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Abstract. The design of decision procedures for first-order theories and
their combinations has been a very active research subject for thirty
years; it has gained practical importance through the development of
SMT (satisfiability modulo theories) solvers. Most results concentrate
on combining decision procedures for data structures such as theories for
arrays, bitvectors, fragments of arithmetic, and uninterpreted functions.
In particular, the well-known Nelson-Oppen scheme for the combination
of decision procedures requires the signatures to be disjoint and each
theory to be stably infinite; every satisfiable set of literals in a stably
infinite theory has an infinite model.
In this paper we consider some of the best-known decidable fragments of
first-order logic with equality, including the Löwenheim class (monadic
FOL with equality, but without functions), Bernays-Schönfinkel-Ramsey
theories (finite sets of formulas of the form ∃∗∀∗ϕ, where ϕ is a function-
free and quantifier-free FOL formula), and the two-variable fragment of
FOL. In general, these are not stably infinite, and the Nelson-Oppen
scheme cannot be used to integrate them into SMT solvers. Noticing
some elementary results about the cardinalities of the models of these
theories, we show that they can nevertheless be combined with almost
any other decidable theory.

1 Introduction

Among automated deduction techniques for the verification of computer systems,
SMT solvers (Satisfiability Modulo Theories) are nowadays attracting a lot of
interest. These solvers are built on top of SAT solvers for propositional logic and
include decision procedures for different first-order theories, thus providing more
expressive input languages. Usually, SMT solvers implement a combination of a
fixed number of theories such as linear arithmetic, uninterpreted symbols, list
operators, bit vectors, etc., based on the classical Nelson-Oppen framework [16,
21] for combining decidable theories. This framework covers combinations of dis-
joint theories provided they are stably infinite: if a set of quantifier-free formulas
has a model with respect to a theory, it should also have an infinite model.
For instance, a combination of decision procedures for integer linear arithmetic
? This work is partly supported by the ANR project DECERT.



and for the empty theory (equality and uninterpreted symbols) can detect the
unsatisfiability of the formula

x ≤ y ∧ y ≤ x+ f(x) ∧ P (h(x)− h(y)) ∧ ¬P (0) ∧ f(x) = 0.

The Bernays-Schönfinkel-Ramsey (BSR) class [4, 17] is certainly the most
well-known decidable class of first-order theories. A BSR theory is a finite set
(conjunction) of formulas of the form ∃∗∀∗ϕ, where the first-order formula ϕ is
function-free and quantifier-free. Many verification problems generate formulas
in this class (see for instance [11]). The CASC competition [20] for first-order
theorem provers has a dedicated division (EPR, Effectively Propositional) for
this class. BSR theories are in general not stably infinite. As a trivial example,
consider the BSR theory ∀x∀y . x = y that only accepts models with singleton
domains. The Nelson-Oppen framework does not apply to combinations includ-
ing BSR theories.

A Löwenheim theory with equality is a finite set of closed formulas in a
language containing only unary predicates, and no function except constants.
This class is also known as first-order relational monadic logic, and it is decidable.
The theory ∀x∀y . x = y also belongs to the Löwenheim class, and hence the
Nelson-Oppen framework does not apply to this class.

The last decidable class we study in this paper is the class of finitely axiom-
atized first-order theories built in a language with equality, only two variables,
and no functions (except constants). Again ∀x∀y . x = y belongs to this class,
and the Nelson-Oppen framework is not appropriate.

The objective of the present paper is to lay the ground for incorporating
theories from these three well-known classes into SMT solvers.

We are not aware of previous combination results about the full Löwenheim
class with equality or the full two-variable fragment with equality. However, it
has already been observed [23] that, thanks to its finite model property, a BSR
theory can be combined with a theory T provided the following conditions hold:

– if a set of ground literals L is T -satisfiable, then the minimal cardinality of
T -models for L can be computed;

– T only has finite models.

The second requirement is quite strong. In particular, it is not satisfied by com-
binations including decidable fragments of arithmetic, which admit only infinite
models. For example, the combination scheme of [23] cannot be used to decide
the satisfiability of the set of literals such as

{a > 0, a < 2, a+ b = 2, b > 0, A(f(a)),¬C(f(b))}

(where a, b, f(a), f(b) are integers and +, <, >, 0, 2 have their usual meaning
over integers) with respect to the BSR theory

T = {∀x [(A(x) ∨B(x)) ≡ (C(x) ∨D(x))]}.

The classical Nelson-Oppen combination scheme and that of [23] introduce
rather strong requirements on the theories in the combination, and these re-
quirements ensure that component theories agree on model cardinalities. For



instance, the stably infinite requirement ensures that both theories will agree
on the cardinality ℵ0 for their models. But essentially, the combination process
is a matter of matching the interpretation of shared symbols (by exchanging
disjunction of equalities), and cardinalities of the models of the theories [12, 23,
9].

