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Abstract

Proof reconstruction is a technique that combines an interactive theorem prover and an
automatic one in a sound way, so that users benefit from the expressiveness of the first tool
and the automation of the latter. We present an implementation of proof reconstruction
for first-order logic and set-theoretical constructions between the interactive theorem prover
Isabelle and the automatic SMT prover haRVey.

1 Introduction

Machine assistance for theorem proving can be classified into two broad categories. Auto-
matic provers, including SMT solvers [DFR, DdM, NO05] and first-order provers [Sch04, RV02,
WBH+02], can solve satisfiability and validity problems in restricted languages. They empha-
size efficiency and indeed can be impressively powerful, provided the verification problem falls
into their domain. Interactive proof assistants emphasize expressiveness and ease of modeling,
but provide relatively modest automation, usually in the way of pre-defined or user-definable
proof tactics. From a software engineering point of view, the implementation of interactive proof
assistants in the LCF tradition such as Coq [BC04] or Isabelle [NPW02] is based on a small
trusted kernel, which gives high assurance in the soundness of the proved theorems. Automatic
provers are large and employ aggressive optimizations of code and data structures, making it
hard to give formal soundness guarantees.

In practice, it is desirable to combine automatic and interactive tools for deduction in order
to benefit from the advantages of both. For example, in the context of system verification it is
desirable to have an expressive modeling language so that specifications are readable and easy to
validate. During verification, individual proof obligations often fall within decidable fragments
such as fragments of arithmetic, arrays or simple set theory, that are tedious to prove in a proof
assistant but can be handled by an appropriate automatic prover. It would be desirable to
delegate the proof of a theorem that falls within the domain of an automatic tool. However,
naive combinations where trusted external tools are called as “oracles” are error-prone. In
particular, translation functions to convert formulas from, say, higher-order logic into the SMT-
LIB [RT06] input language of SMT solvers present subtle problems due to typing issues or
different interpretations of elementary operators. Subtle bugs may compromise soundness, as
the authors have witnessed.
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Because a full verification of the external tool and the necessary translations is out of the
question, the solution for making automated reasoners accessible from within an interactive
proof assistant without compromising soundness is to rely on proof reconstruction. In a nutshell,
the automatic tool outputs not only the answer, but also a proof trace that is certified by
the kernel of the proof assistant. The basic technique has been known for many years. For
example, Isabelle contains a first-order reasoner based on a tableau procedure [Pau99], as well
as a decision procedure for linear arithmetic [CN06] that cooperate with the kernel in this
way. Coq uses certification to interact with the Elan rewrite engine [NKK02]. McLaughlin
et al. [MBG06] describe a combination of the SMT solver CVC Lite and the proof assistant
HOL-Light that covers the theories of arrays and of linear arithmetic. Meng et al. [MQP04]
have worked on integrating resolution-based provers for first-order logic with Isabelle. We
described the integration of proof-producing SAT solvers with Isabelle in [Web05] and extended
it in [FMM+06] to perform proof reconstruction for the theory of equality with uninterpreted
function symbols.

In this paper we extend our previous work by techniques for handling quantified formulas.
As a particularly useful application, these techniques allow us to automatically verify formulas
of simple set theory, e.g.(

X ∩ Y = ∅ ∧X \ Z = X
)
⇒ X ∩ (Y ∪ Z) = ∅. (1)

Set-theoretic formulas arise frequently in the use of formal methods such as TLA+ [Lam02] or
B [CM03], which are useful for the verification of high-level system models. We use formula (1)
as a guidance throughout the paper although we aim to provide automation for much larger
formulas. Our techniques have been implemented for combining the SMT solver haRVey [DFR]
with Isabelle, but they are independent of the particular proof strategy used by haRVey. To
maintain the spirit of our previous work, we target a procedure which scales well, is sound, and
is completely automatic. Because Isabelle as well as haRVey provide deductive capabilities, we
are sometimes presented with a choice of performing certain steps within Isabelle (as part of
pre-processing) or within haRVey (subject to subsequent certification by Isabelle), and we will
discuss these trade-offs and motivate our choices.

