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1 Introduction

Satisfiability Modulo Theories (SMT) solvers4 check the satisfiability of first-
order formulas written in a language containing interpreted predicates and func-
tions. These interpreted symbols are defined either by first-order axioms (e.g. the
axioms of equality, or array axioms for operators read and write,. . . ) or by a
structure (e.g. the integer numbers equipped with constants, addition, equality,
and inequalities). Theories frequently implemented within SMT solvers include
the empty theory (a.k.a. the theory of uninterpreted symbols with equality),
linear arithmetic on integers and/or reals, bit-vectors, and the theory of arrays.
A very small example of an input formula for an SMT solver is

a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
. (1)

The above formula uses atoms over a language of equality, linear arithmetic, and
uninterpreted symbols (q and f) within some Boolean combination. The SMT-
LIB language (currently in version 2.0 [4]) is a standard concrete input language
for SMT solvers. Figure 1 presents the above example formula in this format.

SMT solvers were originally designed as decision procedures for decidable
quantifier-free fragments, but many SMT solvers additionally tackle quantifiers,
and some contain decision procedures for certain decidable quantified fragments
(see e.g. [26]). For these solvers, refutational completeness for first-order logic
(with equality but without further interpreted symbols) is an explicit goal. Also,
some SMT solvers now deal with theories that are undecidable even in the
quantifier-free case, for instance non-linear arithmetic on integers [13].

In some aspects, and also in their implementation, SMT solvers can be seen
as extensions of propositional satisfiability (SAT) solvers to more expressive lan-
guages. They lift the efficiency of SAT solvers to richer logics: state-of-the-art
SMT solvers are able to deal with very large formulas, containing thousands of
atoms. Very schematically, an SMT solver abstracts its input to propositional
logic by replacing every atom with a fresh proposition, e.g., for the above exam-
ple,

pa≤b ∧ pb≤a+x ∧ px=0 ∧
[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
.

4 We refer to [3] for a survey on SMT.



(set-logic QF_UFLRA)

(set-info :source | Example formula in SMT-LIB 2.0 |)

(set-info :smt-lib-version 2.0)

(declare-fun f (Real) Real)

(declare-fun q (Real) Bool)

(declare-fun a () Real)

(declare-fun b () Real)

(declare-fun x () Real)

(assert (and (<= a b) (<= b (+ a x)) (= x 0)

(or (not (= (f a) (f b))) (and (q a) (not (q (+ b x)))))))

(check-sat)

(exit)

Fig. 1. Formula 1, presented in the SMT-LIB 2.0 language

The underlying SAT solver is used to provide Boolean models for this abstrac-
tion, e.g.

{pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)}

and the theory reasoner repeatedly refutes these models and refines the Boolean
abstraction by adding new clauses (in this case ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨
pf(a)=f(b)) until either the theory reasoner agrees with the model found by the
SAT solver, or the propositional abstraction is refined to an unsatisfiable formula.
As a consequence, propositional reasoning and theory reasoning are quite well
distinguished. Naturally, the interaction between the theory reasoning and the
SAT reasoning is in practice much more subtle than the above naive description,
but even when advanced techniques (e.g. online decision procedures and theory
propagation, see again [3]) are used, propositional and theory reasoning are not
very strongly mixed. SMT proofs are thus also an interleaving of SAT proofs
and theory reasoning proofs. The SAT proofs are typically based on some form
of resolution, whereas the theory reasoning is used to justify theory lemmas, i.e.
the new clauses added from the theory reasoner. The entire proof ends up having
the shape of a Boolean resolution tree, each of whose leaves is a clause. These
clauses are either derived from the input formula or are theory lemmas, each
of which must be justified by theory-specific reasoning. The main challenge of
proof production is to collect and keep enough information to produce proofs,
without hurting efficiency too much.

The paper is organized as follows. Section 2 discusses the specifics of what is
required to implement proof-production in SMT along with several challenges.
Next, Section 3 gives a historical overview of the work on producing proofs in
SMT. This is followed by a discussion of proof formats in Section 4. We then
look at (in Sections 5, 6, and 7) the particular approaches taken by CVC4,
veriT, and Z3. Section 8 includes a discussion of the new Lean prover, which
attempts to bridge the gap between SMT reasoning and proof assistants more
directly by building a proof assistant with efficient and sophisticated built-in



SMT capabilities. Finally, Section 9 discusses current applications of SMT proofs,
and then Section 10 concludes.

2 Implementing Proof-Production in SMT

Since the core of SMT solvers is mainly a SAT solver adapted for the needs of
SMT, the core of the proof is also a SAT proof. We will refer to the other article
by Marijn Heule, in the same volume, for more details on SAT solving. Let us just
recall that SAT solvers work on a conjunctive normal form, and build a (partial)
assignment using Boolean propagations and decisions. If building this assignment
fails (i.e. it falsifies a clause) because of some decisions, the algorithm analyses
the conflict, learns a new clause that will serve as a guide to avoid repeating
the same wrong decisions again, and backtracks. Only this learning phase is
important for proofs, and it is easy to generate a resolution trace corresponding
to this conflict analysis and production of the learned clause. Proof-producing
SMT solvers rely on the underlying SAT solver to produce this resolution proof.

In the context of SAT solving, a conflict is always due to the assignment
falsifying a clause. Another kind of conflict can occur in SMT: assume the SAT
solver assigned pa=b (i.e. the propositional abstraction of the atom a = b) to
true, and later pf(a)=f(b) to false. There may be no clause conflicting with such
an assignment, but it is obviously inconsistent on the theory level. The theory
reasoner embedded in the SMT solver checks assignments for theory consistency.
In the present case, it would notify a conflict to the underlying SAT engine,
and would produce the clause ¬pa=b ∨ pf(a)=f(b). This theory lemma refines the
propositional abstraction with some knowledge from the theory. This knowledge
can then be used like any other clause. If theory reasoners provide detailed proofs
for theory lemmas, the SMT proof is just the interleaving of these theory proofs
and the resolution proofs generated by the SAT solver.