We observe in this paper that it is possible to compute all the cardinalities
of models admitted by a theory in the BSR, Löwenheim, or two-variable classes
with equality. The set of cardinalities accepted by such theories even has a very
particular structure. In section 3 we characterize this structure, and show that
any decidable theory that verifies this property can be combined with a decid-
able theory T provided T fulfils very liberal constraints. These constraints are
trivially met in most practical cases.

For convenience, the results in this paper are presented in an unsorted frame-
work, although most SMT-solvers work in a many-sorted logic framework (see
for instance [8]). Our results could be transferred to a many-sorted framework,
at the expense of heavier notations.

The remainder of this paper is structured as follows: Section 2 introduces
basic concepts and notations. Section 3 presents the general scheme for combin-
ing (not necessarily stably infinite) theories, and introduces the required notions
for the new combination results with the considered first-order decidable classes.
Sections 4, 5 and 6 respectively present essential cardinality results about the
Löwenheim, BSR, and two-variables classes. We do not claim that the results in
those three sections are original. Some of them can be found in classical Model
Theory books [5–7]. But some of them are less known. This paper thus presents
them together, and relates them to the combination scheme. Section 7 presents
a simple example, and Section 8 concludes the paper.

2 Notations

A first-order language is a tuple L = 〈V,F ,P〉 such that V is an enumerable set
of variables, F and P are sets of function and predicate symbols. Every function
and predicate symbol is assigned an arity. Nullary predicates are propositions,
and nullary functions are constants. Terms and formulas over the language L are
defined in the usual way. A ground term is a term without variables. An atomic
formula is either t = t′ where t and t′ are terms, or a predicate symbol applied
to the right number of terms. Formulas are built from atomic formulas, Boolean
connectives (¬, ∧, ∨, ⇒, ≡), and quantifiers (∀, ∃). A formula with no free
variables is closed. A theory is a set of closed formulas. Two theories are disjoint
if no predicate symbol in P or function symbol in F appears in both theories.
A finite theory or a finitely axiomatized theory is a finite set of formulas.

An interpretation I for a first-order language provides a domain D, a total
function I[f ] : Dr → D of appropriate arity for every function symbol f , a
predicate I[p] : Dr → {>,⊥} of appropriate arity for every predicate symbol p,
and an element I[x] ∈ D for every variable x. By extension, an interpretation
defines a value in D for every term, and a truth value for every formula. The



notation Ix1/d1,...,xn/dn
stands for the interpretation that agrees with I, except

that it associates the elements di to the variables xi.
A model of a formula (or a theory) is an interpretation in which the formula

(resp., every formula in the theory) evaluates to true. A formula or theory is
satisfiable if it has a model, and it is unsatisfiable otherwise. A formula G is
T -satisfiable if it is satisfiable in the theory T , that is, if T ∪ {G} is satisfiable.
A T -model of G is a model of T ∪ {G}. A formula G is T -unsatisfiable if it has
no T -models.

The cardinality of an interpretation is the cardinality of its domain. The
restriction of a predicate p on domain D to domain D′ ⊆ D is the predicate p′

with domain D′ such that p and p′ have the same truth value for all arguments
in D′.

A formula is universal if it is of the form ∀x1 . . . ∀xn.ϕ where ϕ is quantifier-
free. A Skolem formula is a formula where all universal quantifiers appear with a
positive polarity, and all existential quantifiers appear with a negative polarity.
It is always possible to transform a given formula into an equisatisfiable Skolem
formula, using Skolemization. We refer to [2] for Skolemization.

3 Combination of theories

Assume we want to study the satisfiability of the set of literals

L = {a ≤ b, b ≤ a+ f(a), P (h(a)− h(b)),¬P (0), f(a) = 0}

in the combination of the integer linear arithmetic theory T1 and the empty
theory (i.e. the theory of uninterpreted symbols) T2. First, a separation is built
by introducing fresh uninterpreted constants1, to produce the equisatisfiable
problem

L1 =
{
a ≤ b, b ≤ a+ v1, v1 = 0, v2 = v3 − v4, v5 = 0

}
L2 =

{
P (v2), ¬P (v5), v1 = f(a), v3 = h(a), v4 = h(b)

}
.

The set L1 only contains arithmetic symbols and uninterpreted constants. The
symbols in L2 are all uninterpreted. The only shared symbols are the uninter-
preted constants in the set S = {a, b, v1, v2, v3, v4, v5}. Notice that although L
is unsatisfiable in T1 ∪ T2, L1 is T1-satisfiable, and L2 is T2-satisfiable; it is not
sufficient for the decision procedures for T1 and T2 to only examine the sat-
isfiability of their part of the separation. Indeed, the decision procedures also
have to “agree on the common part”. This can be captured using the notion of
arrangement:

Definition 1. An arrangement A for a set of constant symbols S is a maximal
satisfiable set of equalities and inequalities a = b or a 6= b, with a, b ∈ S.
1 Traditionally combination schemes use variables for this role. Since variables will

be used in quantifiers in the following sections, for consistency and clarity we will
rather use uninterpreted constants here.