The paper is organized as follows: Section 2 introduces elementary concepts of first-order
logic. Section 3 describes the language handled by our techniques and presents the overall
combination schema. Section 4 presents proof reconstruction in detail for subsets of first-order
logic of increasing strength, and Section 5 concludes the paper.

2 Notations

A first-order language L = (V,F ,P) consists of enumerable sets of variables V, function symbols
F , and predicate symbols P. Function and predicate symbols are assigned an arity; nullary
predicates are propositions, nullary functions are constants. The set of terms over L is defined
in the usual way. A ground term is a term without variables. Atomic formulas are of the forms
t = t′, for two terms t and t′, or P (t1, . . . , tn) where P is an n-ary predicate symbol and t1,
. . . , tn are terms (for nullary predicate symbols, empty parentheses are omitted). Formulas are
built from atomic formulas by applying the propositional connectives ¬, ∧, ∨, ⇒, ≡, and the
quantifiers ∀ and ∃. A formula without quantifiers is said to be quantifier-free.

An interpretation I for a first-order language defines a non-empty universe |I|, and assigns a
value I[c] ∈ |I| to every constant c. Each function (resp., predicate) symbol in L is interpreted
by a total function (resp., Boolean-valued function) of suitable arity. A standard inductive
definition extends this interpretation in order to define a value I[t] ∈ |I| for every ground
term t and a truth value I[ϕ] ∈ {>,⊥} for every closed formula ϕ. A model for a formula is
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Figure 1: Outline of proof reconstruction.

an interpretation that makes the formula true. A formula is satisfiable if it has a model and
unsatisfiable otherwise.

In refutation mode (when one is interested in the satisfiability of a formula), existential
quantifiers with a positive polarity and universal quantifiers with a negative polarity are called
essentially existential quantifiers. Dually, universal quantifiers with a positive polarity and
existential quantifiers with a negative polarity are called essentially universal quantifiers. A
Skolem formula is a formula with only essentially universal quantifiers. It is always possible to
transform a given formula into an equi-satisfiable Skolem formula; this transformation is known
as Skolemization [BEL01].

3 Cooperation Between Isabelle and haRVey

The cooperation between the proof assistant Isabelle and the SMT solver haRVey is illustrated
in Figure 1. Suppose we wish to use haRVey to prove some first-order formula ϕ. Because SMT
solvers decide satisfiability of formulas, we pass ψ′ = ¬ϕ to haRVey. If haRVey finds ψ to be
satisfiable, ϕ cannot be determined to be valid and the proof fails. In fact, haRVey produces
a satisfying assignment, which can be displayed to the user as a counter-example. (Note in
particular that ϕ may contain some function or predicate symbols that are left uninterpreted
by haRVey, so ϕ may indeed be valid.) If, however, haRVey determines ψ to be unsatisfiable, it
produces a proof that is then passed to Isabelle for certification.

Actually, we have some more flexibility in designing the interaction between Isabelle and
haRVey: ψ need not literally be ¬ϕ, but can be an equi-satisfiable formula. Technically, our rv
proof method starts by the application of an initial Isabelle tactic that reduces the proof of ϕ to
the proof of ψ ⇒ ⊥. The formula ψ is then passed to haRVey, and if it is indeed unsatisfiable,
the rv method finishes by interpreting the proof trace provided by haRVey inside the Isabelle
kernel in order to prove ψ ⇒ ⊥ and thus close the initial goal.