2.1 Proofs of Theory Lemmas

Simple examples of theory reasoners include decision procedures for uninter-
preted symbols and linear arithmetic. The satisifiability of sets of ground liter-
als with equalities and uninterpreted symbols can be checked using congruence
closure [37–39]. Efficient algorithms are non-trivial, but the idea of congruence-
closure algorithms is simple. They build a partition of all relevant terms, accord-
ing to the equalities, and check for inconsistencies with negated equalities. For in-
stance, if the relevant terms are a, b, f(a) and f(b), the initial partition would be{
{a}, {b}, {f(a)}, {f(b)}

}
. If an equality a = b is asserted, the algorithm would

merge the classes for a and b, because of this equality, and would also merge
the classes for f(a) and f(b) because it merged the arguments of f and because
equality is a congruence. The resulting partition would be

{
{a, b}, {f(a), f(b)}

}
.

If the algorithm is aware that f(a) 6= f(b) should hold, it detects a conflict as
soon as f(a) and f(b) are put in the same congruence class. Producing proofs
for congruence closure is thus simply a matter of keeping a trace of which (two)



terms are merged and why (i.e. either because of a congruence, or an asserted
equality). This information can be stored in an acyclic undirected5 graph, where
terms are nodes, and edges represent asserted equalities or congruences. If the
equality of two terms can be deduced by transitivity using asserted equalities
and congruences, then there is a (unique) path between the two terms in the
graph. To prove a congruence (e.g. g(a, c) = g(b, d)), it suffices to first prove the
equality of the corresponding arguments (a = b, c = d) and use an instance of
the congruence axiom schema, e.g. (a = b ∧ c = d) ⇒ g(a, c) = g(b, d). Proof
steps (i.e. an equality being the consequence of transitivity, and a congruence
instance) are again simply connected using Boolean resolution.

Another very important theory supported by many SMT solvers is linear
arithmetic on reals. Decision procedures for this theory are often based on a
specialized simplex algorithm [20, 32]. The algorithm maintains (a) a set of linear
equalities, (b) upper and lower bounds on the variables, and (c) an assignment.
The bounds and the linear equalities come directly from asserted literals; new
variables are introduced so that bounds only apply on variables and not on
more complicated linear combinations. Starting from an assignment satisfying all
equalities, the procedure tries to progressively satisfy all bounds on the variables.
During the process, the linear equalities are combined linearly to produce new
sets of equalities, always equivalent to the original set. If the right strategies
are used, the procedure is guaranteed to terminate either with an assignment
satisfying all equalities and bounds, or an assignment that causes a specific linear
equality to be in contradiction with the bounds on its variables. It then suffices
to collect the constraints corresponding to the equality and the bounds to derive
a contradiction. In fact, the coefficients of the variables in the linear equality
correspond to the coefficients of the linear combination related to Farkas’ lemma
(roughly, this lemma states that a set of linear inequalities is inconsistent if and
only if there is a linear combination of those inequalities that reduces to 1 ≤ 0;
see e.g. [10]).

The above procedure only applies to reals. Various techniques are used to
adapt it for mixed real and integer linear arithmetic. One is branching: if, in the
real algorithm, an integer variable x has a rational value (e.g. 1.5), the procedure
may issue a new lemma stating x ≤ 1 ∨ x ≥ 2. Notice that this lemma is a
tautology of arithmetic. Another technique is to introduce cuts; cuts basically
remove from the set of real-feasible solutions a subset with no integer solution.
Very schematically, cuts are linear combinations of already available constraints,
strengthened using the fact that variables are integer, e.g. x + y ≤ 1.5 can be
strengthened to x+ y ≤ 1 if x and y are integer variables.

Other theory reasoning engines found in modern solvers include modules for
reasoning about arrays, inductive data types, bit-vectors, strings, and non-linear
arithmetic. Their internals may vary a lot from one solver to another, and we will
not consider them in more detail here. For some non-linear arithmetic techniques

5 For efficiency reasons, modern congruence closure alogrithms actually use a directed
graph [39].



(see e.g. [10]) like cylindrical algebraic decomposition or virtual substitution, it
is not even clear how to produce useful certificates.

The theory reasoner may be a decision procedure for a single theory, but it
is often a combination of decision procedures for multiple theories. Combination
frameworks [36, 51] decide sets of literals mixing interpreted symbols from several
decidable languages (like the aforementioned linear arithmetic and uninterpreted
symbols) by combining the decision procedures for the individual theories into
one decision procedure for the union of languages. Combining the decision proce-
dures is possible when the theories in the combination satisfy certain properties.
A sufficient condition, for instance, is that the theories be stably-infinite6 and
disjoint; this is notably the case for the combination of linear arithmetic with
uninterpreted symbols. Combining theories also involves guessing which shared
terms are equal and which are not, or, equivalently, communicating disjunctions
of equalities between decision procedures. In order for a formula to be unsat-
isfiable, each possible equivalence relation over the shared terms must be ruled
out. This typically is done by producing many individual theory lemmas, which,
taken together, rule out all of the equivalence relations. Proofs for combinations
of theories are thus built from proofs of the theory lemmas in the individual the-
ories, and the component proofs are simply combined using Boolean reasoning
rules.

2.2 Challenging Aspects of Proof Production

Quantifier reasoning in SMT is typically done through Skolemization when possi-
ble, and heuristic instantiation otherwise [25, 18]. Proofs involving instantiations
are easily obtained by augmenting ground proofs with applications of a simple
instantiation rule. Formulas like ∀xϕ(x)⇒ ϕ(t) — where x is a vector of vari-
ables and t is a vector of terms with the same length — are first-order tautologies
and can be provided as lemmas for building proofs.

Skolemization, however, is not trivial. This is because Skolemization is typi-
cally implemented by introducing a new uninterpreted constant or function, but
such a step is not locally sound. It is only when looking at a global view of the
proof, noting that the conclusion does not involve any introduced symbols, that
soundness can be shown. Proofs involving Skolemization must therefore track
the introduced constants and ensure they are not used in the conclusion of the
proof. Furthermore, for efficiency, the solver may resort to advanced techniques
for Skolemization that are even less amenable to proofs.