The following theorem (other formulations can be found in [22, 23, 12]) then
states the completeness of the combination of decision procedures:

Theorem 1. Assume T1 and T2 are theories over the disjoint languages L1 and
L2, and Li (i = 1, 2) is a set of literals in Li augmented by a finite set of fresh
constant symbols S. Then L1 ∪L2 is T1 ∪ T2-satisfiable if and only if there exist
an arrangement A of S, a cardinality k, and a Ti-model Mi of A ∪ Li with
cardinality k for i = 1, 2.

Proof. Assume I is an interpretation on domain D for a language L, and L′
is a sub-language of L, i.e. the set of variable, function, and predicate symbols
in L′ are subsets of their counterpart in L. We say that the interpretation I ′
on domain D for language L′ is the restriction of I if I ′ and I give the same
interpretation for the symbols in L′.

The condition is necessary. Assume M is a T1 ∪ T2-model for L1 ∪ L2. M
perfectly defines an arrangement A of S: indeed a = b ∈ A with a, b ∈ S iff
a = b is true according to M. The restriction of M to Li augmented with the
constant symbols S is a Ti-model for A ∪ Li, i = 1, 2.

The condition is sufficient. Assume that A is an arrangement for S, M1

on domain D1 is a T1-model for A ∪ L1, M2 on domain D2 is a T2-model
for A ∪ L2, and |D1| = |D2|. Since both M1 and M2 are models of A, there
exist two interpretationsM′1 andM′2 on the same domain that are respectively
isomorphic to M1 and M2 and such that M′1[a] = M′2[a] for every a ∈ S. It
is then possible to build an interpretation M such that its restriction to the
language Li augmented with S isM′i, i = 1, 2.M is a T1 ∪T2-model of L1 ∪L2.

ut
Checking the existence of a model is the task of the decision procedures for
the decidable theories in the combination. The previous theorem however also
imposes a restriction on cardinalities: the two decision procedures should exhibit
a model with the same cardinality. A theory T is said to be stably infinite when
every T -satisfiable set of literals has a model with cardinality ℵ0. Combining
only stably infinite theories is a radical solution to the cardinality requirement
in the previous theorem; k can always be ℵ0. Since the empty theory and the
theory of integer linear arithmetic are both stably infinite, the set of literals L
in our example is T1 ∪T2-satisfiable if and only if there exists an arrangement A
of the seven variables in S such that A∪ Li is Ti-satisfiable for i = 1 and i = 2.
No such arrangements exist, and indeed, L is T1 ∪ T2-unsatisfiable.

The first-order decidable classes considered in this paper contain theories
that are not stably infinite. For instance the formula ∀x (x = a ∨ x = b) belongs
to the BSR, Löwenheim and two variable classes, and it only accepts models with
at most two elements. A combination scheme to handle such theories requires to
carefully examine cardinalities. The notion of spectrum is helpful for this task:

Definition 2. The spectrum of a theory T is the set of cardinalities k such that
T is satisfiable in a model of cardinality k.2

2 The spectrum of a theory is usually defined as the set of the finite cardinalities of
its models. We here slightly extend the definition for convenience.



Using this definition and Theorem 1, a combination scheme for disjoint theories
(not necessarily stably infinite) can thus be easily expressed:

Corollary 1. Given two theories T1 and T2 over the disjoint languages L1 and
L2, the T1 ∪ T2-satisfiability problem for sets of literals (written in the union
of the languages L1 and L2) is decidable if, for any sets of literals L1 and L2

(respectively written in the languages L1 and L2 augmented with a finite set of
fresh uninterpreted constants) it is possible to compute if the intersection of the
spectrums for T1 ∪ L1 and for T2 ∪ L2 is non-empty.

In the case of stably infinite decidable theories, it is guaranteed that, if T1 ∪ L1

and T2 ∪ L2 are satisfiable, both spectrums contain cardinality ℵ0, and so their
intersection is trivially non-empty.

To characterize the spectrum of the decidable classes considered in this paper,
we introduce the following property:

Definition 3. A theory T is gentle if, for every set L of literals in the language
of T (augmented by a finite number of fresh constants), the spectrum of T ∪ L
can be computed and is either

– a finite set of finite cardinalities
– the union of a finite set of finite cardinalities and all the (finite and infinite)

cardinalities greater than a computable finite cardinality; it is thus co-finite.

A gentle theory is decidable. In the following sections, we show that the BSR
theories, the Löwenheim theories, and finite theories with only two variables are
gentle. The empty theory, as a special case of a BSR theory, is gentle. Shiny
theories in general (see [23]) are gentle. We also have the following result:

Theorem 2. The union of disjoint gentle theories is a gentle theory.

Proof. The case for the union of any number of disjoint gentle theories can be
proved by induction, and using the case for two gentle theories.