Our target language of simple set theory includes the usual set operators: ∈, ∅, Ω, ∩, ∪,
\, ⊂, ⊆, set equality, set enumeration, and set comprehension. By encoding sets as unary
predicates (representing their characteristic function), we can reduce this language to standard
first-order logic formulas where given sets are encoded by uninterpreted predicate symbols. It
can be shown [Fon07] that quantifier-free formulas over this language (and also over a slightly
richer language that allows relations and tuples) belong to a decidable fragment of first-order
logic, and indeed we can be sure that haRVey will terminate when applied to such a formula.
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As an example, the formula (1) in the introduction becomes(
(∀x . (X(x) ∧ Y (x)) ≡ ⊥) ∧

(
∀x . (X(x) ∧ ¬Z(x)) ≡ X(x))

))
⇒ ∀x .

(
X(x) ∧ (Y (x) ∨ Z(x))

)
≡ ⊥ (2)

after translation to first-order logic.
Even when starting from a quantifier-free formula, the translation from set theory to first-

order logic introduces quantification. It is therefore essential that our rv method handles quan-
tified formulas, which was not the case of our previous work [FMM+06]. In our following
exposition of proof reconstruction, we will therefore focus on the treatment of quantifiers. The
version of haRVey that underlies our work handles essentially universal quantifiers by instanti-
ation, and it implements Skolemization to eliminate essentially universal quantifiers.

As explained above, we have a choice of relying on haRVey to handle (some) quantifiers
or to take care of them during the pre-processing step performed within Isabelle, and this is
an important trade-off. We chose to leave the (expensive) instantiation step, which involves
search, to haRVey and implement the (comparatively cheap and deterministic) Skolemization
in Isabelle. Beyond Skolemization, pre-processing also takes care of generating a formula in
conjunctive normal form (CNF), as haRVey expects clauses as input.

4 Proof Reconstruction

Checking the satisfiability (or the validity) of a quantifier-free formula containing set operators
involves several successive reasoning or transformation steps. First, the operators are replaced
by their definitions as λ-expressions (see [Fon07]). Second, those λ-terms are β-reduced to obtain
a pure first-order formula, possibly with quantifiers. Third, this formula is Skolemized. Then
instantiation eliminates the remaining quantifiers. Finally, the obtained quantifier-free formula
is handled by a decision procedure based on congruence closure and SAT-solving techniques.

Each step of this process should either be implemented directly within Isabelle as part of the
pre-processing of formulas, or be performed by haRVey. In the latter case, a proof trace should
be produced that allows Isabelle to reconstruct the proof. Proof reconstruction for the final step,
the satisfiability checking of quantifier-free formulas with uninterpreted symbols and equality,
was presented in our previous work [FMM+06]. We now explain how we handle Skolemization,
instantiation, and the transformation of formulas with set operators into first-order formulas.

4.1 Skolemization

Skolemization eliminates the essentially existential quantifiers in a formula, to obtain an equi-
satisfiable formula with essentially universal quantifiers only. For instance, consider a formula
∀y∃x.ψ(x, y); it is equi-satisfiable to formula ∀y.ψ(f(y), y), where f is a new function symbol.
Repetitive application of this process to every essentially existential quantifier gives a Skolem
form equi-satisfiable to the original formula [BEL01].

Consider again the toy formula (1), that is transformed to the first-order formula (2); Skolem-
ization eliminates the universal (but essentially existential) quantifier in the right-hand side of
the implication:(

(∀x . (X(x) ∧ Y (x)) ≡ ⊥) ∧
(
∀x . (X(x) ∧ ¬Z(x)) ≡ X(x))

))
⇒

(
X(s) ∧ (Y (s) ∨ Z(s))

)
≡ ⊥. (3)

There exist different Skolemization techniques that differ in the arity of the introduced func-
tion symbol. The haRVey solver implements inner Skolemization [NW01]: inner-Skolemizing a
formula ϕ consists in replacing every occurrence of subformulas of the form Qx.ψ(x) (where Q
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is a essentially existential quantifier) in ϕ by ψ(f(y1, . . . , yn)), where f is a new function symbol
and {y1, . . . , yn} is the set of free variables of the subformula Qx.ψ(x). For outer Skolemiza-
tion [NW01], the arguments of the Skolem term are rather the variables of the quantifiers having
Qx.ψ(x) in their scope.