Another challenge is preprocessing. SMT solvers typically include a module
for preprocessing formulas to simplify them before running the main algorithm
to search for a satisfying assignment. This module may perform anything from
simple rewrites (such as rewriting x = y to y = x) to complex global sim-
plifications that significantly change the structure of the formula. At the end
of preprocessing, the formula is also typically converted into conjunctive normal

6 A theory is stably-infinite if every satisfiable set of literals in the theory has an
infinite model.



form (CNF). The CNF clauses form leaves in the ultimate resolution proof. Thus,
in order to justify one of these clauses, a proof must capture each preprocessing
step that was used to derive it from the original formula. Such bookkeeping is
tedious and error-prone. One strategy is to disable complicated preprocessing
techniques during proof-production. Still, SMT solvers rely on some minimal
preprocessing for correct functioning, so in order to generate complete proofs,
at least this preprocessing has to be recorded as part of the proof.

3 A Short History of Proofs in SMT

The Cooperating Validity Checker (CVC) [46] was the first SMT solver to tackle
the problem of proof-production. CVC was built by Aaron Stump and Clark
Barrett, advised by David Dill, at Stanford University. CVC was designed to
improve upon and replace the Stanford Validity Checker (SVC) [6] for use in
the group’s verification applications and also to serve as a research platform
for studying SMT ideas and algorithms. CVC uses a proof format based on the
Edinburgh Logical Framework (LF) [27] and its proofs can be checked using the
flea proof-checker [47, 48], which was developed concurrently with CVC.

The motivation for producing proofs was primarliy that it would provide
a means of independently certifying a correct result, so that users would not
have to rely on the correctness of a large and frequently-changing code base.
Another motivation was the hope that proof-production could aid in finding and
correcting nasty bugs in CVC. In retrospect, however, the most important and
lasting contribution of CVC’s proof infrastructure was that it enabled an efficient
integration of a SAT solver for Boolean reasoning. Initial attempts to use a SAT
solver within CVC suffered from poor performance because the theory-reasoning
part of CVC was being used as a black box, simply flagging a particular branch
of the SAT search as unsatisfiable. Without additional information (i.e. a conflict
clause specifying a small reason for the unsatisfiability), the SAT solver could
not benefit from clause learning or non-chronlogical backjumping and frequently
failed to terminate, even on relatively easy problems. During a conversation with
Cormaq Flanagan, the idea of using the proof infrastructure to compute conflict
clauses emerged, and this was the key to finally making the integration with
SAT efficient (see [7] for more details). The technique was implemented in CVC,
as well as in Flanagan’s solver called Verifun [22] and this laid the groundwork
for the so-called DPLL(T) architecture [40] used in nearly every modern SMT
solver.

The next important development in proof-producing SMT solvers was the
early exploration of using proofs to communicate with skeptical proof assistants.
The first work in this area [33] was a translator designed to import proofs from
CVC Lite [2] (the successor to CVC) into HOL Lite [28], a proof assistant for
higher-order logic with a small trusted core set of rules. The goals of this work
were two-fold: to provide access to efficient decision procedures within HOL Lite
and to enable the use of HOL Lite as a proof-checker for CVC Lite. Shortly there-
after [23, 30], a similar effort was made to integrate the haRVey SMT solver [19]



with the Isabelle/HOL prove assistant [41]. These early efforts demonstrated the
feasibility of such integrations.

In 2008, an effort was made to leverage this work to certify that the bench-
marks in the SMT-LIB library were correctly labeled (benchmarks are labeled
with a status that can be “sat”, “unsat”, or “unknown”, indicating the expected
result when solving the benchmark). The certification was done using CVC3 [5]
(the successor to CVC Lite) and HOL Lite [24]. Many of the benchmarks in
the library were certified and additionally, a bug in the library was found as
two benchmarks that had been labeled satisfiable were certified as unsatisfiable.
The same work reports briefly on an anecdote that further validates the value
of proof-production. A latent bug in CVC3 was revealed during the 2007 SMT-
COMP competition. Using HOL Light as a proof-checker, the cause of the bug
was quickly detected as a faulty proof rule. The bug in the proof rule had per-
sisted for years and would have been very difficult to detect without the aid of
the proof-checker.

The same year also marked the appearance of proof-production capabilities
in several additional SMT solvers. Fx7 was a solver written by Micha l Moskal
which emphasized quantified reasoning and fast proof-checking [35]. MathSAT4
used an internal proof engine to enable the generation of unsatisfiable cores and
interpolants [15]. Z3 began supporting proof-production as well [16], though its
use of a single rule for theory lemmas meant that checking or reconstructing Z3
proofs requires the external checker to have some automated reasoning capability
(see Section 7). Finally, development on veriT, the successor to haRVey, began
in earnest [14], with proof-production as a primary goal (see Section 6). Another
important community development around this time was an attempt to converge
on a standard proof format for SMT-LIB. We discuss this effort in Section 4
below.

At the time of this writing, the state of proofs in SMT are in flux. A few
groups are making a serious effort to develop solvers (e.g. CVC4 and veriT) ca-
pable of producing self-contained, independently-checkable proofs, though these
are in progress and no standard format has been agreed upon. Other solvers (like
Z3) produce a trace of deduction steps, but reconstructing a full proof from these
steps requires additional search in some cases. Still other solvers (e.g. MathSAT,
SMTInterpol), use proof technology primarily to drive additional solver func-
tionality, like computing explanations, interpolants, or unsatisfiable cores. In
this paper, we focus on tools that produce proofs with the goal of having them
be checked or translated by an external tool.

4 Proof Formats for SMT

The SMT-LIB initiative has produced a series of documents standardizing for-
mats for theories, logics, models, and benchmarks. An early goal of the initiative
was to produce a standard format for proofs as well. However, this proved to be
challenging, primarily because each solver implements its decision procedures in
a different way, meaning the proof rules for each solver could vary significantly.



Another challenge is that it is difficult to formally express the wide variety of
rules needed to cover the decision procedures used in SMT solvers using existing
proof languages (such as the Edinburgh Logical Framework, LF [27]).

Probably the most ambitious effort to develop a standard proof format was
the one led by Aaron Stump [42, 49] (at the time, a leader of the SMT-LIB
initiative), who developed a language called LFSC, modeled after LF, but able
to express more complicated rules by expressing side-conditions using pieces
of trusted code in a small custom programming language. LFSC allows a user
to define a set of arbitrary inference rules and then use these to construct a
proof. LFSC was used as the proof language for the prototype proof-producing
SMT solver CLSAT and was also integrated as an alternative proof-language in
CVC3 [50]. LFSC is also the proof language used in CVC4 (see Section 5 for an
example).