The intersection of two spectrums of gentle theories is also either a finite set
of finite cardinalities, or the union of a finite set of finite cardinalities and all the
(finite and infinite) cardinalities greater than a (computable) finite cardinality.
The case for two gentle theories is thus a direct consequence of Theorem 1. ut

We point out that a theory T taking part in a combination of theories has
some interesting property about its spectrum. Since the T -satisfiability problem
for sets of literals (written in the language of the theory plus fresh constants) is
decidable, it is also possible to assess for any set of literals L if T ∪L has a model
of cardinality greater than a given number k. Indeed it suffices to introduce k
new constants a1, . . . , ak and check the satisfiability of T ∪ L ∪ {ai 6= aj | i 6=
j, i, j = 1, . . . , k}. Also notice that it is always possible to decide if a finite
first-order theory admits a model of a given finite cardinality. Indeed there are
only a finite number of interpretations for a finite language, and it takes a finite
time to check if a given finite interpretation is a model of the finite theory.

Some widely used theories are not gentle, but in practical cases they can be
combined with gentle theories:



Theorem 3. Given a gentle theory T and another disjoint theory T ′, the T ∪T ′-
satisfiability problem for sets of literals written in the union of their language is
decidable if one of the following cases holds:

– T ′ is gentle;
– T ′ is a decidable finitely axiomatixed first-order theory;
– T ′ is a decidable theory that only admits a fixed finite (possibly empty) known

set of finite cardinalities for its models, and possibly infinite models.

Proof. Assume L ∪ L′ is the separation to check for T ∪ T ′-satisfiability. If an
arrangement A is such that A ∪ L is T -satisfiable, and A ∪ L′ is T ′-satisfiable,
then it is possible to compute the spectrum S of T ∪ A ∪ L. Either S is a finite
set of finite cardinalities, or it is a union of a finite set of finite cardinalities and
the set of all cardinalities greater than a number k.

If T ′ is also gentle, it is possible to compute the spectrum of T ′ ∪ A ∪ L′,
and the intersection of the two spectrums can easily be computed.

If T ′ is a decidable finite first-order theory, it is possible to check if T ′∪A∪L′
admits a cardinality in the finite part of S, and, if S is infinite, it is possible to
check if T ′ ∪ A ∪ L′ admits a cardinality greater than k.

If T ′ is a decidable theory that only admits a fixed finite known set of car-
dinalities for its models, it suffices to check if one of these cardinalities is in the
spectrum S. The considered theories are first-order, and the Löwenheim-Skolem
theorem states that, if a theory has an infinite model, it has models for every
infinite cardinality. Infinite cardinalities can thus be understood as one cardinal-
ity. ut
For instance, the real or integer linear arithmetic theories (or combinations in-
volving real or integer linear arithmetic) fall into the last case, and the usual
theories for arrays fall into the second one.

4 The Löwenheim class with equality

A Löwenheim theory is a finite set of closed formulas in a language containing
only unary predicates, and no functions except constants. This class is also known
as first-order relational monadic logic. Usually one distinguishes the Löwenheim
class with and without equality. The Löwenheim class has the finite model prop-
erty (and is thus decidable) even with equality. Full monadic logic without equal-
ity, i.e. the class of finite theories over a language containing symbols (predicates
and functions) of arity at most 1, also has the finite model property. Considering
monadic logic with equality, the class of finite theories over a language contain-
ing only unary predicates and just two unary functions is already undecidable.
With only one unary function however the class remains decidable, but does not
have the finite model property anymore. Since the spectrum for this last class
is significantly more complicated [14] than for the Löwenheim class we will here
only concentrate on the Löwenheim class with equality (only classes with equal-
ity are relevant in our context). More can be found about monadic first-order
logic in [5, 6]. In particular, the following Theorem can be found in [6]:



Theorem 4. Assume T is a Löwenheim theory with equality with n distinct
unary predicates. Let q be the number of constants plus the maximum number of
nested quantifiers in T . If T has a model of some cardinality ≥ q 2n, then T has
models of every cardinality ≥ q 2n.

Proof. For simplicity, assume T is constant-free and is a single formula. Because
T is finite, it is always possible to get back to such a case by taking the con-
junction of all formulas in T , and then quantify existentially over all constants
in the formula.

Let p1, . . . , pn be the unary predicates used in T . Given an interpretation I
on domain D for T , every element d ∈ D has a color c(d) = c1 . . . cn ∈ {>,⊥}n
where ci = I[pi](d). We denote by Dc ⊆ D the set of elements with color c.

Two interpretations I (on domain D) and I ′ (on domain D′) for a formula
ψ are similar if

– either Dc = D′c or |Dc ∩D′c| ≥ q for every color c ∈ {>,⊥}n;
– Dc ∩D′c′ = ∅ for any two distinct colors c, c′ ∈ {>,⊥}n;
– I[x] = I ′[x] for every variable free in ψ.

We first prove that, given a formula ψ, two similar interpretations for ψ give the
same truth value to ψ and to every sub-formula of ψ.

This is proved by induction on the structure of the (sub-)formula ψ. It is
obvious if ψ is atomic, since similar interpretations assign the same value to
variables, and since ψ is variable-free. If ψ is ¬ϕ1, ϕ1 ∨ϕ2, ϕ1 ∧ϕ2 or ϕ1 ⇒ ϕ2,
the result holds if it also holds for ϕ1 and ϕ2.