For the combination of haRVey and Isabelle, we have to decide if Skolemization should
be part of the pre-processing performed by Isabelle or part of the proof search performed by
haRVey. In the latter case, haRVey’s inner Skolemization procedure would have to be replayed
by Isabelle during proof certification, which is delicate for two reasons. First, performing a
step of inner Skolemization requires access to subformulas that can be nested deeply within the
current goal, and Isabelle only provides access to the top-most symbol of a formula. Second,
the notion of free variables of a formula is not directly accessible in Isabelle.

The essential Isabelle rule to implement Skolemization is

Γ,∀x.∃y.P (x, y) ` ∆
choiceΓ,∃f.∀x.P (x, f(x)) ` ∆

and, combined with ∃-elimination, this rule removes one essentially existential quantifier. As an
example, to Skolemize ∃y in the formula ∀x.P ∧ ∃y.Q(x, y) appearing on the left-hand side of
a sequent, one first needs to move the quantifier outside the Boolean structure of the formula,
use the above rule, and finally eliminate the resulting quantifier over the Skolem function:

Γ,∀x.P ∧ ∃y.Q(x, y) ` ∆
⇓ extra-scope ∃

Γ,∀x.∃y.P ∧Q(x, y) ` ∆
⇓ choice

Γ,∃f.∀x.P ∧Q(x, f(x)) ` ∆
⇓ ∃-elimination

Γ,∀x.P ∧Q(x, f(x)) ` ∆

In the following, slightly more complicated example, the combination of rules used above
introduces a binary function symbol whereas inner Skolemization as implemented in haRVey
would generate a unary one because z is not a free variable of ∃y.Q(x, y).

Γ,∀x.∀z.P (x, z) ∧ ∃y.Q(x, y) ` ∆
⇓ extra-scope ∃

Γ,∀x.∀z.∃y.P (x, z) ∧Q(x, y) ` ∆
⇓ choice

Γ,∀x.∃f.∀z.P (x, z) ∧Q(x, f(z)) ` ∆
⇓ choice

Γ,∃g.∀x.∀z.P (x, z) ∧Q(x, g(x, z)) ` ∆
⇓ ∃-elimination

Γ,∀x.∀z.P (x, z) ∧Q(x, g(x, z)) ` ∆

A faithful implementation of inner Skolemization in Isabelle would require more expensive
formula transformations, making proof reconstruction more costly.

Moreover, Skolemization is a deterministic computation that does not involve any search.
We have therefore decided to perform Skolemization as part of the initial pre-processing step
inside Isabelle, and use an existing Skolemization procedure implemented in Isabelle that per-
forms outer Skolemization, similar to the strategy outlined above. We have experimented with
both inner and outer Skolemization and have observed that there is practically no measurable
influence on the running times for our examples.
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4.2 Instantiation

It is simple to build an automatic procedure for Skolem formulas that only contain equalities, and
uninterpreted symbols on top of a decision procedure for quantifier-free formulas with equalities
and uninterpreted symbols. An increasing number of SMT-solvers use instantiation to deal with
the remaining essentially universal quantifiers. This efficiently handles large Boolean formulas
with a few quantifiers, whereas the traditional resolution provers are more dedicated to problems
where the quantifiers play much more crucial role. In the present case, where instantiating by
a small number of terms is always sufficient, a procedure built on instantiation gives very good
results in practice. Below, we detail how we integrated this technique in our framework. As in
our previous work, our technique relies on Boolean abstraction to keep an approach that scales.