In 2011, the first Workshop on Proof Exchange for Theorem Proving (PxTP)
was held, collocated with the 23rd Conference on Automated Deduction (CADE)
in Wroc law, Poland. The topic of proof formats featured heavily, with several
papers on the subject. Besson, Fontaine, and Théry proposed a proof format for
SMT based on the syntax of SMT-LIB [8]. This later formed the basis for the
veriT proof format (see Section 6). Böhme and Weber made a plea from a user’s
perspective for proof formats to be clear, well-documented, and complete (i.e.
not requiring any search to replay or check) [12].

Unfortunately, none of the proposed formats have caught on as a general
proof language for SMT-LIB. One reason for this is that there are not nearly
as many consumers of SMT proofs as there are of SMT technology generally,
so the proof format has not been prioritized. Another is that there are differ-
ences of opinion on what features should be included in such a standard. And
another is that the few tools that produce proofs have considerable momentum
behind their own formats and shifting to a new format would require a lot of
work. However, there are clear benefits to a standard format, especially for proof
exchange between SMT solvers and other tools, so we expect this will continue
to be a subject of debate and research.

5 The CVC Family of SMT Solvers

The original CVC tool used a proof system based on LF. Each deductive step in
the tool had a parallel proof-production step. CVC had its own internal Boolean
engine which recorded proofs. Proofs were not available when using a SAT solver
for Boolean reasoning. In CVC Lite and CVC3, a different design decision was
made: a special Theorem class was created to hold all derived facts. Theorem
classes could only be constructed using special proof-rule functions. This allowed
us to isolate all of the trusted code in the system in a few proof-rule files.
This approach, while elegant, turned out to not be very efficient. In particular,
many deductive steps were not needed in the final proof, but their proofs were
recorded anyway. More significantly, there was no way to turn proof production
off completely.



In CVC4, we opted for a new model in which proof production is done much
more efficiently. First, all proof code is protected under a compile-time flag. By
disabling this flag, CVC4 can be built with no proof code at all (for maximum
efficiency). When proofs are compiled in, they are generated lazily: only a min-
imal amount of bookkeeping is done in the SAT solver and no bookkeeping at
all is done in the theory solvers.7 If the user asks for a proof, the SAT solver
bookkeeping is leveraged to produce the resolution part of the proof. Proofs of
the needed theory lemmas used in the resolution proof are then generated by
re-running the theory decision procedures in proof-producing mode. In proof-
producing mode, theory decision procedures log their deductive steps in a speical
proof manager object which then stitches all of the pieces together into a full
proof.

As mentioned above, the proof format used by CVC4 is LFSC. A full descrip-
tion of LFSC is well beyond the scope of this paper, but a good introduction can
be found in [50]. Figure 2 shows an LFSC proof for the example from Section 1.
The first section states what is being proved: given real numbers a, b, and x,
function f and predicate q, together with four proofs each justifying one of the
four conjuncts of Formula 1, it produces a proof of the empty clause (represented
by cln). The next section assigns names to different formulas appearing in the
proof (each formula gets both a propositional name, starting with v and a logi-
cal atom name, starting with a). Next, rules are given for converting Formula 1
into clauses in CNF, each of which is assigned a label starting with C. Next, a
number of theory derivations are given, again each generating a clause starting
with C. Finally, a propositional resolution tree is given (R and Q are resolu-
tion rules) showing how to derive the empty clause from the clauses introduced
through CNF and through theory lemmas. The proof shown depends on several
additional proof files (not shown) which define the rules for resolution, theory
reasoning, CNF conversion etc.

At the time this article is being written, CVC4 supports proofs for uninter-
preted functions and arrays. Support for the theory of bit-vectors is a current
project, and support for arithmetic proofs (already present in CVC3) is expected
to follow soon thereafter.

6 The veriT SMT Solver

The veriT SMT solver is developed jointly at Loria, Nancy (France) and UFRN,
Natal (Brazil). It is open-source, under the BSD license. veriT is first a testing
platform for techniques developed around SMT, but it is sufficienctly stable to
be used by third parties. Proofs in veriT are mainly resolution proofs interleaved
with theory reasoning lemmas.

The proof trace language of veriT is inspired by the SMT-LIB 2.0 standard.
A sample proof for our running example 1 is given in Figure 3. The language

7 This is not quite true for the bit-vector theory solver which includes a second internal
SAT solver as part of its machinery. The same minimal bookkeeping is done in this
internal SAT solver as is done in the main SAT solver.



(check
(% a var_real
(% b var_real
(% x var_real
(% f (term (arrow Real Real))
(% q (term (arrow Real Bool))
(% @F1 (th_holds (<=_Real (a_var_real a) (a_var_real b)))
(% @F2 (th_holds (<=_Real (a_var_real b) (+_Real (a_var_real a) (a_var_real x))))
(% @F3 (th_holds (= Real (a_var_real x) (a_real 0/1)))
(% @F4 (th_holds (or (not (= Real (apply _ _ f (a_var_real a)) (apply _ _ f (a_var_real b))))

(and (= Bool (apply _ _ q (a_var_real a)) btrue)
(= Bool (apply _ _ q (+_Real (a_var_real b) (a_var_real x))) bfalse))))

(: (holds cln)

(decl_atom (<=_Real (a_var_real a) (a_var_real b)) (\ v1 (\ a1
(decl_atom (<=_Real (a_var_real b) (+_Real (a_var_real a) (a_var_real x))) (\ v2 (\ a2
(decl_atom (= Real (a_var_real x) (a_real 0/1)) (\ v3 (\ a3
(decl_atom (= Real (a_var_real a) (a_var_real b)) (\ v4 (\ a4
(decl_atom (= Real (apply _ _ f (a_var_real a)) (apply _ _ f (a_var_real b))) (\ v5 (\ a5
(decl_atom (= Bool (apply _ _ q (a_var_real a)) btrue) (\ v6 (\ a6
(decl_atom (= Bool (apply _ _ q (+_Real (a_var_real b) (a_var_real x))) bfalse) (\ v7 (\ a7
(decl_atom (<=_Real (a_var_real b) (a_var_real a)) (\ v8 (\ a8
(decl_atom (= Real (a_var_real a) (+_Real (a_var_real b) (a_var_real x))) (\ v9 (\ a9
(decl_atom (and (= Bool (apply _ _ q (a_var_real a)) btrue)