Assume I makes true the formula ψ = ∃xϕ(x). Then there exists some d ∈ D
such that Ix/d is a model of ϕ(x). If d ∈ D′, then I ′x/d is similar to Ix/d and,
by the induction hypothesis, it is a model of ϕ(x); I ′ is thus a model of ψ. If
d /∈ D′, it means that Dc(d) ∩D′c(d) ≥ q. Furthermore, since the whole formula
contains at most q nested quantifiers, ϕ(x) contains at most q− 1 free variables.
Let x1, . . . , xm be those variables. There exists some d′ ∈ Dc(d)∩D′c(d) such that
d′ 6= I[xi] for every i ∈ {1, . . . ,m}. By structural induction, it is easy to show
that Ix/d and Ix/d′ give the same truth value to ϕ(x). Furthermore Ix/d′ and
I ′x/d′ are similar. I ′ is thus a model of ψ. To summarize, if I is a model of ψ,
I ′ is also a model of ψ. By symmetry, if I ′ is a model of ψ, I is also a model of
ψ. Thus, if ψ = ∃xϕ(x), the results hold if it also holds for ϕ(x). The proof for
formulas of the form ∀xϕ(x) is dual.

IfM on domain D is a model for T with cardinality ≥ q 2n, then there exists
a color c such that |Dc| ≥ q. For any cardinality k ≥ q 2n one can build a model
M′ of cardinality k for T , similar to M. ut

Corollary 2. The Löwenheim class has the finite model property.

Proof. Assume T is a Löwenheim theory, with n distinct unary predicates. Let
q be the maximum number of nested quantifiers in T . Let I be a model of T .
According to Theorem 4, if I has an infinite cardinality (≥ q 2n), T also has a
finite model (e.g. of cardinality q 2n). ut



Corollary 3. The satisfiability problem for the Löwenheim class is decidable.

Proof. It is well-known that any class of finite first-order theories that has the
finite model property is also decidable. The decidability of the Löwenheim class
can also be easily proved directly. Assume T is a Löwenheim theory, with n
distinct unary predicates. Let q be the maximum number of nested quantifiers
in T . There exist only a finite number of interpretations of a finite theory for a
given cardinality. It is thus decidable to check if T has a model of cardinality
q 2n. If such a model exists T is satisfiable. If no such models exist, Theorem 4
states that T has no models of cardinality ≥ q 2n. It remains to decide if T
has a model of cardinality < q 2n, i.e. it remains to examine a finite number of
interpretations. ut

Corollary 4. The spectrum of a Löwenheim theory can be computed and ex-
pressed either as a finite set of naturals, or as the union of a finite set of naturals
with the set of all the (finite or infinite) cardinalities greater than a natural. The
Löwenheim theories are gentle.

5 The Bernays-Schönfinkel-Ramsey class

A Bernays-Schönfinkel-Ramsey theory (BSR) is a finite set of formulas of the
form ∃∗∀∗ϕ, where ϕ is a first-order formula which is function-free (but con-
stants are allowed) and quantifier-free. Bernays and Schönfinkel first proved the
decidability of this class without equality; Ramsey later proved that it remains
decidable with equality. The results about the spectrum of BSR theories are less
known, but were also originally found by Ramsey.

For simplicity, we will assume that existential quantifiers are Skolemized. In
the following, a BSR theory is thus a finite closed set of universal function-free
first-order formulas.

Theorem 5. Let T be a BSR theory, and let kc be the number of constants in
T , or kc = 1 if T is constant-free. If T has a model with cardinality k ≥ kc, then
T has a model for every cardinality i, with k ≥ i ≥ kc.

Proof. Given a model M for a BSR theory T with domain D, then any inter-
pretation M′ such that

– the domain ofM′ is a non-empty set D′ ⊆ D such thatM′[a] =M[a] ∈ D′
for every constant a in T , and

– for every predicate p, M′[p] is the restriction of M[p] to the domain D′

is also a model of T . Intuitively, this states that the elements in the domain that
are not assigned to ground terms (i.e. the constants) can be eliminated in a model
of a BSR theory. SinceM is a model of T , for each closed formula ∀x1 . . . xn.ϕ in
T (where ϕ is function-free and quantifier-free), and for all d1, . . . , dn ∈ D′ ⊆ D,
Mx1/d1,...,xn/dn

is a model of ϕ. This also means that, for all d1, . . . , dn ∈ D′,
M′x1/d1,...,xn/dn

is a model of ϕ, and finally that M′ is a model of ∀x1 . . . xn.ϕ.
ut



Theorem 6. There exists a computable function f such that, for any BSR the-
ory T , if T has a model of some cardinality ≥ f(T ), then it has a model for
every cardinality ≥ f(T ).

Proof. The proof is quite long and requires a non trivial theorem on hypergraph
coloring. A partial proof can be found in [6], and a full self-contained proof can
be found in the full version of the paper [10]. ut

The proofs of the following corollaries are similar to the corresponding proofs
for the Löwenheim class.