The primary goal of SMT-solvers is to check the satisfiability of quantifier-free formulas
on a language containing equalities, uninterpreted symbols, and symbols for a combination of
decidable theories. Handling quantifiers is not deeply embedded into the deduction engine.
In haRVey, quantified formulas are simply abstracted by Boolean propositions, and refined on-
demand. For instance, assume that a formula ϕ(∀x.x = a) is given to the solver, where ∀x.x = a
is the only quantified subformula. First, ϕ(p) will be checked for satisfiability, where p is a new
proposition. If the result is satisfiable, and if p is true in the model, the formula is refined by
adding a lemma p⇒ t = a where t is some term found in ϕ(p). The formula ϕ(p)∧ (p⇒ t = a)
is then checked for satisfiability. Continuing in a similar fashion, new instances are added until
the resulting formula is found to be unsatisfiable or no new instance can be generated, in which
case the original formula is satisfiable. (In practice, generation of new instances is bounded by
imposing a time limit.)

The procedure is sound: if

ϕ(p) ∧ (p⇒ t1 = a) ∧ . . . ∧ (p⇒ tk = a)

is unsatisfiable for an unspecified proposition p and certain terms t1, . . . , tk, then so is

ϕ(∀x.x = a) ∧ ((∀x.x = a) ⇒ t1 = a) ∧ . . . ∧ ((∀x.x = a) ⇒ tk = a),

and since (∀x.x = a) ⇒ ti = a is a tautology for each term ti, the original formula ϕ(∀x.x = a)
is unsatisfiable. It can also be shown [Fon07] that the procedure is complete under certain
conditions, notably when quantified variables are used only as an argument of predicates, but
not of functions. This is the case when the formulas are generated from quantifier-free formulas
containing uninterpreted predicates and functions, equalities, and set operators.

The deduction method for quantified formulas within the SMT-solvers is built on top of
the quantifier-free decision procedure. Similarly, our proof reconstruction for Skolem formulas
is based on our previous work [FMM+06] on proof reconstruction for quantifier-free formulas.
When checking the satisfiability of a formula ϕ(∀x.ψ(x)), the solver makes use of lemmas such
as (∀x.ψ(x)) ⇒ ψ(t). Those lemmas are valid in first-order logic. For proof reconstruction, it is
sufficient to record those lemmas that were used by the underlying decision procedures. As a
consequence, proof reconstruction for Skolem functions consists of two steps:

• First, collect all instantiation lemmas that are required by the proof, and prove each one
of them by applying the specialization rule of first-order logic.

• Second, add these lemmas to the set of facts available for proof reconstruction for the
quantifier-free formula obtained by abstracting quantified formulas to Boolean proposi-
tions. This abstraction must be unsatisfiable by the proof found by the SMT solver.
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For our example, the Skolemized formula (3) is given to the haRVey solver. The proof trace
consists of the two instantiation lemmas(

∀x . (X(x) ∧ Y (x)) ≡ ⊥
)
⇒

(
(X(s) ∧ Y (s)) ≡ ⊥

)(
∀x . (X(x) ∧ ¬Z(x)) ≡ X(x)

)
⇒

(
(X(s) ∧ ¬Z(s)) ≡ X(s)

)
which are proved valid automatically within the rv tactic. The conjunction of the negation
of formula (3) and those two lemmas is propositionally unsatisfiable. To prove in the proof-
assistant that formula (3) is indeed valid, it is thus now sufficient to rely on the techniques for
proof reconstruction of Boolean formulas. Note that, although the two instantiation lemmas
appear as subformulas of the original goal (3), the instantiation procedure does not deal with the
logical structure of the goal: this step is delegated to the procedure for Boolean formulas. Thus,
because the procedure for Boolean formulas scales well, so does the instantiation procedure.

4.3 Procedure for Set Formulas

On top of our procedure for first-order logic, it is easy to increase expressiveness by providing
extensions for languages that are reducible to first-order logic. The set-theoretical constructions
defined in Section 3 are such an example.