(= Bool (apply _ _ q (+_Real (a_var_real b) (a_var_real x))) bfalse)) (\ v10 (\ a10

; CNFication
(satlem _ _ (asf _ _ _ a1 (\ l1 (clausify_false (contra _ @F1 l1)))) (\ C1
(satlem _ _ (asf _ _ _ a2 (\ l2 (clausify_false (contra _ @F2 l2)))) (\ C2
(satlem _ _ (asf _ _ _ a3 (\ l3 (clausify_false (contra _ @F3 l3)))) (\ C3
(satlem _ _ (ast _ _ _ a5 (\ l5 (asf _ _ _ a6 (\ l6 (clausify_false (contra _

(and_elim_1 _ _ (or_elim_1 _ _ (not_not_intro _ l5) @F4)) l6)))))) (\ C4
(satlem _ _ (ast _ _ _ a5 (\ l5 (asf _ _ _ a7 (\ l7 (clausify_false (contra _

(and_elim_2 _ _ (or_elim_1 _ _ (not_not_intro _ l5) @F4)) l7)))))) (\ C5

; Theory lemmas
; ~a4 ^ a1 ^ a8 => false
(satlem _ _ (asf _ _ _ a4 (\ l4 (ast _ _ _ a1 (\ l1 (ast _ _ _ a8 (\ l8 (clausify_false (contra _ l1
(or_elim_1 _ _ (not_not_intro _ (<=_to_>=_Real _ _ l8)) (not_=_to_>=_=<_Real _ _ l4)))))))))) (\ C6

; a2 ^ a3 ^ ~a8 => false
(satlem _ _ (ast _ _ _ a2 (\ l2 (ast _ _ _ a3 (\ l3 (asf _ _ _ a8 (\ l8 (clausify_false
(poly_norm_>= _ _ _ (<=_to_>=_Real _ _ l2) (pn_- _ _ _ _ _ (pn_+ _ _ _ _ _
(pn_var a) (pn_var x)) (pn_var b)) (\ pn2

(poly_norm_= _ _ _ (symm _ _ _ l3) (pn_- _ _ _ _ _ (pn_const 0/1) (pn_var x)) (\ pn3
(poly_norm_> _ _ _ (not_<=_to_>_Real _ _ l8) (pn_- _ _ _ _ _ (pn_var b) (pn_var a)) (\ pn8
(lra_contra_> _ (lra_add_>_>= _ _ _ pn8 (lra_add_=_>= _ _ _ pn3 pn2)))))))))))))))) (\ C7

; a4 ^ ~a5 => false
(satlem _ _ (ast _ _ _ a4 (\ l4 (asf _ _ _ a5 (\ l5 (clausify_false
(contra _ (cong _ _ _ _ _ _ (refl _ f) l4) l5)))))) (\ C8

; a3 ^ a4 ^ ~a9 => false
(satlem _ _ (ast _ _ _ a3 (\ l3 (ast _ _ _ a4 (\ l4 (asf _ _ _ a9 (\ l9 (clausify_false
(poly_norm_= _ _ _ (symm _ _ _ l3) (pn_- _ _ _ _ _ (pn_const 0/1) (pn_var x)) (\ pn3
(poly_norm_= _ _ _ l4 (pn_- _ _ _ _ _ (pn_var a) (pn_var b)) (\ pn4
(poly_norm_distinct _ _ _ l9 (pn_- _ _ _ _ _ (pn_+ _ _ _ _ _
(pn_var b) (pn_var x)) (pn_var a)) (\ pn9

(lra_contra_distinct _ (lra_add_=_distinct _ _ _
(lra_add_=_= _ _ _ pn3 pn4) pn9))))))))))))))) (\ C9

; a9 ^ a6 ^ a7 => false
(satlem _ _ (ast _ _ _ a9 (\ l9 (ast _ _ _ a6 (\ l6 (ast _ _ _ a7 (\ l7 (clausify_false
(contra _ (trans _ _ _ _ (trans _ _ _ _ (symm _ _ _ l6) (cong _ _ _ _ _ _
(refl _ q) l9)) l7) b_true_not_false)))))))) (\ C10

; Resolution proof
(satlem_simplify _ _ _ (R _ _ (Q _ _ (Q _ _ C6 C1 v1) (Q _ _ (Q _ _ C7 C2 v2) C3 v3) v8)
(Q _ _ (Q _ _ (Q _ _ (Q _ _ (R _ _ C9 C10 v9) C3 v3) C4 v6) C5 v7) C8 v5) v4)
(\ x x)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Fig. 2. An LFSC proof for example Formula 1.



is quite coarse-grained and rather falls into the “proof trace” category rather
than the category of full detailed proofs. It provides, however, a full account
of the resolution proof, and equality reasoning is broken down into applications
of the congruence and transitivity instances of the axiom schemas for equality.
Symmetry of equality is silently used uniformly. Special proof rules are assigned
to theory lemmas (from arithmetic), but veriT does not break down arithmetic
reasoning to instances of e.g., Presburger axioms. The example here does not
feature quantifier reasoning; proofs with quantifiers use quantifier instantiation
rules.