Corollary 5. The BSR class has the finite model property.

Corollary 6. The satisfiability problem for the BSR class is decidable.

Corollary 7. The spectrum of a BSR theory can be computed and expressed
either as a finite set of naturals, or as the union of a finite set of naturals with
the set of all the (finite or infinite) cardinalities greater than a natural. BSR
theories are gentle.

6 First-order logic with two variables

Following [7], we will denote by FO2 the class of finite theories built over a
language with only two variables, and no functions (except constants). The sat-
isfiability problem for FO2 is known to be decidable with and without equality
(see for instance [5, 7, 13]). Again, we will only concentrate here on the language
with equality. This class has the finite model property, and also has very nice
properties concerning the cardinalities of its models.

The Scott class is a subset of FO2: it is the class of finite theories over a
language with only two variables, and no functions (except constants) such that
every formula in the theory is of the form ∀x∀y ϕ(x, y) or ∀x∃y ϕ(x, y) where
ϕ(x, y) is quantifier-free. The satisfiability problem for FO2 (with equality) is
traditionally translated into the satisfiability problem for the Scott class, using
the following theorem (see [5, 7] for equivalent theorems):

Theorem 7. There exists an algorithm that, for each finite theory T of FO2,
constructs a theory T ′ in the Scott class such that T has a model of a given
cardinality if and only if T ′ has a model of the same cardinality. The size of T ′
is linear with respect to the size of T .

Proof. First notice that formula ∀x (R(x) ≡ Qy ϕ(x, y)) where Q is either ∃ or
∀ can be rewritten as a set of formulas in the required form:

– ∀x (R(x) ≡ ∀y ϕ(x, y))←→ ∀x∀y (R(x)⇒ ϕ(x, y)) ∧ ∀x∃y (ϕ(x, y)⇒ R(x))
– ∀x (R(x) ≡ ∃y ϕ(x, y))←→ ∀x∃y (R(x)⇒ ϕ(x, y)) ∧ ∀x∀y (ϕ(x, y)⇒ R(x))

The theory T can thus be rewritten into a suitable theory T ′ by iteratively
applying the following step until no more formulas of unsuitable form exist in
the theory:



– select a formula ψ in the theory that does not have the required form;
– choose a sub-formula of form Qy ϕ(x, y) of ψ where Q is ∃ or ∀ and ϕ(x, y)

is quantifier-free;
– take a new unary predicate R not used in the theory;
– define the formula ψ′ as ψ where Qy ϕ(x, y) has been substituted by R(x);
– remove ψ from the theory, and add ψ′, and the formulas in the required form

for ∀x (R(x) ≡ Qy ϕ(x, y)).
ut

The following theorem is left as an exercice in [7]. For completeness we here
give the full proof.

Theorem 8. There exists a computable function f such that, for any Scott the-
ory T , if T has a model of some cardinality ≥ f(T ), then T has models for
every cardinality ≥ f(T ).

Proof. We first assume that every formula ψi in T (i = 1, . . . ,m) of the form
∀x∃y ϕ(x, y) is such that every model of ϕ(x, y) is a model of x 6= y. This assump-
tion is acceptable if f(T ) ≥ 2 for all Scott theories T since for all models with at
least two elements ∀x∃y ϕ(x, y) is equivalent to ∀x∃y . x 6= y∧(ϕ(x, y) ∨ ϕ(x, x)).

For the rest of the proof, we assume that the Scott theory T has a model
M on domain D. We define the sets A = {M[a] : a is a constant in T } and
B = D \ A. We establish that if B is larger than a computable cardinality
≥ f(T ), one can build a model for every cardinality ≥ f(T ).

Given a first-order language L, a k-table3 T [x1, . . . , xk] over the variables
x1, . . . , xk is a maximal satisfiable set of atomic formulas and negation of atomic
formulas using only variables x1, . . . , xk. Given an interpretation I on domain D
and k elements d1, . . . , dk of D, the k-table of d1, . . . , dk (denoted TI [d1, . . . , dk])
is the unique k-table T [x1, . . . , xk] such that the interpretation Ix1/d1,...,xk/dk

is a
model of T [x1, . . . , xk]. Notice that there are only a finite number of k-tables, for
a finite language with no functions except constants. In particular if A is the set
of constants, a 1-table is determined by at most b =

∑
p (|A|+ 1)arity(p) Boolean

values, where the sum ranges over all predicates in the language. Indeed, given
a predicate p of arity r, there are at most (|A|+1)r terms that can be built with
p and A ∪ {x}. Thus the number of different 1-tables is bounded by C = 2b.