The process of translating a set formula to a first-order formula is done by induction, both
on the structure of sets (symbols ∩,∪, and \) and of set formulas (symbols ⊆, ⊂, and ≈).
This translation introduces (first-order) quantifiers and thus would not have been realizable
if the underlying procedure did not handle first-order logic. To compare performances, we
implemented this translation in three pragmatically different manners: divide and conquer,
rewriting, and reflection. In paragraphs below, we detail the last two approaches since the first
one is standard.

Rewriting. In this approach we use the rewriting facility of Isabelle’s simplifier to normalize
set formulae using the easily proved theorems of Figure 2. Note that in Isabelle sets defined by
explicitly listing their elements is expressed by successive insertion (operator :) into the empty
set. Note also that set membership x ∈ S is a shorthand for member S x.

A ⊆ B ≡ ∀x.x ∈ A⇒ x ∈ B
A ⊂ B ≡ (∀x.x ∈ A⇒ x ∈ B) ∧ (∃x.x 6∈ A ∧ x ∈ B)
A ≈ B ≡ ∀x.x ∈ A ≡ x ∈ B

x ∈ A ∩B ≡ x ∈ A ∧ x ∈ B
x ∈ A ∪B ≡ x ∈ A ∨ x ∈ B
x ∈ A \B ≡ x ∈ A ∧ x 6∈ B
x ∈ (a : B) ≡ x = a ∨ x ∈ B

x ∈ Ω ≡ >
x ∈ {} ≡ ⊥

x ∈ {y.Py} ≡ P (x)

Figure 2: Normalizing rewrite-rules for set formulae

We can easily see that this rewriting system normalizes any set formula into a set formula
where set membership is the only symbol not belonging to the first-order language. Moreover,
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member is only applied to set variables and set variables can only occur under the application
of member. Therefore we just abstract over member S, for every set variable S occurring in the
normalized problem. The result is clearly purely first-order.

Reflection. This approach is based on the following key observations:

• The syntactical structure of, e.g. set, expressions is not accessible inside the logic since
two syntactically different expressions can be equal. Consider S ∪ ∅ and S for instance.

• A logic as expressive as higher-order logic (available in our implementation in Isabelle/HOL)
contains a programming language allowing the definition of data types and recursive func-
tions using pattern matching, which are typical properties of the meta-language.

The main idea of this approach is to use the programming language inside the logic to reflect
the intended transformation. Note that consequently the transformation is a function in the
logic and hence we can state and prove theorems about it. This idea goes back at least to
the meta-functions [BM81] and has been successfully used for decision procedures in Isabelle
[Cha06].

We define the structure of set expressions using a data type E , parametrized by the type α
of the set elements.

datatype α E = ˙Atom (α set) | α E ∩̇ α E | α E ∪̇ α E | α E \̇ α E

This data type definition must be understood in connection with the semantics (|.|), a recur-
sive function in the logic which maps E back to set expressions:

(| ˙Atom S|) ≡ S
(|e ∩̇ e′|) ≡ (|e|) ∩ (|e′|)
(|e ∪̇ e′|) ≡ (|e|) ∪ (|e′|)
(|e \̇ e′|) ≡ (|e|) \ (|e′|)

Note that the dotted symbols ∩̇ , ∪̇ and \̇ are just constructors and reflect their counter-
parts in the logic ∩,∪ and \.

The problem of transforming set expressions to an appropriate element of E , generally re-
ferred to by reification, can only be solved by a function in the meta language, due to the first
key observation above. Our specific reflection is very simple and reification roughly consists
in rewriting with the inverted defining rules of (|.|). Lately, Isabelle/HOL has been enhanced
with a generic mechanism for performing reification of simple functions parametrized with their
equations. This mechanism also handles simple bindings. Our examples are thus dealt with
automatically. Note that reification not only comes up with the solution, but also provides a
proof that it indeed reflects the input problem.