(set .c1 (input :conclusion ((and (<= a b) (<= b (+ a x)) (= x 0)
(or (not (= (f b) (f a))) (and (q a) (not (q (+ b x)))))))))

(set .c2 (and :clauses (.c1) :conclusion ((<= a b))))
(set .c3 (and :clauses (.c1) :conclusion ((<= b (+ a x)))))
(set .c4 (and :clauses (.c1) :conclusion ((= x 0))))
(set .c5 (and :clauses (.c1) :conclusion

((or (not (= (f b) (f a))) (and (q a) (not (q (+ b x))))))))
(set .c6 (and_pos :conclusion ((not (and (q a) (not (q (+ b x))))) (q a))))
(set .c7 (and_pos :conclusion ((not (and (q a) (not (q (+ b x))))) (not (q (+ b x))))))
(set .c8 (or :clauses (.c5) :conclusion

((not (= (f b) (f a))) (and (q a) (not (q (+ b x)))))))
(set .c9 (eq_congruent :conclusion ((not (= a b)) (= (f b) (f a)))))
(set .c10 (la_disequality :conclusion ((or (= a b) (not (<= a b)) (not (<= b a))))))
(set .c11 (or :clauses (.c10) :conclusion ((= a b) (not (<= a b)) (not (<= b a)))))
(set .c12 (resolution :clauses (.c11 .c2) :conclusion ((= a b) (not (<= b a)))))
(set .c13 (la_generic :conclusion ((not (<= b (+ a x))) (<= b a) (not (= x 0)))))
(set .c14 (resolution :clauses (.c13 .c3 .c4) :conclusion ((<= b a))))
(set .c15 (resolution :clauses (.c12 .c14) :conclusion ((= a b))))
(set .c16 (resolution :clauses (.c9 .c15) :conclusion ((= (f b) (f a)))))
(set .c17 (resolution :clauses (.c8 .c16) :conclusion ((and (q a) (not (q (+ b x)))))))
(set .c18 (resolution :clauses (.c6 .c17) :conclusion ((q a))))
(set .c19 (resolution :clauses (.c7 .c17) :conclusion ((not (q (+ b x))))))
(set .c20 (eq_congruent_pred :conclusion ((not (= a (+ b x))) (not (q a)) (q (+ b x)))))
(set .c21 (resolution :clauses (.c20 .c18 .c19) :conclusion ((not (= a (+ b x))))))
(set .c22 (la_disequality :conclusion ((or (= a (+ b x)) (not (<= a (+ b x))) (not (<= (+ b x) a))))))
(set .c23 (or :clauses (.c22) :conclusion ((= a (+ b x)) (not (<= a (+ b x))) (not (<= (+ b x) a)))))
(set .c24 (resolution :clauses (.c23 .c21) :conclusion ((not (<= a (+ b x))) (not (<= (+ b x) a)))))
(set .c25 (eq_congruent_pred :conclusion

((not (= a b)) (not (= (+ a x) (+ b x))) (<= a (+ b x)) (not (<= b (+ a x))))))
(set .c26 (eq_congruent :conclusion ((not (= a b)) (not (= x x)) (= (+ a x) (+ b x)))))
(set .c27 (eq_reflexive :conclusion ((= x x))))
(set .c28 (resolution :clauses (.c26 .c27) :conclusion ((not (= a b)) (= (+ a x) (+ b x)))))
(set .c29 (resolution :clauses (.c25 .c28) :conclusion ((not (= a b)) (<= a (+ b x)) (not (<= b (+ a x))))))
(set .c30 (resolution :clauses (.c29 .c3 .c15) :conclusion ((<= a (+ b x)))))
(set .c31 (resolution :clauses (.c24 .c30) :conclusion ((not (<= (+ b x) a)))))
(set .c32 (la_generic :conclusion ((<= (+ b x) a) (not (= a b)) (not (= x 0)))))
(set .c33 (resolution :clauses (.c32 .c4 .c15 .c31) :conclusion ()))

Fig. 3. The proof output by veriT for example Formula 1. The output has been slightly
edited to cut and indent long lines.

The first line gives the input. Clauses c2 to c8 explain clausification of the
input. Equality reasoning produces clauses labeled with eq congruent( pred)

and eq reflexive, whereas the linear arithmetic module produces all the clauses
labeled la disequality and la generic. The rest of the proof is mainly reso-
lutions, and ends with the empty clause.



In the future, the proof format of veriT will be further improved to even
better stick to the SMT-LIB standard. In particular, when using shared terms
(for simplicity, the given proof example does not use shared terms), veriT uses a
notation to label repeated formulas which was inspired by the SVC custom input
language, but which does not fit well with the spirit of the SMT-LIB language.

7 The Z3 SMT Solver

Z3 is a Satisfiability Modulo Theories (SMT) solver developed at Microsoft Re-
search. Z3 source code is available online, and it is free for non-commercial pur-
poses. Z3 is used in various software analysis and test-case generation projects at
Microsoft Research and elsewhere. Proof generation is based on two simple ideas:
(1) a notion of implicit quotation to avoid introducing auxiliary variables (this
simplifies the creation of proof objects considerably); and (2) natural deduction
style proofs to facilitate modular proof re-construction.

In Z3, proof objects are represented as terms. So a proof-tree is just a term
where each inference rule is represented by a function symbol. For example,
consider the proof-rule mp(p, q, ϕ), where p is a proof for ψ → ϕ and q is a proof
for ψ. Each proof-rule has consequent, the consequent of mp(p, q, ϕ) is ϕ.

A basic underlying principle for composing and building proofs in Z3 has
been to support a modular architecture that works well with theory solvers that
receive literal assignments from other solvers and produce contradictions or new
literal assignments. The theory solvers should be able to produce independent
and opaque explanations for their decisions. Conceptually, each solver acts upon
a set of hypotheses and produces a consequent. The basic proof-rules that sup-
port such an architecture can be summarized as: hypothesis, which introduces
assumptions, lemma, which eliminates hypotheses, and unit resolution, which
handles basic propagation. We say that a proof-term is closed when every path
that ends with a hypothesis contains an application of rule lemma. If a proof-
term is not closed, it is open.

The main propositional inference engine in Z3 is based on a DPLL(T) archi-
tecture. The DPLL(T) proof search method lends itself naturally to producing
resolution style proofs. Systems, such as zChaff, and a version of MiniSAT, pro-
duce proof logs based on logging the unit propagation steps as well as the conflict
resolution steps. The resulting log suffices to produce a propositional resolution
proof.

The approach taken in Z3 bypasses logging, and instead builds proof objects
during conflict resolution. With each clause we attach a proof. Clauses that were
produced as part of the input have proofs that were produced from the previous
steps. This approach does not require logging resolution steps for every unit-
propagation, but delays the analysis of which unit propagation steps are useful
until conflict resolution. The approach also does not produce a resolution proof
directly. It produces a natural deduction style proof with hypotheses.

