verification of concurrent systems with invariants. PhD
thesis, Institut Montefiore, Université de Liège, Belgium, Sept. 2004.

6. P. Fontaine, J.-Y. Marion, S. Merz, L. P. Nieto, and A. Tiu. Expressiveness +
automation + soundness: Towards combining SMT solvers and interactive proof
assistants. In Tools and Algorithms for Construction and Analysis of Systems
(TACAS), volume 3920 of LNCS, pages 167–181. Springer, 2006.

7. H. Kirchner, S. Ranise, C. Ringeissen, and D.-K. Tran. On Superposition-Based
Satisfiability Procedures and their Combination. In International Conference on
Theoretical Aspects of Computing (ICTAC), volume 3722 of Lecture Notes in Com-
puter Science, pages 594–608. Springer, 2005.

8. G. Nelson. Techniques for Program Verification. Technical Report CSL-81-10,
Xerox Palo Alto Research Center, June 1981.

9. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. on Programming Languages and Systems, 1(2):245–257, Oct. 1979.

10. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL. A Proof Assistant for
Higher-Order Logic. Number 2283 in Lecture Notes in Computer Science. Springer-
Verlag, 2002.

11. S. Ranise, C. Ringeissen, and D.-K. Tran. Nelson-Oppen, Shostak and the Ex-
tended Canonizer: A Family Picture with a Newborn. In Z. Liu and K. Araki,
editors, International Conference on Theoretical Aspects of Computing (ICTAC),
volume 3407 of Lecture Notes in Computer Science, pages 372–386. Springer, 2005.

12. S. Ranise, C. Ringeissen, and C. G. Zarba. Combining data structures with nonsta-
bly infinite theories using many-sorted logic. In B. Gramlich, editor, Frontiers of
Combining Systems (FroCoS), volume 3717 of Lecture Notes in Computer Science,
pages 48–64. Springer, 2005.

13. N. Shankar and H. Rueß. Combining Shostak theories. In S. Tison, editor, Proc.
of the 13th Int. Conf. on Rewriting Techniques and Applications, volume 2378 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2002.

14. R. E. Shostak. Deciding combinations of theories. J. of the ACM, 31:1–12, 1984.

	Introduction
	Designing Decision Procedures
	Building
	Combining
	Integrating
	Embedding

	Implementing Decision Procedures: haRVey

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