Now that we can go back and forth from set expressions to E , we define a recursive function
(· ∈̇ ·) for membership in α E by:

x ∈̇ ˙Atom S ≡ x ∈ S x ∈̇ e ∩̇ e′ ≡ x ∈̇ e ∧ x ∈̇ e′

x ∈̇ e ∪̇ e′ ≡ x ∈̇ e ∨ x ∈̇ e′ x ∈̇ e \̇ e′ ≡ x ∈̇ e ∧ ¬x ∈̇ e′

Now it is easy to prove by induction that ∈̇ “reflects” ∈:

x ∈ (|S|) ≡ x ∈̇ S

8



As easy consequences we prove the following equivalences to reduce the remaining set rela-
tions to membership:

(|A|) ⊆ (|B|) ≡ ∀x . x ∈̇ A⇒ x ∈̇ B
(|A|) ⊂ (|B|) ≡ (∀x . x ∈̇ A⇒ x ∈̇ B) ∧ (∃x . x ∈̇ B ∧ ¬x ∈̇ A)

(|A|) = (|B|) ≡ ∀x . x ∈̇ A ≡ x ∈̇ B

Note that these proved equivalences together with the defining rules of ∈̇ form a strongly
convergent rewriting system and reduce a statement involving set relations to a statement in
pure first-order logic, provided all involved set expressions have the form (|eA|) for some eA.

Given a set relation, e.g. A ⊆ B, this method transforms it into FOL by first replacing the
set expressions it involves by their reification, i.e. A and B by (|eA|) and (|eB|) for appropriate eA
and eB, and then just unfolds the rules above. Note that our use of reflection does not involve
any code-generation facility (as done in other work [Cha06]) or any untrusted component. The
proof is by full inference.

Benchmarks comparing performances of each method are visible in Figure 3. The divide and
conquer approach which uses high-level Isabelle’s tactics is the slowest method. The reflection
method and the rewriting one are comparable in terms of performance because they both rely
on Isabelle’s simplifier. They outperform the divide and conquer technique since Isabelle’s
simplifier is implemented using low-level and effective tactics.

Finally, all stages of our procedure are summarized in Figure 4.

Formula Size Time (sec)
# set average Divide and Rewriting Reflection

operators size of sets conquer
1 63 14 0.69 0.10 0.02
2 75 5 0.40 0.04 0.02
3 53 25 0.92 0.12 0.03
4 7 127 0.67 0.12 0.02
5 334 3 0.77 0.10 0.18
6 3 995 37.10 2.62 1.71
7 285 4 1.02 0.11 0.18
8 116 11 2.15 0.22 0.73

Figure 3: Running time for transformation of set formulas to first-order logic.

5 Conclusions and Further Work

We have extended a technique for the sound integration of an automatic prover and an interac-
tive proof assistant from a quantifier-free fragment to the full language of first-order logic. This
added expressiveness allows us to encode simple set-theoretic problems by a straightforward
pre-processing step. Combinations of automatic and interactive provers are important because
they make recent advances in automatic proof techniques and efficient implementations available
within an interactive environment that contains an expressive modeling language. Soundness
of the combination is ensured by proof reconstruction: theorems proved with the help of the
external prover come with the same soundness guarantees as those proved with standard proof
tactics of the interactive prover. A prototype implementation of our technique has been real-
ized by integrating the automatic prover haRVey with the Isabelle/HOL proof assistant. With
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this implementation we can automatically prove theorems that cannot be handled by Isabelle’s
built-in proof methods. We are not aware of other work on the integration of SMT solvers and
interactive proof assistants that provide a similar level of expressiveness.

Future Work. The work presented here could be adapted to similar interactive and automatic
deduction tools, and extended to other theories, such as fragments of arithmetic. Of particular
interest are problems having short certificates which are computationally hard to find (e.g.
construction of Gröbner bases for quantifier-free ring equalities [CW07]).

Before addressing such problems, it would be useful to design a generic interface dedicated
to proof reconstruction that could be reused across a wide range of automatic and interactive
tools. A standard proof format for SMT solvers would facilitate this task.
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