The theory of equality can be captured by axioms for reflexivity, symmetry,
transitivity, and substitutivity of equality. In Z3, these axioms are inference



rules, and these inference rules apply for any binary relation that is reflexive,
symmetric, transitive, and/or reflexive-monotone.

In the DPLL(T) architecture, decision procedures for a theory T identify
sets of asserted T -inconsistent literals. Dually, the disjunction of the negated
literals are T -tautologies. Consequently, proof terms created by theories can be
summarized using a single form, here called theory lemmas. Some theory lemmas
are annotated with hints to help proof checkers and reconstruction. For example,
the theory of linear arithmetic produces theory lemmas based on Farkas’ lemma.
For example, suppose p is a proof for x > 0, and q is a proof for 2x + 1 < 0,
then farkas(1, p,−1/2, q,¬(x > 0)∨¬(2x+ 1 < 0)) is a theory lemma where the
coefficients 1 and −1/2 are hints.

The Z3 simplifier applies standard simplification rules for the supported the-
ories. For example, terms using the arithmetical operations, whether for integer,
real, or bit-vector arithmetic, are normalized into sums of monomials. A single
proof rule called rewrite is used to record the simplification steps. For example,
rewrite(x+ x = 2x) is a proof for x+ x = 2x.

Notice that Z3 does not axiomatize the legal rewrites. Instead, to check the
rewrite steps, one must rely on a proof checker to be able to apply similar
inferences for the set of built-in theories. Thus, like veriT, Z3 proofs are coarse-
grained and also fall into the “proof trace” category.

Since Z3 proofs are terms, they can be traversed using the Z3 API. Proofs
can also be output in the SMT-LIB 2.0 language. A sample proof for our running
example 1 is given in Figure 4.

8 The Lean Prover

Lean is a new open source theorem prover being developed by Leonardo de
Moura and Soonho Kong [17]. Lean is not a standard SMT solver; it can be
used as an automatic prover like SMT solvers, but it can also be used as a proof
assistant. The Lean kernel is based on dependent type theory, and is implemented
in two layers. The first layer contains the type checker and APIs for creating
and manipulating the terms, the declarations, and the environment. The first
layer has several configuration options. For example, developers may instantiate
the kernel with or without an impredicative Prop sort. They may also select
whether Prop is proof-irrelevant or not. The first layer consists of 5k lines of
C++ code. The second layer provides additional components such as inductive
families (500 additional lines of code). When the kernel is instantiated, one
selects which of these components should be used. The current components are
already sufficient for producing an implementation of the Calculus of Inductive
Constructions (CIC). The main difference is that Lean does not have universe
cumulativity; it instead provides universe polymorphism. The Lean CIC-based
kernel is treated as the standard kernel. Another design goal is to support the
new Homotopy Type System (HTS) proposed by Vladimir Voevodsky. HTS is
going to be implemented as another kernel instantiation.



(let (($x82 (q b)) (?x49 (* (- 1.0) b)) (?x50 (+ a ?x49))
($x51 (<= ?x50 0.0)) (?x35 (f b)) (?x34 (f a))
($x36 (= ?x34 ?x35)) ($x37 (not $x36))
($x43 (or $x37 (and (q a) (not (q (+ b x))))))
($x33 (= x 0.0)) (?x57 (+ a ?x49 x)) ($x56 (>= ?x57 0.0))
($x44 (and (<= a b) (<= b (+ a x)) $x33 $x43))
(@x60 (monotonicity (rewrite (= (<= a b) $x51))

(rewrite (= (<= b (+ a x)) $x56))
(= $x44 (and $x51 $x56 $x33 $x43))))

(@x61 (mp (asserted $x44) @x60 (and $x51 $x56 $x33 $x43)))
(@x62 (and-elim @x61 $x51)) ($x71 (>= ?x50 0.0)))

(let ((@x70 (trans (monotonicity (and-elim @x61 $x33) (= ?x57 (+ a ?x49 0.0)))
(rewrite (= (+ a ?x49 0.0) ?x50)) (= ?x57 ?x50))))

(let ((@x74 (mp (and-elim @x61 $x56) (monotonicity @x70 (= $x56 $x71)) $x71)))
(let ((@x121 (monotonicity (symm ((_ th-lemma arith eq-propagate 1 1) @x74 @x62 (= a b)) (= b a))

(= $x82 (q a)))))
(let (($x38 (q a)) ($x96 (or (not $x38) $x82)) ($x97 (not $x96)))
(let ((@x115 (monotonicity (symm ((_ th-lemma arith eq-propagate 1 1) @x74 @x62 (= a b)) (= b a))

(= ?x35 ?x34))))
(let (($x100 (or $x37 $x97)))
(let ((@x102 (monotonicity (rewrite (= (and $x38 (not $x82)) $x97))

(= (or $x37 (and $x38 (not $x82))) $x100))))
(let (($x85 (not $x82)))
(let (($x88 (and $x38 $x85)))
(let (($x91 (or $x37 $x88)))
(let ((@x81 (trans (monotonicity (and-elim @x61 $x33) (= (+ b x) (+ b 0.0)))

(rewrite (= (+ b 0.0) b)) (= (+ b x) b))))
(let ((@x87 (monotonicity (monotonicity @x81 (= (q (+ b x)) $x82)) (= (not (q (+ b x))) $x85))))
(let ((@x93 (monotonicity (monotonicity @x87 (= (and $x38 (not (q (+ b x)))) $x88)) (= $x43 $x91))))
(let ((@x103 (mp (mp (and-elim @x61 $x43) @x93 $x91) @x102 $x100)))
(let ((@x119 (unit-resolution (def-axiom (or $x96 $x38))

(unit-resolution @x103 (symm @x115 $x36) $x97) $x38)))
(let ((@x118 (unit-resolution (def-axiom (or $x96 $x85))

(unit-resolution @x103 (symm @x115 $x36) $x97) $x85)))
(unit-resolution @x118 (mp @x119 (symm @x121 (= $x38 $x82)) $x82) false)))))))))))))))))

Fig. 4. The proof output by Z3 for example Formula 1. The output has been slightly
edited to cut and indent long lines.



Lean is meant to be used as a standalone system and as a software library. It
provides an extensive API and can be easily embedded in other systems. SMT
solvers can use the Lean API to create proof terms that can be independently
checked. The API can also be used to export Lean proofs to other systems based
on CIC (e.g., Coq and Matita).