For every formula ψi = ∀x∃y ϕi(x, y) in T (i = 1, . . . ,m), there exists a
total function gi on domain D ranging on D such that M[ϕi](d, gi(d)) is true
for every d ∈ D. The set K (commonly referred as the set of kings) is defined
as the union of A and of the possibly empty set of all elements of d ∈ D such
that the 1-table of d is unique, i.e. TM[d′] 6= TM[d] for every d′ ∈ D such that
d′ 6= d. The set C (commonly referred as the court) is the possibly empty set
C = K ∪ {gi(d) | d ∈ K, i = 1, . . . ,m}. The set S is defined as TM[D] \ TM[C]
where TM[D] is the set of all 1-tables of elements in D (and similarly for TM[C]).
We choose a function h on domain S that ranges on D such that TM[h(t)] = t.

3 We here adopt the notation of [5]. The same notion is also called (atomic) k-type,
for instance in [13].



The set D′ is defined as C ∪ (S × {1, . . . ,m} × {0, 1, 2}). A modelM′ on D′

for T is defined such that:

– TM′ [d1, . . . , dk] = TM[d1, . . . , dk] for d1, . . . dk ∈ C, k ∈ N;
– TM′ [(t, i, j)] is t, for every (t, i, j) ∈ D′ \ C;
– if gi(h(t)) ∈ K then TM′ [(t, i, j), gi(h(t))] = TM[h(t), gi(h(t))];
– if gi(h(t)) /∈ K then TM′ [(t, i, j), (TM(gi(h(t))), i, (j + 1) mod 3)] is equal

to TM[h(t), gi(h(t)]
– if not yet defined TM′ [d′1, d

′
2] is TM[d1, d2], where di is chosen such that

TM[di] = TM′ [di] (i = 1, 2).

The undefined interpretations are not relevant for interpreting the theory and
can be arbitrarily defined. The previous assignments are non-conflicting, i.e. 2-
tables are never defined twice inconsistently.

Assume ∀x∀y ϕ(x, y) belongs to T . Then M′x/d′1,y/d′2
ϕ(x, y) = > since there

exists d1 and d2 such that TM[d1, d2] = TM′ [d′1, d
′
2]. It remains to prove thatM′

is a model of every formula ∀x∃y ϕi(x, y) in T , or equivalently, that for every
d ∈ D′, M′x/d is a model of ∃y ϕi(x, y):

– if d ∈ K, gi(d) ∈ C ⊆ D′, and M′x/d,y/gi(d) is a model of ϕi(x, y);
– if d ∈ C \K, if gi(d) ∈ C then M′x/d,y/gi(d) is a model of ϕi(x, y);
– if d ∈ C \K, if gi(d) /∈ C then TM′ [d, (TM(gi(d)), i, 0)] = TM[d, gi(d)], and

thus M′x/d,y/(TM(gi(d)),i,0) is a model of ϕi(x, y);
– if d = (t, i, j) ∈ D′ \ C, if gi(h(t)) ∈ K then TM′ [(t, i, j), gi(h(t))] =
TM[h(t), gi(h(t))], and thus M′x/d,y/gi(h(t)) is a model of ϕi(x, y);

– if d = (t, i, j) ∈ D′\C, if gi(h(t)) /∈ K then TM′ [(t, i, j), (TM(gi(h(t))), i, (j+
1) mod 3)] = TM[h(t), gi(h(t)], and thus M′x/d,y/(TM(gi(h(t))),i,(j+1) mod 3)

is a model of ϕi(x, y).

Finally notice that D \K is necessarily non-empty if |D| ≥ 2b + 1 + |A|. In
the process of buildingM′, any element (t, i, 0) may be duplicated, thus creating
models of arbitrary size ≥ 3m 2b +(m+1)|A| where m is the number of formulas
of the form ∀x∃y ϕ(x, y) in T . ut

Corollary 8. There exists a computable function f such that, for any finite
theory T of FO2, if T has a model of some cardinality ≥ f(T ), then T has
models for every cardinality ≥ f(T ).

Corollary 9. The class of finite theories of FO2 has the finite model property.

Corollary 10. The satisfiability problem for finite theories of FO2 is decidable.

Corollary 11. The spectrum of a finite theory of FO2 can be computed and
expressed as a finite set of naturals, or as the union of a finite set of naturals
with the set of all the (finite or infinite) cardinalities greater than a natural. The
finite theories of FO2 are gentle.



7 An example

Assume that one wants to study the satisfiability of the simple example given in
the introduction:

{a > 0, a < 2, a+ b = 2, b > 0, A(f(a)),¬C(f(b))}

in the combination of the theories

T1 = ∀x [(A(x) ∨B(x)) ≡ (C(x) ∨D(x))]

and T2, where T2 is itself the combination of the theory of uninterpreted functions
and linear arithmetic over the integers. The theory T2 is decidable, and a decision
procedure can be built using the standard Nelson-Oppen scheme since both
components are stably infinite. The domain of the models of T2 is always the set
of integers, thus all models have cardinality ℵ0. The theory T1 belongs to the
BSR, Löwenheim, and two-variables classes and is thus gentle.4 The third case of
Theorem 3 is fulfilled. First, a separation is built, to produce the equisatisfiable
problem L1 ∪ L2 with

L1 = {A(t),¬C(u)}
L2 = {a > 0, a < 2, a+ b = 2, b > 0, t = f(a), u = f(b)}.