Having a more expressive language for encoding proofs provides several ad-
vantages. First, we can easily add new “proof rules” without modifying the proof
checker (i.e., type checker). Proof rules such as mp and monotonicity used in
Z3 are just theorems in Lean. When a new decision procedure (or any other
form of automation) is implemented, the developer must first prove the theo-
rems that are needed to justify the results produced by the automatic procedure.
For example, suppose a developer is implementing a procedure for Presburger
arithmetic, she will probably use a theorem such as:

theorem add_comm (n m:nat) : n + m = m + n
:=

induction_on m
(trans (add_zero_right _) (symm (add_zero_left _)))
(take k IH,

calc
n + succ k = succ (n+k) : add_succ_right _ _

... = succ (k + n) : {IH}

... = succ k + n : symm (add_succ_left _ _))

Pre-processing steps such as Skolemization can be supported in a similar
way. Whenever a preprocessing procedure applies a Skolemization step, it uses
the following theorem to justify it.

theorem skolem_th {A : Type} {B : A -> Type} {P : forall x : A, B x -> Bool} :
(forall x, exists y, P x y) = (exists f, (forall x, P x (f x)))

:= iff_intro
(assume H : (forall x, exists y, P x y), @axiom_of_choice _ _ P H)
(assume H : (exists f, (forall x, P x (f x))),

take x, obtain (fw : forall x, B x) (Hw : forall x, P x (fw x)), from H,
exists_intro (fw x) (Hw x))

Most SMT solvers make extensive use of preprocessing steps, and as pointed
out before, it is not easy to be proof-producing for every single rewriting step
that can occur in the solver. In Lean, this issue is addressed by providing a
generic rewriting engine that can use any previously proved theorems. The engine
accepts two kinds of theorems: congruence theorems and (conditional) equations.
For example, the following two theorems can be used to distribute universal
quantifiers over disjuctions when the left (right) hand side does not reference
the bound variable.

theorem forall_or_distributel {A : Type} (p : Bool) (q : A -> Bool)
: (forall x, q x \/ p) = ((forall x, q x) \/ p)

theorem forall_or_distributer {A : Type} (p : Bool) (q : A -> Bool)
: (forall x, p \/ q x) = (p forall x, q x)

9 Applications

While the ability to use a proof to independently check the result of an SMT
solver is generally seen as a valuable objective, other applications have thus far



been more effective in driving the development of proof-producing SMT solvers,
particularly the desire to use SMT solvers in skeptical proof assistants and the
need for interpolation. Below, we discuss some of the specific applications of the
solvers discussed in this paper.

9.1 CVC

Early applications of proofs in CVC and CVC Lite were covered in Section 3.
Later, CVC3 was instrumented to produce LFSC-proofs (instead proofs in its ad
hoc native format) both as a platform for experimenting with proof systems [43]
and as a way to produce certified interpolants [45].

Proofs in CVC4 are still at an early stage, but a current project8 has as its
objective the completion of proof-production for the theories of uninterpreted
functions, arrays, and bit-vectors in CVC4 by August 2014 and a facility for
translating those proofs to Coq by August 2015.

9.2 veriT

Proofs were first implemented in veriT to allow proof reconstruction of SMT
proofs within proof assistants. This feature has been successfully used with Is-
abelle [23], and later with Coq within the SMTCoq tool [1, 31].

Georg Hofferek et al. [29] used the proof producing capability of veriT in the
context of controller synthesis for pipelined processors. The method basically
builds several interpolants from a unique proof. In the Rodin plugin to SMT [21],
proofs from veriT are used as a means to quickly extract unsatisfiable cores.

9.3 Z3

The two main applications for Z3 proof certificates are: proof reconstruction
in interactive proof assistants such as Isabelle [11]; and interpolation genera-
tion [34].

In Isabelle/HOL, Z3 proofs are reconstructed in a completely different system
based on a secure proof kernel. Proof reconstruction is quite an involved process,
because proof rules such as theory lemmas require several steps of reasoning in
Isabelle/HOL.

The interpolation prover iZ3 [34] is implemented on top of Z3. It uses Z3
proofs to guide the construction of proofs by a secondary, less efficient, inter-
polating prover. It translates Z3 proofs into a proof calculus that does admit
feasible interpolation, with “gaps”, or lemmas, that must be discharged by the
secondary prover.

8 funded by the DARPA HACMS program



10 Conclusions

Building a proof-producing SMT solver appears easy on the surface: the underly-
ing SAT solver generates Boolean resolution proofs, and, as long as the theories
in the combination also produce certificates, these can also be integrated using
Boolean resolution. There are, however, challenges both small and large related
to SMT proofs. First, it is necessary to collect and store all the necessary in-
formation to produce the final proof; this is mostly a technical problem, but, it
can be a bottleneck during proof search. Indeed, this may involve an enormous
amount of bookkeeping, and, if using main memory, may quickly exhaust the
available memory. Second, SMT often relies on many preprocessing techniques,
some being necessary for the soundness of tool, some being useful for efficiency.
The attitude followed by most SMT developers is to provide some kind of high
level trace for essential preprocessing. Non-essential preprocessing is turned off,
with consequences for efficiency. It may also be non-trivial to generate good
proofs for some preprocessing techniques, e.g. for Skolemization, or symmetry
breaking. Finally, SMT solvers may use external tools as specialized reasoners
for some theories. Producing a proof in SMT may thus, in some cases, require
certificates from those external reasoners as well.

An important challenge for the SMT community is to provide a proof format
which is sufficiently flexible to accommodate all needs, sufficiently compact to
be practical, and sufficiently elegant (which is very subjective) to be accepted
by most. Some formats have been proposed [9, 16, 44], but it seems it is still too
early for a consensus on how to represent SMT proofs.
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Carbonell, and Albert Rubio. Solving non-linear polynomial arithmetic via sat
modulo linear arithmetic. In Renate A. Schmidt, editor, CADE, volume 5663 of
Lecture Notes in Computer Science, pages 294–305. Springer, 2009.

14. Thomas Bouton, Diego B. Caminha de Oliveira, David Déharbe, and Pascal
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