The set L1 ∪ L2 is T1 ∪ T2-satisfiable if and only if there exists a T1-model M1

for L1 and a T2-modelM2 for L2, such thatM1 andM2 agree on which shared
constant symbols (i.e. t and u) are equal, and agree on cardinalities (Theorem 1).
The first requirement is fulfilled by checking every arrangement of the variables
(here: t = u or t 6= u): {t 6= u} ∪ L2 is T2-unsatisfiable, but {t = u} ∪ L1

and {t = u} ∪ L2 are both satisfiable in their respective theory. It remains to
check if it is possible for both models to agree on cardinalities. The theory of
integer linear arithmetic only accepts models of cardinality ℵ0, therefore L1∪L2

is T1 ∪ T2-satisfiable if and only if T1 ∪ {t = u} ∪ L1 has a model of cardinality
ℵ0.

The theory T1∪{t = u}∪L1 uses only one quantified variable, four predicate
symbols (A,B,C,D), and two constants (t, u). Using for instance the fact that
this theory is a Löwenheim theory, one can use Theorem 4 to check if it has
an infinite model. The theory contains two constants, at most one “nested”
quantifier, and four unary predicates. If there is a model with cardinality 3× 24,
then there is an infinite model. It can easily be showed that T1 ∪ {t = u} ∪ L1

indeed accepts such a model with cardinality 48. Similar bounds exist for BSR
and two-variable theories, but unfortunately they are also large compared to the
size of this toy example.

There exists another criteria to check if a BSR theory has an infinite model.
Indeed, a BSR theory with n variables has an infinite model if and only if it
has a n-repetitive model (see the full version of the paper [10]). Checking if

4 T1 is also stably infinite, but we ignore this fact to illustrate the generic approach.



T1 ∪ {t = u} ∪L1 has a 1-repetitive model simply amounts to check if T1 ∪ {t =
u} ∪ L1 ∪ {v 6= t, v 6= u} is satisfiable.

As a final remark, notice that the example used in this section encodes the
set of formulas

{a > 0, a < 2, a+ b = 2, b > 0, f(a) ∈ A, f(b) /∈ C,A ∪B = C ∪D}

in a language that combines integer linear arithmetic, uninterpreted function
symbols, and elementary set-theoretic operations. One motivation for the work
reported in this paper is indeed to augment the languages accepted by SMT
solvers with certain operators on sets or relations, which can conveniently be
represented by BSR theories over their characteristic predicates.

8 Conclusion

In this paper we observed that one can express completely the spectrum, i.e.
the set of the cardinalities of the models, for Löwenheim theories, BSR theories,
and finite theories in the two-variables fragment. We characterise those theories
as gentle. Gentle theories can be combined with almost any decidable theory,
including gentle theories, integer or real linear arithmetic, finite first-order the-
ories, and some combinations of these.

It remains to develop algorithmic techniques to make this combination work
in practice. The results presented here are prohibitively expensive, the finite
cardinalities that guarantee the existence of an infinite model grow very rapidly
with the size of the theories. In that sense, the combination scheme presented
in this paper is really at the frontiers of combining decision procedures. It is
certainly not practical to first extract all cardinalities of the gentle theories in
the combination, just like, in the Nelson-Oppen combination scheme, it is not
practical to check every arrangement one by one. Rather than guessing arrange-
ments, SMT solvers use, among other techniques, equality propagation. Equality
propagation can thus be seen as the negotiation of an arrangement. A practi-
cal way to agree on cardinality could also rely on negotiation. This negotiation
would often be trivial, for instance if one theory puts very strong constraints on
cardinalities, or if most theories are on the contrary very permissive. Another
approach to handle the same classes of theories can be found in [24]: it consists
in reducing each part of the separation to a formula in a common decidable
language including Presbruger arithmetics; this approach has the drawback of
being much more complex, but as a counterpart the language handled is in some
aspects much more expressive.

Usually, SMT solvers implement a combination of a fixed set of theories,
which are known a priori, and are also known to have the right properties ac-
cording to cardinalities (typically, being stably infinite). Here, we show that every
theory in the major well-known first-order decidable classes can be integrated in
a combination. Since it can be shown that assertions over sets or relations and
elementary set-theoretic operations like ∪, ∩, etc. just introduce one more BSR
theory in the combination, the problem remains decidable even if this theory is



not fixed a priori. We mainly target formal methods based on set theory such
as B [1] and TLA+ [15]. We believe that the results in this paper can help au-
tomating the proof of some parts of the verification conditions, which often mix
arithmetic symbols, uninterpreted functions, and elementary set theory. Verifi-
cation conditions generated within those formal methods are usually small and
should be most of the time within reach of a decision procedure, even if it is
inefficient.

An interesting direction for further research is to investigate how to use the
techniques embedded in state-of-the-art first order provers (for instance [3, 18,
19]) to efficiently handle the first-order theories within a combination of decision
procedures.
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